Masterclass: Relative Trace Formulae

Prof. Dr. Valentin Blomer
Dr. Edgar Assing

Relative Trace Formulae in Analytic Number Theory
Set 2: Analytic applications of the Kuznetsov formula

In the beginning we will state two versions of the Kuznetsov formula that can be used as black
boxesE] After stating the exercises there is a list of useful facts that might be helpful solving
them.

Basic notation: Let H = {z =z + iy: z € R, y > 0} be the upper half plane equipped with

the measure dz = % and the hyperbolic Laplacian A = —y (88—;2 + 38—;2). The Hecke operators
are defined by

T, f1(2 E: 3 f“”b ) for n > 1 and [T f](2) = f(—3).
ad n,b mod d
d>0

We write G = SLa(R) and I' = SLy(Z). We have the action

az+b a b
’y.z—cz+dforfy—<c d> and z € H.

Let = {z =z +iy: |z| < 1, |z| > 1} be the standard fundamental domain for T'\H. The
space L?(I'\H) of I'-invariant functions on H that are square integrable on J has a spectral
expansion featuring the constant function ¢y with A-eigenvalue Ay = 0, so called Maaf} cusp
forms and Eisenstein series.

Maaf} Forms: A Hecke-Maafl cusp form ¢ is a square integrable eigenfunction of A that is
also an eigenfunction of all Hecke operators T,, with n € Z. We sort the corresponding Laplace
eigenvalues by size and numerate them: 0 < A\; < A9 < .... The corresponding Hecke-Maaf
cusp forms are denoted by ¢1, @2, .... Note that % < A1 and A\j ~ 12j as j — oo. These are
already non-trivial facts. We normalize our Maafl forms by

(bi, 9j) = /g(bi(z)qﬁj(z)dz = ;= for i,j € Z>.

One has the Fourier expansion

1
prj Kit; (2m|nly)e(nz) where t; =4[ \j — T
n#0

If Aj(n) denotes the eigenvalue of the n’th Hecke operator (i.e. T;,¢; = A\j(n)¢;), then one can
compute that

pi(n) = p;j(1)Aj(n) and p;j(—n) = ¢;p;(n) with ¢; = A;(—1) € {&1}.

Finally we associate the L-function

]) - Z )\j(n)n_s = H(l — )\j(p)p_s _‘_p_ZS)—l'

n>1 p

1Some of the notation differs from the one used in the lecture series. Sorry for the inconvenience.
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Eisenstein Series: We define the Eisenstein series by
E(z 5):1 Z $(7y.2)° where I'oo = Lo cx €L
, 5 2 . 0o 0 1)° .

For R(s) > 1 the series converges and defines a non square integrable eigenfunction of A with
eigenvalue A\ = s(1 — s). The Eisenstein series features a meromorphic continuation to all
s € C. Further we have

1 , 1
T E(-, = +it) = n~ o9 (n)E(, 3 + it) for os(n st

2

Of course Eisenstein series feature a Fourier expansion (with constant term) and one can form
a Dirichlet series using their Hecke eigenvalues.

The forward Kuznetsov Formula: For m,n € N and r € R we have

- — o0 my it cosh(7t)
3 A + [ A6t (%) onatmosam)

272 """ cosh( c A Jmm e
where b (rr)
sinh(7r
A(r,t) =
(r,) cosh(7r)?2 + sinh(7t)2
and

Sn,mic)= > e (”dtmd>.

d mod c,
(e,d)=1

The backward Kuznetsov Formula: Let f € C2(Rsq). Then for m,n € N we have
i S(n <47T\/ )

=1
_42/)] m)f(t )—I—/_Oo(nm) o2it(n )02it(m)|1“(;—i—it{gé—i—?itﬂ?dt

where

/ Ko () f (1) 2. (1)
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Exercise 2.1: Prove the following estimate: For large parameter 7', N and any sequence
(an)nen of complex numbers we have

2

S | X ) €@ NN S ol 2)

T/2<t;<T N/2<n<N N/2<n<N

a) For N/2 < N; < N and 1 < |6| < 3 define

B(e,N) = Z bmbnS(n, m;c)e(d Zm)
Ni<n,m<N
Show that
B(e,N) < c2*N Y |b,[? for all ¢ > 1, (3)
B(c,N) < (c+ N)N> " [by|* for ¢ > N'~“ and (4)
B(e,N) < 2N 3" |, |? for ¢ < N1, (5)

b) Choose a suitable function ¢(x) so that for ¢t € [T'/2,T] the bound

/ o(x)A(z, t)dz > cosh(rt) ™!
0
holds. Conclude that

1
T Z m Z anpPj (n)

T/2<t;<T N/2<n<N

1 & . 4n? 4m\/mn
< > anl +> =5 Gmany/ ,m;c)®
<53 </0 tgo(t)dt) 2 |an| —|—C:1 2 mna anv/mnS(n,m;c)®( . )

where

L[t [T
ﬂ@—A )L<&xwdmx»uw

cosh(mt
c¢) Show that ®(x) = A(x) + O(TN~2) where
Az) = //K(t, z) sin(z cosh(z))dtdz
for some K : R? — C with ||L||;1 < &+. Furthermore, if z > T?, then we have
Az) = ;//L(t,z) cos(x cosh(z))dtdz

for some L: R? — C with || L| ;1 < N°T.

d) Conclude the proof by combining the estimates obtained above.
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Exercise 2.2: Prove the following estimate: For large parameter L > 1, 1 < N <« K and any
sequences (an)nen, (bn)nen of complex numbers we have

2

> Coshl(m) Yo awpi(n)| | D bl <<T1+ET+L S anl | | D bl
J

T/2<t;<T N/2<n<N L/2<I<L n<N I<L

a) Use the function ¢ from Exercise 2.1, and the forward Kuznetsov formula to show

that
2 2
1 .
- i by - [
T/2<r; <T N/2<n<N L/2<I<L
where

1 blﬁ I * 2
T, L,N to(t 12 — | dt||an, d
SUTLN) = o [ o0 3 S (i) dtlan? an

So(T,L,N) =Y by by Z Zamanfsmmc) (47TF ll) with

~ alli/h) c 'l

(p(fli,y) —_ \/Ryltt(”X)) /OO(ngt(u) + J_ta(u))%dt

cosh(mt

The function « should be well behaved: a(y) = a(1) + O(log(y)) > 3a(1).

b) Show that
/tgo(t) <l1> dt < min(T?,log(l1/l2)™2)
R 2

and deduce that
S\(T,L,N) < T(T + L)||an||3]1b]|5-

c¢) Show that ®(z,y) < T~! for |logy| < 1 and z < T. Use this to prove
Sa(T, L, N) < T L|ay 3|13

This is the final missing piece to complete the exercise.
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Exercise 2.3: An interesting application of the backward Kuznetsov formula ?nd the results

from Exercise 2.1 and 2.2 is the following fourth moment of zeta. Let T'> 2, T2 < Ty < T and
T<th <ty<...<trp<2T with t,4+1 —t, > Tp. Then

R rtetTo 4 !

/t <G+ it)|*dt < (RTy + R2T, >T)T". (6)

r=1
Choosing R=1and Ty =T 5 yields

T+13 1 ,
/ IC(= +it)[*dt < T37T.
T 2

Another nice corollary is the bound

T

1

/ <5+ it)|"2dt < T
0

originally due to Heath-Brown. We will now sketch the proof of @ up to the point where
Kloosterman sums come into play. Then the exercises will start.

We set )
M(§ +it) = Z a(m)m_%_it
mEZ

for a smooth function a with support in [M,2M], with M < T2 log(T'). Further we require
a(p)(m) <, M™P. By the typical approximate functional equation yoga we can reduce the
problem to showing that

R tr+To 1 1 1 1
Z/ yc(5 + z‘t)|2\M(5 +it)|?dt < (RTy + R2T, *T)T*.
r=1"1r
Let 6(z) be a positive smooth function with support in [—2, 2] dominating the indicator
function on the unit interval. Set f(x) = 6(Tz/Ty) and j(7) = 6(7/T — 1). Opening
| M (% + it)|2, sorting the resulting double sum by greatest common divisor and including the
test functions f and j shows that it suffices to estimate

S i [ F I + iDPG < (RT) + BT DT

T=11,...,tR

where

N

(4)" stmote

for any positive smooth function g with support in [M,4M] for 1 < M <T 3 log(T) satisfying
(p) M-P
97 (z) <p .

G(t)= > (hk)”

(hk)=1



Masterclass: Relative Trace Formulae Page 6 of 11

Using Fourier inversion we write

o
0

’UT

)yg( +it)2G(t dt_2§R/ F)e(=2TYW (v)dv (7)

where

W(U):/OOO oI +inPen

Partial integration gives the bound f (v) <p 7 (W) , which we should keep in mind.

At this point classical results give the bound W (v) < T'*€, which suffices to treat the ranges
v < T¢and v > T'*¢/Ty. By a common dyadic dissection one reduces the problem to showing

_1
3" J(r)S(M,N,7) < (RTy + R:T, *T)T*
T:tl,...,tR

for the integrals

N
S(M,N,7) = e f(v)S(log(v))e(—?)W(v)dv

with 1 < M < T3 log(T) and T¢ < N < THGTO_I. We can assume that the integrand (and all
its derivatives) vanishes at the end points of the integral.
A Lemma of Titchmarsh gives the Laplace transform of [((3 + it)|? a

o0

/0 _Zt\C( +it)|2dt = 2me s Z 7(1) exp(2mile®?) + p(z)

=1

for R(z) > 0 and a function p, which is regular for z sufficiently close to 0. Define

ZT )exp(—Iz).
=1

Recalling the definition of G(¢) and inserting Titchmarsh’s result yields

vt 1 h T(v+i
W(v) = 2m exp(m T ) Z Eg(h)g(k:)S(QmE(l _ g2mlvt )/T),

(h.k)=1

h
)+ 0(M).

The sum S(z, ) can be written as the Mellin transform

h 1 h s
S(Z,E) = 271_1/(0) D(S,E)F(S)Z ds

of the (Estermann-type) zeta function

ZT l %, for R(s) >
=1
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The function D(s, %) extends meromorphically to C and has a pole of order 2 at s = 1. The
Laurent expansion at s =1 is
h 1

D(s, E) = E(S ~1)72+ %(’y —log(k))(s — 1)1 +....

Further we have the nice functional equation
25—2 27125 h h
=2(2m)* T (1 = 8)*k 7 [D(1 = s; ) — cos(mws) D(1 — ;= )].

Finally, one has the bound [D(0, 2)| < klog(2k)2. Using these properties (due to Estermann)
together with typical contour shift arguments yields the decomposition

h h h h
S(Z; E) = RO(Ta E) + Rl(T7 U3 h, k;) + RQ(Tv U3 E) + R3(T7 U3 E) (8)
with
h h
Ro(T; =) = D(0; >
0( ’I{?) ( 7k)7
1
Ry(T,vi h, k) = —-(v = 2log(k) — log(2)),
Ry(T, v; ﬁ) = 1/ 2(2m)25 72T (1 — 8)*T(s)k* ™2 [D(1 — s; E) —e ™Dl — s —E)]z_sds and
Y k 211 (1—¢) ’ k ’ k
. _
R3(T, v; ﬁ) = —— / 2(2m)% 720 (1 — 8)2T'(s) sin(ws)k' ™25 D(1 — s; —E)z_sds.
k ™ (1—c) k
The total contribution of Ry(T}; %) to S(M, NMr) is
N uT v+ 1 h
SoM. N7 =2m [ fw)S(log(v))e(~2)exp(r v 3 Lah)g(k)1D(; 1)
N/2 ‘-
(h,k)=1
< TOTea

simply by integration by parts. Similarly easy one can estimate the contribution of Ry (7T, v; %)
to S(M, N, T) by

y .
So(MN.7) =2m [ F0)S(og(e))e(—) explr 7

o 32 amgWR(T,v: )

(hk)=1
< Tolog(T),

The contribution of Ry (T, v; %) is handled using Stirling’s formula and trivial bounds for
|D(1 — s; )| < ¢%(c) on the contour (1 — c). One can deduce

SQ(M,N;T) < Tp.
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It remains to bring R3(T, v; %) in shape. We expand D(1 — s; —%) into its Dirichlet series,
recall the duplication formula I'(1 — s)I'(s) sin(rs) = 7 as well as the Mellin integral

L f(g) I'w)z™"dx = exp(—=z). With this we can rewrite

2mi

>
)
3

~.
>

by = S (el exp(~

2 h 2 (v44) /T
), Wlch:27['ZE(1—€ .
Gathering everything gives the contribution

vt
) le(= o)

.ZT(Z) Z W@ <—ZZ_hlk(62ﬂ'(’U+i)/T_l)_1> v

=1 (h,k)=1

N
S3(M,N,7)=m o f(v)S(log(v)) sinh(r

of R3(T,v; %) to S(M, N, ).

Put L = 2n M2N2T~1. The part of S3(M, N, 7) where [ lies outside the interval [L/16,16L]
can be estimated trivially using partial integration (for the v-integral). This can be detected
using a positive smooth function b(z) supported in [L/32, 32L] that satisfies b®)(z) < 2~ and
dominates the indicator function on [L/16,16L]. We get

S(M7 77_) = 54(M7 NvT) + O(TOTE)
with

SaM,N,r)=>"7(1) > C’(h,k,l,T)e(—l%) (9)

1 (hk)=1

and

N - '
C(h,k,l,7) = Wb(l)Q(hf)Li(k) o f(v)S(log(v)) sinh(m(v+i)/T) e <—UT - ﬁ(e%(”“)/T — 1)-1> dv.

Using the method of stationary phase (for the v-integral) one can show that

— 1
. o -1 _% l _ ﬁ 2lT2 2
J(T)Sa(M,N,7) = M'N":Ty Yy 7(1) > kb(h,k:,l,T)@( I <7rhk7‘ .

1 (h,k)=1

for a smooth function b(x1, z2, z3, z4), which is non-zero only for
1,09 XM, z3 < Land x4 <X T
and satisfies )
olil .

where we use standard multi index notation.

Put .
20T? \ 2
H(x,k,l,7) =b(z,k,l,T)e (— (Trhlm') > i
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We can expand this in a Fourier series

k,
H(x,k,l,T) ZH u, k,l,T) k:)
uEZ
with )
- 1 x 21T \ 2
H(u,k,l,7) = k/Rb(x,k,l,T)e(—uk - (Trhlm') )dx.

Another application of the method of stationary phase leads to

ulT?

) DO, (o)

§(7)S4(M, N, ) MN uzl:k a(k,l,u,7)S (u, —1; k)e(—3 (

Now a(x1,x2,x3,x4) is a smooth function non-vanishing only for
=M, xzo=<L,xz3 <N and x4 <T
satisfying
olil
Oxi
Kloosterman sums finally arrived on stagre for the grand finale. Note that estimating trivially
using the Weil bound suffices for Ty > T's.

a(x) <jxJ.

1 _
a) Put f(z) = (4’“F Lo, T)e(—5 (Tz:) *). Recall the Bessel transform f from and
show that 3 4
f(r) = 0(r)el,u, 7o) + O((Ir] + N) =0 ™" log(T)),
where |0(r)| < r~le=™. Furthermore c(z1, z2,x3,74) is a smooth function non-vanishing

only for
=L, 2o <N, x3=<Tand x4 < N

satlsfymg 6' o se(x) < x 7. (Recall that L = 2rM2N2T-1, M < Tz log(T) and T¢ < N <
T1+6T )

b) Locate the function f from a) in our expression for Sy(M, N, 7) and apply the backward
Kuznetsov formula to the k-sum. Derive

R
> i(ty)Sa(M, N, t,) <RTHT*
v=1

i Z UQ’L’V‘ )UQiT (l)tWC(l, u, tUa 7’) L
=5 v r|¢(1 + 2ir)|?

00 R
TO itj
+ MNZt cosh ;) ;ZT(l)p](u)p](l)tv c(l,u, ty, )| -

1

c) Apply the results from Exercise 2.1 and 2.2 to derive the desired bound.
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List of useful facts:

e The classical Rankin-Selberg estimate

> 1pi(m)[* < ([t;] + 1) cosh(t;) N.
n<N

e The Weyl law
1
H{jeN:t; < X} = EX2 + O(X)

as well as the estimate
tH{jeN: [t—t;| <1} <t

e One also has the (elementary) identity

(n,m;c) d|(;nc)d S( ZT,(%)

The Weil bound for Kloosterman sums is
S(n,m; )| < (n,m,c)2c2r(c).

e The large sieve inequality

2

Z Z ame(m%) <(c+ M) Z |2

h mod ¢ |m<M m<M

e For z > 0 and —1 < R(v) < 1 one has

mJy(x) = 2/0 sin(x cosht — %) cosh(vt)dt.

e Basset’s formula reads
3 1 o0 20 \*" wsin(w)
Ko, = —I(=+2 —dw.
@) = g Z”/o <w2+w2> @ +uw?)i

Furthermore Ko;, () = gm(lgir(x) — I_9;y(z)) and we have the power series

expansion

1

T = ) 2qr
2ir = (2/2) T(1+ 2ir)

> T 2m
Z( /7721)' (14 2ir) - - - (m + 2ir).

m=0

e A mean-value theorem for Dirichlet polynomials:

/“N ’ Zt““ (xty)

where the t, are of size 1" and are at least Tj apart.

T
R,
T())

d7°<<(N+
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A version of the stationary phase lemma:

Let D be the domain in R™*! given by (1 — ¢;)X; < 2; < (1 +¢;)X; for 1 <4 <7 and
(1-0)Y <y < (14 )Y for some constants 0 < ¢1,...,¢, ¢ < % Further, let f(z1,...,2,,y)
be a real function in €*>°(D) satisfying the following properties:

e For (x,y) € D we have A < %;Qf(x,y) < 2A;
e For (x,y) € D we have

olrl+a

axpayqf(xv y)| < c(p, q)AYQ_le—pl X

for some constants ¢(p, q) so that ¢(0,3) < ﬁ.

e The equation %f(x, y) = 0 has a smooth solution y = y(x) in D so that

Ilp| - _
@ <<pX1p1"-erT.

Finally let a(x,y) be a function smooth function with supp(a) C D satisfying

(%, y) <pg X7 -+ XY 9. Then

_1
| b )y = A H el )
where b is a smooth function supported in the ranges
=X, fori=1,...,r

satisfying
o _ _
@b(x) <K Xl LEN XT' Pr‘

Remark: This is a version of the stationary phase lemma featuring non-degenerate critical
points and a set of v parameters. There are many versions of this result in the literature.
Important for our application is that we do not lose control over the new weight function b(x).



