Masterclass: Relative Trace Formulae

Prof. Dr. Valentin Blomer
Dr. Edgar Assing

Relative Trace Formulae in Analytic Number Theory

Solution to Set 2

The exercises in this set and the solutions form an overview of the very nice 1980 paper
Fourier coefficients of cusp forms and the Riemann zeta-function by Henryk Iwaniec.

Exercise 2.1.a) The first estimate follows by using the Weil bound for the Kloosterman sums:

Ble, NI < > [bmbaS(n,m;0)|

Ni<nm<N
1 — 1
<zt Y |bimbn|(n,m, c)?
Ni<nm<N
2
1 1
<2ty de ( > \bdnl>
d N N
|C Tl<n§g,
(n,c)=1
1 _1 1
<crTNY dz Y [P < ezTN > (bl
d N N N1<n<N
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To derive the second estimate we first note that since ¢ > N17€ we have A = %9 < 3N€ and

AJ2 < Y0 < A. Let 1) be a smooth function with support in [1/4,4] so that n[f 99 = 1. We

v/nm v/nm
0 0
c cA

obtain

B(c,N) = Z bimbnS(n, m;c)e(

Ni<nm<N

)n( )-

Put -
R(s):/o n(%)e(m)xsfld:r.

This function is trivially bounded by R(s) <, AR() and by partial integration one gets
R(s) < AR S(5)72 for |S(s)| > 47 A.

By Mellin inversion we get

1

n(x/A)e(z) = 27”/( )R(s)x_sds for o > 0.
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The desired estimate now follows from the large sieve and the definition of the Kloosterman
sum:

B(¢,N) = ! /(U) R(s) Z bimbn <m9) B S(n,m;c)ds

27 c
Ni<nm<N

_— S h/ S E
b~ e(m)| -| ban~Se(m=)| - |R(s)ld
<’ / m 2e(mc) Z n 2e(mc) |R(s)|ds

(o) h mod c N1<m<N Ni<n<N

N

<<c/ ( Z ’ Z icz)‘2>2< Z ’ Z bnn_ge(n}cl)r) -|R(s)|ds

h mod ¢, Ni<m<N h mod ¢, Ni<n<N

(e,h)=1 (e,h)=1
<N Y |bn]2n”/ IR(s)|ds < N4 e+ N) 3 [bal?
Ni<n<N (@) Ni<n<N
CAlc+N) > [P <N(c+N) > |l
Ni<n<N Ni<n<N

The finial estimate turns out to be the hardest, even though the ingredients are again
elementary. First we write

Ble,N)= Y W Y ds(, f)e(em)

iy ’ c
Ni<n,m<N d\(n m,c)
=5"d > bambanS(1,mn; 9) (oY1 (1)

c/d

dle N N
| 24 <M<y

For notational sake we set xy, = bgn, ¢ = 5, M = % and M; = %. By Cauchy-Schwarz we
have

2

(X@MP< | >0 el Zﬁ(%>’ ) MS(l,mn;q)e(H\/;m)

—s(M)

We need to estimate the second factor. This is done by opening the square as well as the
Kloosterman sum and moving the n-sum in. This leads to

S = Y Tmew 3 oMY f)

Mi<mi,ma<M hi,h2 mod c,
(h1h2,c)=1

where

) = (eI 4 g TRy efan + ).

q
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The n-sum is treated using Poisson summation:
zn:f Zf ) with f(u) = /RT](;\})e((a —u)t + bVt)dt

Recall that a € %Z. In particular, if u # a, then |a — u| > ¢~!. On the other hand, for
t € supp(n(57)), we can estimate

_1|mp —me| 1
2 — <K .
Mq 1

Applying [-times partial integration yields
f(u) < (Ju—alM)~'M.

With this at hand we can estimate

3 fn) ( ) M < N=9M.
nta

In the last step we used 7 = & and ¢ < N 1=¢_ Now we can choose [ as large as necessary

(depending on €) to obtain
3" F(n) = daczfla) + O ).

The condition a € Z yields the congruence
h1m1 = h2m2 mod q.

For this case we have to distinguish diagonal and off-diagonal contributions from the m;-sums.
Indeed for m; = mg we can not improve upon f(a) < M. However, if m; # mg, then partial
integration gives

~ t M qM
a) = —e(bVt)dt < < .
flo) = [ nigpeviar < 5 <
Note that b —h
Yoo e(——2) < (1 —ma,q).
h1,he mod q, q
(h1h2,q)=1

himi=hgamamod ¢

Gathering these estimates we find

mi — ma,
S(M) <gM Z ‘xml‘g +qM Z W’xﬂnxﬁw
Mi<mi<M Mi<mi,ma<M, !
mi1#£ma

<qgM >
Mi<mi<M



Masterclass: Relative Trace Formulae Page 4 of 10

This gives

X(g, M) < /aM > |om,

Mi<mi<M

and we finally obtain

B(C,N):ZdX(g,%)<<Z\/W S bl < cENE Sl

dle dlc %<n§% Ni<n<N
This gives the last claim.

Exercise 2.1.b) We take 1 as in the previous section and define ¢(z) = n(%). We obtain

T
%) B o0 x Sil’lh(ﬂ'ﬂ?) -
/0 p(r) Az, t)de = /0 77(’_Z")Cosh(Trx)2 + sinh(7t)?

/T sinh(mz)
> .
= J1y cosh(mx)? + sinh(t)?
.
cosh(mt)

for t € [T'/2,T] as required. With this at hand we can estimate

2
oo

> | D )] € Y e [ o) A t)nlmi s

T/2<t;<T N/2<n<N N/2<m,;n<N j=1

By positivity we can add the Eisenstein contribution and apply the forward Kuznetsov
formula. This gives

1 1 o
nkj < d n2
Y iy | X e <55 e 3T e

T/2<t;<T N/2<n<N N/2<n<N
[0.9]
472 nm
+ E — Z Amany/nmS(n, m; C)<I>(47TT).
c=1 N/2<n,m<N

Here

B(z) = /0 - wt;fl((ir)if) /  (aie(w) + J_git(u))%dt

as required.
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Exercise 2.1.c) First we simplify the integral defining ® as follows

_ [Tt [ P
o)~ | [ Ot + )

COSh(?Tt

4 * tp(t) du
= §R/ / / sin(u cosh(y) — imt) cosh(2zty)dy—dt
0

cosh mt)

m
4 e (t du
= 77%/0 cosh73t)/ /xCOSh sin(u — mt)— cosh(2ity)dydt

2 © p(t) o ., sinh(y) . .
= _778%/0 cosh(rD) /0 isin(x cosh(y) — int) coshi(y) smh(Q%ty)dydt
_ 2 / / (:O(:h(t)%[z sin(x cosh(y) — int) sinh(2ity)]dt zg;}}llg)) dy

(7t)
/ / ) sin(2ty)dt sin(x cosh(y)) :;I:}IIEZ)) dy

In the fourth line we applied partial integration to the y-integral and afterwards some addition
formula for trigonometric functions.
We put 6 = N°T~!. For y > § partial integration one can estimate the inner integral by

/ o(t) sin(2ty)dt <; T(yT)! < KN-2
0

when [ is taken to be large enough. Thus we can insert a cutoff function £ with support in
[0,20] and £Jjg5) = 1 into the y-integral with an acceptable error. This gives

D(z) = Alx)) + O(KN"?) for Al / / £()p(t) sin(2ty)di sin(z cosh(y»:gi((?)
We write o
= / / K (t,y) sin(z cosh(y))dtdy.
o Jo
Note that

o = [~ [T Ky < 7= 8T <1
For > T? we apply partial integration in the y-integral to get

sinh(y) | 4 /°° d <€<y>n<2w>
0

cosh(y) dy cosh(y)

/000 &(y) sin(2ty) sin(x cosh(y)) > cos(z cosh(y))dy.

With this at hand we can write
:/ / L(t,y)x ! cos(z cosh(y))dtdy,
0o Jo

for an appropriate kernel with the desired L'-growth.
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Exercise 2.1.d) We go back to the upper bound derived in part d) of the exercise. Since

/OO to(t) < T?
0

the diagonal gives an acceptable contribution. We turn to the off diagonal and insert our
approximation for ®(z). This gives

Y | I )| <7 3k

T/2<t;<T N/2<n<N N/2<n<N
. 472 nm
+ZT Z @an\/nmS(n,m;c)AMﬂ'T) +E&.
c=1 N/2<n,m<N

=T(T,N)

The error is treated trivial using the Weil bound:

o) ( )l
vnm(n,m,c)2 _
E<Y Y Y ama|TN TP T > anl”
e=1 N/2<n,m<N c2 N/2<n<N
It remains to estimate T(T, N). To so we split the c-sum in the four pieces N? < ¢ < oo,

Nli-e<e< N2, NT2<c¢< N'"€¢and 0 < ¢ < NT~2. We call these intervals I; for
1 =1,2,3,4. Accordingly we get

4
T(T,N)=>_ T,(T,N).
=1

Put 6 = 64, = £2cosh(y) and b, = y/na,. Note that 0 <y < 2§ so that we can assume
1 < 16| < 3. We get

o0 [e.9] 1 - /
T,(T,N) = 2r* Z/o /0 L(t,y) Z ) Z b bnS(n, m; c)e(O+ y Zm)dydt.
-

cel; N/2<n,m<N

We recognize the inner sums as B(c¢, N), which we treated in a). Applying these results and
treating everything else trivially concludes the proof.

Exercise 2.2.a) By considering the Taylor expansion
p(t + ) = () + ' (x) + O((x + T)7%?)

we get

0o T ) dt
it A = Y / it —2nx
/ Yy o(t)A(t, x)dt . yro(t+ m)icosh(ﬂt) +O(e ™)

oo cosh(mz)
i PT) o dt (@) / . tdt o
B O T :
/ cosh(mz) /]Ry cosh(t) Ty cosh(mz) Ry cosh(rt) +O((z +1)7%e™™)

=a(y) =B(y)



Masterclass: Relative Trace Formulae Page 7 of 10

Note that « is real and satisfies
1
a(y) = a(1) + O(log(y)) > 5a(1).

With this at hand we can write

L\™
cosh () )Z B cosh(mc Zbllbb <l2>

—Z bZl;lfz /RGD (A, 2)dt + O((x +T) 2™ Ly 3).

Note that £ did not play a role here since it is purely imaginary. In particular, we can also
open the n-sum in our original expression and transform it into

by, b, s -
Z a(li/ly) Z fhm ”/( > (t);A(tvtj)ﬂj(m)pj(n)dH81.

The error €; can be easily treated using the result from Exercise 2.1 and it turns out that
€1 < L||b||3||al|3. By positivity we add the Eisenstein contribution and apply the forward
Kuznetsov formula. The diagonal contribution gives directly Si(T, L, N), while So(T, L, N)
comes from the off-diagonal.

Exercise 2.2.b) The claimed estimate
h\" . .
to(t) 5 dt < min(7T%,log(l1/12)™°)
R 2
follows directly by applying partial integration twice. With this at hand we estimate
S1(T, L; N) trivially and get

SUT, L, N) < T?|an[3]1Bil13 + D log(la/12)~*|br,bisllan|3 < (T% + TL)an 5]|251]13-
|11

Exercise 2.2.c) To estimate the function ®(x,y) we see that the same computation as in
Exercise 2.1.c) shows that

O(x,y) / / y"p(t) sin(2tz) sin(z cosh(z ))iiﬁiz;d dt.

For z > |log(y)| we partially integrating the ¢-integral twice to get
o0 .
/ y"o(t) sin(2tz)dt < T(2T) >
0

(This can be seen for example by writing y sin(2tz) = &[e?(108W)=22) _ ¢it(loe®)+22)] ) Tnserting
a suitable cutoff function £ as before allows us to write

B(z,y) = > /0 T e /0 " to(t) sin(2t2)dt sin(z cosh(2))

™

sinh(z)

-1
cosh(2) dz+0(T™).
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The estimate is completed by applying partial integration twice in the z-integral (after taking
the sine apart):

o0 Sil’lh(z) 2itz+izx cosh(z) —2
| semse e :

The claimed bound directly since our estimate for the z-integral implies

O(z,y) < K1 +/ t2p(t)dt < K1
0
With this estimate for ®(x,y) at hand we can estimate So(T, L, N). First note that

amy/nm VI« N < T and % € [1,2]. We start by using our bound for ®(z,y) and the Weil bound
to estimate

_ mn(n,m,c LN?%te
ST L N) < TS byl 303 fanan 200 BNV 303
C

T

3_
2
l1,l2 c myn

We are done since N <« T.

Exercise 2.3.a) We first look at 7 < N. In this case we insert Basset’s integral for the
K-Bessel function to obtain

ﬂm:Amewvwﬂm

T
. 1
1 e 2w N\ b 1222\ %\ d
= ip(, + 2ir) / / i (=) T€ _3 i o sin(w)dw,
NZERY: o Jo \w?+ a2 (2 + w?)3 2 \ 41 x

where we use the shorthand b(x) = a(MTm, l,u, 7). Note that x is of size N3T¢ due to the
support of b. By partially integrating the x-integral sufficiently often we get

f(r) < N=Se I 1og(T)

in this range. Note that the exponential comes from the I'-factor after using Stirling’s formula.
We turn towards |r| > N. Here we use the representation of Ky in terms of the I-Bessel
function and the Taylor series for the latter. Since 2% < |r|T~¢ we can truncate the sum after
finitely many terms (say mq(e) without introducing any significant error. Let m < mg(e). Then
a typical term we need to treat is of the form

0o ) 3 T2 2 %
Ay = / b(x)g?m— 12 [ = dx
0 2w 4t

1
[e¢) T2 2\ 3
:/ b(x)z*m! exp(2irlog(x)—31’( ’ ) )dx.
0

4r

If r is not of size NV, then we win again by partial integration. Indeed one gets for example

Uy K (N3T71)2m|7,‘76
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so that }
fr) < |r| eI,

In the remaining range, 7 < N we apply the stationary phase lemma as stated above. This
gives the result desired result.

Exercise 2.3.b) According to equation (10) on the exercise sheet we have

R u 9 %
Z;( »)S1(M, N, t,) }:}: }:S a(k,l,u,t,)e(— 3(%ﬁ%) ) +O(RTy).

v—l u,l k

=f (4

Applying the backward Kuznetsov formula and inserting the asymptotic expansion from
Exercise 2.3.a) we get

5 SR AT [ o o ) P )

- k IT(L +r)C(1 + 2ir) |2
+4) pi (D ()t 0(t;)e(l, u,tus t;)
j=1
+ &1+ €.
The errors €1 and £, are handled by
&1 < 7(u /|C 1+ 2ir)|72(|r| + N) 8dr <« N7
and
82<:§é Q0] ié ps(1 < ulN~*t¢ <« N7IT*
= (t; + N)S cosh(Trtj) ]=1 (t; + N)6 cosh(mﬁ ) )

Note that here very crude estimates were sufficient and we used [ < L and v =< N. Inserting
this above directly yields the desired estimate. The genesis of the error term is as follows:

T, . L MN T3
——L-N-N'T*=RTyT®  —— ToT* - — ToT*,
R- VN R1Tj MN<<R0 T T0<<R0

where we used the constraints on the parameters L, M, N and the assumption concerning the
size of Tj.

Exercise 2.3.c) Before we can apply our large sieve results from the previous exercises we
have to separate the variables [, v and 7. This is done by writing

c(lyu,m,r) = / / / c(z1, 2, x3,7)e(21l + xou + 237)dx1dTodT3
R JR JR
via Fourier inversion. The Fourier transform ¢ is easily controlled by partial integration:

3(1’1,1’2,1173, r) < Bz, x2,23) = (371 +1)” (Z‘% + 1)71(.77% + 1)71
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With this at hand we can bound

R
D (t0)Sa(M, N, ty) < RTGT + Scusp + Spis,

v=1
where
TO 1 & i
Scusp = Wt;\[tjms}]wrtj)/R/R/R‘;t“ e(xsty) ‘g;vpj(u)e(xzu)H;pj(l)f(l)e(xll)’dﬂ
and

Tolog ir
SEis = T rNT /vN///‘Zt e(@sto)

We first treat the Eisenstein contribution. First we apply Cauchy-Schwarz and bound the
u-sum trivially. This gives

S ToN* i d DI e(x 2 2d
Eis € —— UN /XN‘;tv e(xzsty)| dr /A ‘ZO’QW (21 )’ r 3

<(N+7:)R (NVLA+L)Li+e

‘ Z o2ir(u u "e(xou H Zaz“" l” (x11) ‘drdﬁ

ToT® T
N+ —
N N To

< JERY . (NVL + L)L} < RIT, 2TV,

The sum S¢ysp is treated by using Cauchy-Schwarz on the t;-sum to get precisely the averages
treated in Exercise 2.1 and 2.2. Applying these yields

1
To 2\ ?
8Cus Er— ‘ l ‘
P MN? /Rg (tz;vcosh Zp] Je(z1l) )
]
' ( cosh 7rt }Zt (w5to) ’ Z p] elzau ’ ) dp

jX u=xN

N[

< LY A
MN?

1

LENRS < RET, T+,

1\3\»—‘

(N2+ L)2(N + R):L

This completes the proof.



