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ABSTRACT

The theme of this thesis is to apply ultrametric analysis to classical problems in analytic
number theory. This allows one to handle situations featuring high ramification at finite
places. While this strategy works in many cases, the main focus of this work is the sup-
norm problem for automorphic forms on GL. Our treatment of the problem is spread
over two main parts.

First, we have to develop the necessary local theory which splits into archimedean
and p-adic cases. The results needed in the archimedean cases are mostly classical, but
recalling them in some detail will provide some guidance and intuition for the non-
archimedean cases. The ultrametric situation is far less developed. Here we compute
explicit expressions for the p-adic Whittaker function associated to a newform. These
expressions are new in most cases and lead to tight bounds for the Whittaker function
in question.

Second, we use the adelic framework and the theory of automorphic representations
to put the local pieces together and treat the sup-norm of automorphic forms over num-
ber fields. We establish lower bounds far up in the cusp coming from the transition
region, archimedean and non-archimedean, of the global Whittaker new vector. Further-
more, we prove hybrid upper bounds, in other words estimates that are explicit in all
major aspects of the automorphic form under investigation. We allow a wide variety of
representations at the archimedean places and make no restrictions at the finite one. In

that sense we go beyond the existing work.
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Part1

PART ONE

This part provides a general introduction to the entire thesis. We will outline
the philosophy behind this work, provide some motivation for the results in
the following parts, and finally we will combine everything by briefly stating

the main results.

Furthermore, we will setup some notation and provide the necessary prereq-

uisites for the rest of the text.






INTRODUCTION AND BACKGROUND

The language of automorphic representations is a powerful framework for the study of
many problems in number theory. The obvious advantages are the uniform treatment of
different types of automorphic forms as well as the efficient notation handling number
fields. More importantly, it is the right scheme to attack problems featuring ramification.
Indeed, it not only offers the right tools to do so, it also clears up several phenomena by
analogy with the archimedean theory, which are usually better understood.

We will put this language to good use and obtain some new results towards the
sup-norm problem for automorphic forms on GLy. While doing so we will exploit all
the advantages mentioned above. Indeed, the theory of automorphic representations en-
ables us to treat a wide variety of objects such as modular forms, Maafs forms, Hilbert
modular forms, and combinations of these at once. Furthermore, the number field set-
ting will come across very natural and is far less tedious than in the classical language.
We will also see that treating square full level, requires a strategy which is borrowed
from the archimedean places.

It is the nature of the adelic approach that it essentially consists of two parts. The local
computations or preliminaries and the global argument. Locally, the analytic machinery,
to establish important estimates, is available. Globally, automorphy is exploited to piece
the local results together and prove the final result. This essentially dictates the structure
of this thesis. It consists of a local part and a global part. Both parts heavily rely on
existing theory and ideas. But in each part we also establish new results which are of
independent interest. This thesis relies heavily on the manuscripts [2, 4] by the author.
We will use the next sections for a more careful introduction of the two main parts of

this work.



1.1 LOCAL ANALYSIS OF THE WHITTAKER MODEL
1.1 LOCAL ANALYSIS OF THE WHITTAKER MODEL

Uniform bounds for special functions, say the K-Bessel function, are by now a standard
tool in the spectral theory of automorphic forms. From the viewpoint of automorphic
representations many special functions appear in the Whittaker model of admissible,
irreducible, infinite dimensional representations. To illustrate this we begin the local
part by computing a suitable basis for the Whittaker model of an admissible, infinite
dimensional representation of GL, over an archimedean field. We also recall the method
of stationary phase and derive useful bounds for the K-Bessel function.

Turning to the non-archimedean situation we observe that the representation theoretic
point of view provides a large source of special functions over Q, and other local fields.
The importance of these functions is underlined through their appearance in several
trace/period formulae. Unfortunately their properties are not as well understood as in
the archimedean situation. We are particularly interested in certain examples of p-adic
Whittaker functions.

The functions under consideration are elements of the Whittaker space

W(GL2(Q,),¢) = {W: GL2(Q,) — C smooth :

W b g| =v¢(@)W(g)forallz € Qp,g € GLQ(QP)},

0 1
where 1 is a non-trivial additive character on Q,. The group GL2(Q,) acts on this space
by right translation. Thus we can look at subspaces of W(GL2(Q,), ) on which this
action is irreducible. These subspaces contain a special element that we call a Whittaker
new vector. The defining property is that it is right invariant by the compact open sub-
group

K= [T N ca@y) abedez,

p"e d
for minimal n. The new vector in an irreducible subspace is unique up to scaling and
we normalise it by W (1) = 1.

It turns out that the behaviour of a new vector is dictated by the underlying represen-

tation. Thus, given an irreducible, admissible representation 7 of GLQ(QP) we denote

the corresponding subspace of the Whittaker space by W(w, ) and the new vector con-



1.1 LOCAL ANALYSIS OF THE WHITTAKER MODEL

tained within will be called W;. The first property of W, that comes to mind is its
absolute size. This leads to the invariant

[Wrlloo
W ll2

h(m) =1+
first defined in [82]. This was studied in [69, 82], motivated by its connection to the
sup-norm of modular forms.

The methods in both papers [69, 82] rely heavily on 7 having a highly ramified cen-
tral characters. Thus, the values of h(7) for mildly ramified central character remained
somewhat mysterious. This produced some interest in finding out the truth. The conjec-
ture [69, Conjecture 2], based on assuming square root cancellation in certain sums of

epsilon factors, predicts that

h(m) < p™

as long as the exponent conductor of the central character is less than 5. However, it
quickly turned out that this conjecture is not accurate. Indeed, counter examples are
constructed by A. Saha and Y. Hu in an unpublished manuscript.

In this thesis we settle the question for the size of h(w) once and for all. Indeed we
prove that

n

h(7) <F max(qiz,q

m__
3

Gl

)

where m is the exponent conductor of the central character and F' is any non-archimedean
local field of characteristic 0, odd residual characteristic ¢, and uniformiser w. This up-
per bound is sharp in the sense that for fixed central character and fixed even n there

are representations such that the upper bound is attained up to constant. Note that the

transition between the two exponents happens exactly at m = 3. If n = m, we recover

the exponent % which already appeared in [82]. Furthermore, our results show that the

lower bounds obtained in [69, Theorem 2.8] are not best possible.

The upper bounds are derived using the method of stationary phase and the excep-
tional large values appear due to the existence of degenerate critical points. This is very
similar to the archimedean situation. It is the nature of ultrametric analysis that the
method of stationary phase yields a precise formula instead of an asymptotic expansion.
Thus, as a by-product, we obtain several explicit expressions for W, which we believe

to be of independent interest.



1.2 A BRIEF INTRODUCTION TO THE SUP-NORM PROBLEM

Note that for odd n there are no degenerate critical points and we obtain the stronger

bounds

m __
2

]

h(m) <r max(1,q

).

The starting point of the method of stationary phase is to use integral representations
for the Whittaker new vector on certain special matrices g;;,. Roughly we will prove
that

Wa(gt10) = C(t,m) (2)Y(Tr(A(t)z) + Uw_lNrE/F(z))d,uE

Ox ¢
for a two dimensional etalé algebra E/ with character { associated to m and explicit con-
stants C'(¢,7) € C and A(t) € E*. The choices for E and £ can be naturally explained
for each 7. Our proof of these integral representations is based on finite Fourier analysis
as well as the local functional equation. Note that similar formulae have been indepen-
dently obtained by N. Templier in 2011 (unpublished) and Y. Hu in 2016 (unpublished
except for the case of principal series which appeared in [46]).

The work described so far is built on the results published by the author in [4]. How-
ever, in this thesis we go beyond them. More specifically, we remove the restriction that
the local field is Q,. Furthermore, we perform the stationary phase arguments in much
more detail which leads to many explicit expressions for W, which did not appear
earlier.

We will apply these results to the sup-norm problem of automorphic forms. See below
for a more detailed description of the latter. However we believe that the formulae we

prove for W, are of interest beyond the applications given here.

1.2 A BRIEF INTRODUCTION TO THE SUP-NORM PROBLEM

Let M be a compact Riemannian surface with Laplace-Beltrami operator A. The eigen-

functions
Ap = Ay

are central objects in mathematical physics. In view of the correspondence principle one
expects a close connection between the geodesic flow on M and the mass distribution

properties of ¢. The sup-norm

|@lloc = sup |¢(z)]
zeM



1.2 A BRIEF INTRODUCTION TO THE SUP-NORM PROBLEM

is one measure of the latter. The sup-norm problem asks for the true size of ||¢|/~. The

local bound, which we like to call the Hormander bound, reads

1
[l <ar Agll@]l2-

It is known as a local bound since its proof does not use any global information of M.
If M has negative curvature, the geodesic flow is ergodic and the Hoérmander bound is
expected to be far from the truth. Indeed, in the specific case of compact surfaces with
negative curvature a bound of the form [|§|oc < Ag||¢[2, for all € > 0, should hold. In
the breakthrough paper [52], the authors use connections to number theory to exploit

the global structure of M and prove a sub-local bound

5+e|

[8lloo <t ATl

for arithmetic surfaces M and Hecke-Maaf3 eigenforms ¢. Since then there has been
much work extending their method. We will give a more comprehensive survey later on
in this thesis. For now let us only mention two recent results. In [70] hybrid bounds for
Hecke-Maafs newforms on congruence quotients of arbitrary level and central charac-
ter are proven. Furthermore, in [20] Hecke-Maafi newforms with square-free level and
trivial central character on congruence quotients over number fields are considered. In
this thesis we combine these two results non-trivially producing a general hybrid bound
over number fields.

Let us describe our result in some detail. Let F' be a number field with archimedean
places v € So. Further let n = nyn3 be an ideal factorised in square-free and square-
full part, and w be a Hecke character of conductor m. Let ¢ be a newform of level n
and central character w. We assume that ¢ is holomorphic of weight &, at real places
v € Sphol C Soo, Maaf3 of weight 0 or 1 and spectral parameter 7), at the remaining real
places, and spherical with spectral parameter 7), at all complex places. To measure the

size of the archimedean parameters simultaneously we define
F,: R 2
Tl =TI A" S Tle =TT 1" and [kl = I Ikl
VES\Shol v complex VEShol

The size of the ideals is determined by their absolute norms A (n), N'(m) etc. We have

the following theorem.



1.3 NOTATION AND PREREQUISITES

Theorem 1.2.1. In the setting described above we have

W (g it N ) A0 B () (213, A )

[ ®]l2 m, nony

11 1
Ty, \kmolﬂf(ngw).

Furthermore, if Spo = ) and [FR: F) > 2 is the maximal totally real subfield of F, then
] S ()T A () ()
lee (it i ¥ 7 o) s A ) ()

The proof consists of two main parts. First, we estimate the Whittaker expansion to
gain good control high in the cusps. This can be compared to a maximum principle as
used in the classical theory of PDE’s. It is here where the understanding of the local
Whittaker new vectors, studied in the first part, comes in handy. Indeed, it is essential
to our estimate that we understand their support and their L?-size. Second, we apply
the so called amplification method. Here we exploit the global structure in form of an
amplifier to bound ¢ in the bulk. This step requires some local preliminaries. At places
with high ramifications we use a local test function to produce the dependence on ng
and m which can be seen as a p-adic version of the Hérmander bound.

We can also produce large values of Hilbert-Maaf} newforms just as in [69, 82]. In this
case we find examples of forms which are large in every aspect simultaneously. These
are large values arising from the transition region of the Whittaker function. Thus, they
appear high in the cusp and may be interpreted as resonance phenomena before the
cusp form starts its decay. Large values in the bulk are of a very different origin and are
much harder to construct. We do not address them in this thesis.

The theorem stated here is based on the work [2]. However, we go slightly further by
including the possibility of Hilbert-Maafs forms. Over Q hybrid bounds for holomorphic
modular forms are folklore. However, to the best of our knowledge, such bounds in this
explicit form have not yet appeared in the literature. Furthermore, we keep the argument

quite general so that some extensions become easy to implement.

1.3 NOTATION AND PREREQUISITES

In this section we introduce the necessary notation and provide some background. Ev-

erything should be quite standard. However, since conventions differ from source to



1.3 NOTATION AND PREREQUISITES

source, we want to introduce our notation in some detail. All the background provided
in this section should be well known.

Our notation is taken from [2, 4] and we draw inspiration from the papers [20, 69,
70] as well as the thesis [30]. Additionally we use classical conventions from analytic
number theory. Indeed, for a positive function g we write f < g and g > f to mean
f = 0O(g). We may add parameters as subscript to indicate dependencies of the implied
constant. Further we write f < g if f < g and g < f. Note that the implied constants

may differ, if they agree we write f ~ g. Finally we use e(z) = e?™.

1.3.1 The archimedean fields R and C

Let F be either R or C. We equip F' with the modulus

sgn(z)z if F =R,
x| =
S(z)2+R(x)? if F=C.
We equip R with the standard Lebesgue measure ur (normalised by pr([0,1]) =
(27r)_%) and C with uc = pr ® ur. Note that these are Haar measures for the additive

group. On the multiplicative group (F*, x) we define the Haar measure z% = |-| ™! up.

Additive characters of F' are very well understood. Indeed, we define

e(z) if F =R,
e(R(z)) if F=C.

Every character of the (locally compact topological) group (F,+) is of the form v, =
Y(a-) for some a € F. Thus we can identify the character group of (F',+) with (F, +)

itself. With this identification the Fourier transform is given by
FA) = Fw) = [ i) dur().

Note that our measures are normalised such that f (x) = f(—=z) for Schwartz functions
feS(F).
Similarly easy are the multiplicative characters. Indeed, a generic multiplicative (quasi)-

character will be of the form
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for s € C and k € Z. With this in mind we define the Mellin transform

M (x5 / F@)x(x) 2] dd(x).

1.3.2 Nomn-archimedean local fields

We are now turning to the non-archimedean or p-adic world. We will restrict our atten-
tion to those fields which arise as localisations of number fields. Thus, F' will be a finite

extension of Q,, for some prime p.

Basic objects

Let F' be a local field of characteristic 0. More precisely, F' is a topological field of
characteristic 0 which is complete with respect to a discrete valuation v and has finite
residue field. Due to the classification of such fields, [63, Chapter II, Proposition 5.2], F'
is a finite extension of Q, for some prime p and thus has residue field I, for ¢ = p/.
We normalise the valuation v to be surjective onto Z and fix a uniformiser @ € F' such
that v(w) = 1. This choice is fixed once and for all and we ignore any dependence
on it that may arise. Equip F with the complete absolute value |-| = ¢~*() and let
o = {x € F': |z| <1} denote the ring of integers in F. Note that o is a discrete valuation

ring with unique maximal ideal p = wo. We define the local zeta factor by

Cr(s) = (1—q )"

Let e = e(F'/Qp) be the maximal ramification index of F' over Q) and put kp = [ 55 ].

Then we can define the p-adic logarithm by the convergent power series

n,_nKkp
1 1 KF .\ — -1 n1d W
ogp(1+ = a) = 3 (-1

n>1

Measures and Volumes

Since (F, +) is a locally compact group there is an up to scaling unique Haar measure
pr, which we normalise by p (o) = 1. On the other hand we have the unique Haar
measure £ on (F*, x) normalised by ny(0*) = 1. Note that these two measures are

connected by iy = (r(1 ) . The volumes of some important sets are

Vol(p", pr) = ¢~ " and Vol(1 + p", up) = (r(1)g™ ", forn > 1.

10



1.3 NOTATION AND PREREQUISITES

By abuse of notation we will write 1+ p° = 0*.

Characters and integral transforms

The additive character theory is very similar to the archimedean case. We fix an additive
character ¢ which is trivial on 0 and non-trivial on w!o. Any additive character is of the
form v, = 1(a-). Let n(va) = —v(a). This is the smallest integer & such that [, = 1.

With this at hand we define the Fourier transform

FA) = Fw) = [y dur().
Naturally this transform is defined for Schwartz-Bruhat functions f € S(F'). These are
locally constant, compactly supported functions. Our measures are normalised such that
f(@) = 1(-a).

The multiplicative theory is more involved. We define the set
X = {x: F* — S': continuous character satisfying x(w) = 1}.

Then every (quasi)-character is of the form x|-|* for s € C and x € X. Note that this
decomposition depends on the choice of @ which we consider as fixed. An important

special function in this context is the Gaufs sum

Gly.x) / ey x (@)t = [Flx - 10)](—y).

which is essentially the Fourier transform of a multiplicative character.

To each (quasi)-character y we associate the exponent conductor a(x). This is the
smallest integer £ € Ny such that x|;+p» = 1. Note that if a(x) = 0 then x|,x = 1
and x = |-|° for some s € C. If this is the case, we call x unramified. We also define

={xeX:a(x) <n}and X, = {x € X: a(x) = n}. We have

B . , q—2 ifn=1,
1Xn = (p(1)" ¢" and §X;, =

Cr(1)72¢™  else.

The Mellin transform of a Schwartz-Bruhat function f € S(F*) is defined by

] (x5 / F(2)x(@) | du.
Furthermore, we can associate to each character x a L-factor by
(1—x(w)g %)t if x is unramified,

L(s,x) =
1 else.

11



1.3 NOTATION AND PREREQUISITES

Another crucial invariant is the so called e-factor €(s, x). Note that this factor also de-
pends on the fixed additive character ¢. However, we hide this from the notation. The
exact shape and behaviour of these complex numbers are quite mysterious and we will

not describe them in more detail. They are connected to Gaufs sum as follows.
1 if a(x) = 0and v(z) >0,
—Cr(1)g™ ifa(x) =0and v(z) = —1,

G(z,x) = (13.1)
Cr()g Fe(,x")x"(z) ifa(x) > 1and v(z) = —a(p)

0 else.

This evaluation appeared for example in [31, Lemma 2.3] and will be used frequently in

what follows. Other important properties of € factors are

1

c —ca 1 — _
e(s.x 1) = a"We(s,x),  es,x) = e(5ox|1772) and e(s,x)e(1 =5, x71) = x(~1).
If ¢ is odd, then X contains a unique quadratic character which we will denote by x .

Note that x ¢ lives in X;. Furthermore, if F' = Q, it reduces to the Legendre symbol via

the identification 0 /(1 +p) = FF;.

Two dimensional étale algebras over F

The following notions have been introduced in [4] under the name quadratic space,
but two dimensional étale algebra is the appropriate name. In the special case of two
dimensions an étale algebra E over F is either a quadratic extension of F' or it is simply
the algebra E = F x F. If we are dealing with a quadratic extension, we let e = e¢(E/F)
be the ramification index and f = f(E/F) be the degree of the residual extension. In
particular, we have ef = 2. By d = d(E/F) we denote the valuation of the discriminant
of E/F, it satisfies d = e — 1. The Galois group is Galg,r = {1,0}. The norm and the

trace are defined as usual by
Tr(z) =z +o0zand Nrg/p(z) = 2 - 0z.

The Haar measure on E will be normalised as follows:

ol

VOI(DHHE) =q 2,

where O is the ring of integers in . The unique maximal ideal in O is denoted by 3
it will be generated by a uniformiser () of . We will usually choose uniformisers such

that Nry, (Q) = w/. Note that this determines a canonical valuation vg on E.

12



1.3 NOTATION AND PREREQUISITES

Further, let x g, r be the quadratic character on F'* which is trivial on Nrg,z(E*) and

set
wE = w oTr.
By [73, Lemma 2.3.1] we have
d
n(Yg) = —?-

Which again implies that the Haar measure p is normalised to be self dual with respect
to 1. Multiplicative characters on E are usually denoted by £ and one can attach the
same objects as we did over F'.

If E = F x F, we define the ring of integers to be O = o0 x 0 and the ideal p = p x p.
The Haar measure is simply the product measure . x 1 and all multiplicative characters

factor into two multiplicative characters on F'*. To keep notation consistent we define

TI'(ZEl,{L‘Q) = 1 + 22 and NI'E/F((I'l,l‘Q)) = T1T2.

1.3.3 Number Fields

Let F' be a number field of degree n = r + 2ry, where r; is the number of real em-
beddings and 2r; is the number of complex embeddings. We write Of for the ring of
integers in F. Prime ideals in O are typically denoted by p. Each prime ideal gives rise
to a non-archimedean place of F' which we also denote by p. The corresponding local
field will be called F}, and it is equipped with the local structure described above. In the
global setting we add a subscript p everywhere to indicate that these are local objects
at that particular place. Thus, we have ||, , vy, - -. We define N'(p) = ¢, = §(Or/p). By
extending this multiplicatively we define the absolute norm N '(a) of a fractional ideal
a. In a similar spirit we use v for an archimedean place and at the same time for the
corresponding embedding v: F' — F,. We put ||, = |-|"*R], In the number field context
|-| without a subscript always denotes the standard absolute value on F',R C C, while
|-|,, corresponds to the modulus defined on the archimedean local field F,.

We define Fi, = [[, F, and equip it with the modulus |-| =[], ||,- Sometimes we
use |-|g (respectively |-|c) to denote the part of |-| coming from the real (respectively
complex) embeddings only. Let Ay, denote the finite adéles equipped with the absolute
value ||, being the product of all the local absolute values. The usual adéle ring is then

defined by Ap = Fy x Agpn and equipped with ||, and pa in the usual manner. We
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1.3 NOTATION AND PREREQUISITES

also define the set of totally positive field elements F'* to contain all z € F such that

> 0 for all real v. Furthermore, put F*(Ap) = {a € Ar: |a|p, = 1} and embed
R* C Fy diagonally. Finally, we also define F., + C Fix to be the set of vectors having
positive entries over the real places. Note that the classical Minkowski space can be
identified with F,, (as an euclidean vector space). This is the content of [63, Chapter I,
Proposition 5.1]. However, it is important to keep in mind that the canonical measure
on Minkowski space is 22 (27) 2 jin.

Further, let us choose ideal representatives 01, ...,0y, € O, where hr denotes the
narrow class number of F'. By abuse of notation we will use §; to denote the element in
Op and also for the associated ideal. We write dy for the discriminant of F and 0 for
the different ideal of F. Then by [63, Theorem 2.9] we have N (?) = |dr|. For any ideal

m we use [m], for the coprime-to-n part of m.

- W
Note that, as explained in [20, Remark 1], we can find fundamental domains for

FX/05, FX/(OR)?, FX/OF | and FX /O | contained in the set
1
{y € FX: |yv| < |y|& for all v}.

Elements in the latter set will be referred to as balanced. In particular, every (fractional)
ideal is of the form 6;(c) for some j and a balanced o € FJ;
Fix an additive character ¢q = ¥ [, ¥ on Agq, trivially on Q with o = e(-). This

extends to a global character on Af via

¥(2) = Yo(Trap (7)) (13-2)

Note that we can choose our local unramified characters in such a way that

=[] v(z) [ vv(22) H¢p ~o®) ). (1.3.3)

v real v complex

The interesting multiplicative characters are the so called Hecke characters x: F'* \
A7} — C*. The easiest such character is given by |-|;, which defines an everywhere
unramified Hecke character. Note that due to the tensor product theorem we have the
decomposition x = (®,x,) ® (®pxp), where each x, and x, is a character of the under-
lying local field. Furthermore, almost all x, are unramified. There is a unique integral
ideal m = Hp p2x») such that y factors through

F\Af = P [[a+p»™)\Af - C*.
b

14



1.3 NOTATION AND PREREQUISITES

Another important structural result is (a version of) the strong approximation theorem

for F* given in [63, Chapter VI, Proposition 1.9]. We have

F*. (Foo,+ x [T +p“v(m))> \Aj =Clp.
b
Where Cl = J/ PR is the (narrow) ray class group, for
# = {a fractional ideal such that (a,m) = 1} and Py = {(a) C Jp: a totally positive}.

Note that after dealing with slight subtleties at the archimedean places the latter helps
to establish a correspondence between Hecke characters and Grofiencharakteren and
thus yields another structural description of Hecke characters. This is the content of [63,
Chapter VI, Corollary 6.14].

If x: F*\ A} — C is a Hecke character, we associated the corresponding L-function

A(s,X) =[] Lo(s.x0) [T Lu(s.xp) -
v p

—_— T ——
=Yoo (8,X) =L(s,x)

Here we use the classical (analytic) notation which separates the archimedean and non-
archimedean parts. If x is the trivial character, this leads to the Dedekind zeta function.
In this case the local factors reduce to (,(s) at the finite places and we write (,(s) =
[ Lo} Go(s)- At the archimedean places we have L, (1,s) = I'r(s) = 772T(3) if v is real
and L,(1,s) =T¢(s) = 2(27)*T(s) otherwise.

1.3.4 The Group GLq

Let R be a commutative ring with 1. Typically this will be one of the objects introduced

above. We set G(R) = GL2(R). We will also need the subgroups

r 0 r 0
Z(R) =1 2(r) = reR* G, A(R) =< a(r) = creRX Y,
0 r 0 1
1
NR)={n@)=| "|:zer and  B(R) = Z(R)A(R)N(R)
0 1
Further, let
0 1
w =
-1 0

15



1.3 NOTATION AND PREREQUISITES

be the long Weyl element. If the ring R is equipped with Haar measures ; and p*,
we use the identifications N(R) = (R,+), A(R) = R*, and Z(R) = R* to transport
these measures to the corresponding groups. Via the same identifications we can also
transport characters.

We will now describe the structure of G in more detail for some special choices of R.

GLy over Archimedean fields

In this case the maximal subgroup is given by

. Uy(C) if F is complex,

O2(R) if F is real.

A typical element in k(6) € SO is of the form

K(O) = cos(f) —sin(6)

sin(f)  cos(6)

On the other hand, elements k|[a, 5] € SU2(C) is given by

a —f
kla, 8] = 7
@
for a, € C such that |a| + || = 1. Finally, we equip K with the unique Haar probability
measure [if.

The representation theory of GLy over archimedean fields is well known and we will

give a very brief summary later on.

GLy over Non-Archimedean fields

In this case the maximal compact subgroup is given by K = G(0). We will also need the

following compact, open subgroups

o w'o 0 ]
K%n) = Kn ,Ko(n) = Kn and
0 0 w’o o
1+=@"0 o 0 0
Kl(n) = Kn ,Kg(n):Kﬁ
w"o 0 w 1+ w"o

16



1.3 NOTATION AND PREREQUISITES

We equip K with the Haar probability measure px. We have the following decomposi-
tion of G(F)

G(F) = |_| U |_| Z(F)N(F) a(w")wn(w ) K1 (n). (1.3.4)

teZ 0<Ii<n UGOX/(l—Q—wmi”(ZV"*l)oX) :;trlv

This suggests to define the invariants ¢(g), I[(g) and no(g) in the obvious way by writing

9 € Z(F)N(F)gy(g)1(g)0K1(n)

with v € 0%/ (1 + w9 o*). We further define

n
ny = 5 )
ng = n-—ni,

if 1(g) < no,
ni(g) = o itHlg) = o (1.3.5)

ny if I(g) > nq,
Let 7 be a infinite dimensional, admissible, irreducible representation of GLy(F’). Such
a representation comes with several invariants. Namely, the log-conductor n = a(), this
is the smallest n € Ny such that 7| (,,) contains the trivial representation. Furthermore,
7 has central character w,. We write m = a(w;,) for the log-conductor of the central

character and define
mi1(g) = max(0,n9(g) —n+m) < max(0,m —ny) =my.

The contragredient representation will be denoted by #. We attach the L-factor L(s,)
and the e-factor €(3, 7) to m. Without loss of generality we may twist 7 by an unramified
character to ensure that w, € XJ,. Such representations are completely classified and
we follow [4] as well as [2] to describe this classification and its consequences in more
detail. More precisely we know each unitary, tempered, irreducible 7 belongs to one of

the following families.

1. Twists of Steinberg: m = xSt, for some unitary character x satisfying x(w) = 1.
In this case we have w, = x? and a(7) = max(1,2a(x)). Furthermore, the L-factor
as well as the e-factor are given by

1
L(s,|-|2 if x =1, 1 -1 if y =1,
L(s,7) = (s %) ande(i,ﬂ):

1 if x # 1, e(3.x)° fx#1L

17



1.3 NOTATION AND PREREQUISITES

2. Principal series: m = x; H x2, for unitary characters x; and x». In particular,

a(m) = a(x1) + a(x2) and w; = x1x1. Concerning the L-factor we know

1 1 1
L(s,m) = L(s,x1)L(s, x2) and 6(5,7?) = 6(§>X1)€(§a><2)-
3. Supercuspidal representations: If 7 is supercuspidal, then L(s,7) = 1 and all

the other invariants are more difficult to describe. However, if ¢ is odd, we know
that every supercuspidal representation is dihedral. Thus 7 = w¢, where w; is the
Weil representation constructed from a quadratic extension £/F and an unitary
multiplicative character £ of £. Details on the construction of w¢ can be found in
[73]. In this scenario we call = the dihedral supercuspidal representation associated

to (E, ). We find that a(7) = fa(€) 4+ d and
6(5771-) = 76(575)7 (136)

for some v € S1, given in [53, Section 2], depending only on E. The behaviour of

7 under GL;-twists is described by xm = we.( y and the central character is

XONrE/F

wr = XE/F *&lFx-

This list can be extracted from [35] and [73]. We will sometimes also allow principal
series associated to non-unitary characters x; and x» since these appear as local compo-
nents of Eisenstein series.

It is well known, that for G each admissible, irreducible, infinite dimensional repre-
sentation is generic. In other words it admits a unique ¢-Whittaker model W(n). This
Whittaker model contains an up to scaling unique new vector W, which we normalise
by W;(1) = 1. This vector is characterised by W, (gk) = W(g) for all ¢ € G and all
k € K1(n). On the subgroup A(F) this function is given by

gty ift>0and 7 = |-|° St,
Xl(th)q_% ift>0and 7 = x1 Hx2
Wa - with a(x1) > a(x2) =0, (1:3.7)
wr(v) ift=0and L(s,7) =1,

0 else.

for t € Z and v € 0*. This is stated in [69, Lemma 2.5] and proven in [31, Lemma 2.10]

by reducing it to results from [73].
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1.3 NOTATION AND PREREQUISITES

An important tool to understand the L- and e-factors of a representation = is the local

functional equation

ZW787 - Z’fF’UJW,l—S, 710);1
(V.50 _ 21 =5 g)
L(s, pi) L(1—s,pu~tn)
for
o1
ZW,s,u) = | Wa(y)u(y)lyl” 2 dugy,

X

a multiplicative character € X, a Schwartz-Bruhat function W, and some complex
number s with sufficiently large real part. The action of 7 on a Schwartz-Bruhat function

is understood by inclusion in the Kirillov model.

GLg over Global fields

Over a global field we consider the group G(Ar). In this setting we will add subscripts
v and p to all the local objects to indicate the corresponding local place v or p. We define

the compact subgroups
n) = Ko HKLP(UP(“)) and K = K HKp,
p p

where Ko = [[, K. We view G(F) as a real Lie group and associate the Lie algebra
9o With universal enveloping algebra U(g.) and center of the latter Z(go.). The global
Hecke algebra of G(Ar) will be denoted by .77.

We choose the product measure on K and A(A ) coming from the previously defined

local measures. On the group N(Ap) = Ar we put the measure

272 (2
MN(AR) = \/WL HMVHM:

This corresponds to the normalisation Vol(N(F)\ N(AFr)) = 1, as can be seen from
strong approximation together with [63, Chapter I, Proposition 5.2].

Finally, we define

dpiy « (y)
/Z(AF)\G(AF)f(g)d'u(g) - /K/A; /N(AF)f(na(y)k)d'uN(AF)(n)’y‘d’uK(k)
(1.3.8)

as in [35].

The global applications will be concerned with the study of cuspidal automorphic

forms. We will quickly summarise the definition of such forms and their relation to
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representation theory following [22]. A function ¢ is called an automorphic form on

G(Ar) if it satisfied the following properties’
1. ¢(vg) = ¢(g) forall g € G(Ar) and all v € G(F),
2. There is a simple element { € J# such that f x{ = f,
3. There is an ideal J C Z(g) of finite co-dimension which annihilates ¢,
4. For each g € G(AF) the function ¢(-g)|¢(p..) is slowly increasing.
We say ¢ is cuspidal if

/ #(ng)dn = 0 for almost all g € G(AF).
N(F)\N(AF)

This definition may seem technical at first. However, it encompasses all possible classi-
cal notions. Furthermore, in this form the definition works for more general reductive
groups.

Of particular interest to us will be
¢ € Li(G(F)\G(Ar),w) € L*(G(F)\ G(AF),w)

which are right K (n)-invariant, and eigenfunctions of the Casimir element (C,), €
U(g0) with eigenvalues (A,),. These are automorphic forms in the sense described
above. Thus, it is standard procedure to associate an cuspidal automorphic represen-
tation® 7y to ¢. As explained in [22, p. 4.6] each cuspidal automorphic representation
with central character w can be (uniquely) realised as a closed invariant subspace of
L(G(F)\ G(Ar),w).

Let us describe the structure of the cuspidal automorphic representation m. We write
V, for the representation space of . First note that since (w,V;) is a cuspidal auto-
morphic representation it is in particular unitary and admissible. For convenience we
assume throughout the text that the central character w, of 7 satisfies wy|g+ = 1. In
other words, the archimedean part of w; is trivial on the diagonally embeded positive
reals. This can be achieved without loss of generality by twisting by a character of the

form HZX‘F, for o € R.

The term used in [22] is Kso-automorphic form. However, since we fixed our maximal compact subgroups
once and for all we dropped this from the notation. The K~ dependence enters because the Hecke algebra

at archimedean places v depends on K.
We use the definition of an automorphic representation given in [22, p. 4.6]. In particular irreducibility is

included in the definition.
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1.3 NOTATION AND PREREQUISITES

By the tensor product theorem [34, Theorem 4] we may assume that

7T2®7r,,®®7rp.
v p

Where (7, Vrp) (respectively (m,,Vz, ) ) is an irreducible representation of G(F}) (reps
G(F,)) with central character wr , (respectively wy ,). Note that this decomposition also
preserves the subspaces of K-finite vectors.

As to Hecke characters, we can associate a L-function to an automorphic representa-

tion 7. Indeed we set

A(s,m) = HL(s,ﬂ,,) HL(S,Wp).
v P

This completed L-function has a meromorphic continuation and satisfies a functional
equation. Furthermore, it encodes the arithmetic information of 7 and is a central object
in modern analytic number theory. Sometimes it is helpful to consider a slightly more
general object. We define the zeta integral
Z(s,6,x) =/ o(a(y)) Iylin? x(v)d*y,
FX\AY,
for a automorphic form ¢ € V;, a Hecke character xy and s € C. Again this posses a

functional equation
Z(s,0,x) = Z(1 = s,m(w)$, X wr).

See [25, Chapter 3, (5.42)]. To gather more information about the structure of Z let us
assume that ¢ corresponds to a pure tensor and is cuspidal, so that it has the Whittaker

expansion

3(9) = > Wsla(a)g),

aeF*

for

W(g) = /A L On@v)ie =T Woulo) T Wos(an)
v p

Unfolding reveals

Z(37 ¢7X) = HZ(Sa W¢,V’ XV) H Z(57 W¢,p7 Xp)
v p

for s with sufficiently large real part. Note that these are exactly the local zeta integral

for which we have a local functional equation.
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Finally, let us define some more geometric objects. Indeed, it is well known that if
F = Q then classical automorphic forms are thought to be functions on the upper half

plane H(®) = {z € C: 3(z) > 0}. Similarly, one defines upper half space by
HO) ={z+yj:zeCyeR}CH, (1.3.9)

here H are the usual (Hamilton) quaternions over R. We write 3(z + yj) = y. Further
we equip #(?) and H®) with the usual (euclidean) norm || - ||. Automorphic forms over
F' can then be thought (by strong approximation) as living on copies of

H = H H) x H 1), (1.3.10)

v real v complex

Points in H are usually denoted by P = (P,), and we define the distances

1P, — QI

uy (P, Qu) = 23(P)3(Q,)

(1.3.11)

We conclude this section by recalling the construction of so called Eisenstein series.
These describe the continuous spectrum by intertwining from unitary principal series
representations. We closely follow the exposition in [35].

We define the function H: G(Ar) — R via the Iwasawa decomposition as follows

H k :‘%‘ forall k € K.
0 1/ \o » Ar

H factors in the obvious way. We have H =[], H, [ ], H,.
We define the space

I:I(s):{‘I’:G(AF)—>C S I R )
0 Pav

fora,f e F*, a e Ay, z € Ap, u,v € Ry,

This defines a representation (75, H(s)) of G(Ar) where G(AF) acts by right transla-

tion. For s € 7R an inner product is given by
O Ea = [ [ e EalalR g (o) dux (4.
K JFX\FO(AF) F

We can also view H(s) as a trivial holomorphic fibre bundle over H = H(0). For ¢ € H
we define Y(s) = ¥ - H(-)* € H(s).
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1.3 NOTATION AND PREREQUISITES

Further, to ¥ € H we associate the Eisenstein series

By(s,9)= > [¥()](v9).

YEB(F)\G(F)

Note that the space H is not irreducible. Indeed it can be decomposed in global prin-
cipal series representations i B x2 satisfying x1x2 = wr. This is useful when giving a

more explicit description of an orthonormal basis B for H.
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PartII

THE LOCAL THEORY

This part is dedicated to the analysis of Whittaker vectors over local fields.
The uniqueness of the Whittaker model implies very strong factorisation re-
sults which allow us to understand many essential properties of global Whit-
taker functions by studying the corresponding local objects instead. In this
section we develop the necessary local theory. We will start in the archimedean

setting and then move into the p-adic world.

Of main interest to us are integral representations, explicit formula, support
properties, and asymptotic expansions for certain elements in the Whittaker
space of a local representation. In the case of archimedean fields these fea-
tures are mostly standard. However, it is still hard work to gather all the
results and present them in a unified matter. Therefore we include this case

here. In the non-archimedean case many of these results appear to be new.

In this section we fix a local field F. In particular all the corresponding ob-
jects, such as v, w, p, o etc., are those attached to this particular field and

appear without subscript.






THE CASE OF ARCHIMEDEAN FIELDS

In this chapter F' is either real or complex. We first recall some facts about the method
of stationary phase. Then we will consider Whittaker models of representations of G(IR)
and G(C) by computing some important elements in terms of classical Whittaker func-
tions W), 4, K-Bessel functions and even some hypergeometric functions. We conclude
by recalling some useful asymptotic expansions.

Besides introducing the archimedean method of stationary phase we obtain the follow-
ing key results. Corollary 2.1.7 provides general bounds for the K-Bessel function allow-
ing complex parameter with fixed real part. Further we compute and L?-normalise cer-
tain Whittaker vectors which will be important later on. See Lemma 2.2.2 and Lemma 2.3.4.

Note that the proper way to treat the archimedean places would be by considering rep-
resentations of the Hecke algebra or by using the language of (g, K )-modules. However,

for our rudimentary purpose it suffices to stick to simple representations.

2.1 THE METHOD OF STATIONARY PHASE

Oscillatory integrals of the form

I(t;y) :/ a(z)e @) dg, (2.1.1)

where y varies in some parameter space N, appear frequently in mathematics. A helpful
tool for dealing with such integrals is the method of stationary phase. In this section
we will summarise the tools used later on. There are many good references concerning
the method of stationary phase. A very abstract version can be found in [45]. Here we
follow the more explicit approach taken in [13]. We were also inspired by the account
on the method of stationary phase given in [24]. Our exposition has the slight caveat
that it only deals with one dimensional integrals. However, this will be enough for our

applications.
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2.1 THE METHOD OF STATIONARY PHASE
2.1.1 Basic estimates

The function a appearing in (2.1.1) is usually referred to as amplitude, while ¢ is called
the phase. The method of stationary phase roughly states that the main contributions
of the integral (2.1.1) come from critical points of the phase. A critical point (xo,yo) €

R™ x N of ¢ is a point which satisfies

v(Pyo (330) = 0.

Here ¢, = ¢(-,y). Further, we call a critical point non-degenerate if the corresponding
Hessian quadratic form, Q(zo, yo), is non-degenerate.
The set
S={ye N:Vyp,(z) #0, Vz € R"}

is called the shadow zone. The light zone L consists of those y € N which exhibit only non-
degenerate critical points. The remaining y are contained in the so called caustic locus C,
which therefore features the degenerate critical points. The reason for this distinction is
that the behaviour of I(¢; y) depends on the degeneracy of y.

For y € S we can derive very good upper bounds for I(¢;y) simply by integration by

parts. This is made rigorous in [13, Lemma 8.1], which we recall now.

Lemma 2.1.1. Let y > 1, X,Q,U,R > 0 and let K C [o, 8] X S be a compact set. Suppose

o(z,y) is a smooth function such that
d
%gp(fv,y) > R forall (z,y) € K

and

dJ .
w(p(:p,y) < YQ7 forall (z,y) € K,j > 2.
Then

_A4 —A B
/Ozy(x)eiw(“r’y)dx <, (B—a)Xt 2 [(%) ) + (VtRU) A}
R F |

forall A € Ny, y € pry(K) and all o € C*°(R) such that supp(«) C pry(K) and

ol (u) <; XU,
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Proof. The first bound follows directly from [13, Lemma 8.1] with h(u) = tp(u,y). The

second bound follows by observing that

/ ay(u)e““"(“’y)du:t—”/ [D”ay](u)eiW(“79)du

for Df = —%[(ii—‘i)_l f] and n € IN. The claim follows after estimating trivially using
[13, (8.5), (8.6)] to deal with D" qy,. O

Next we will recall an asymptotic formula valid for y in the light zone. The following

lemma is a slight simplification of [13, Proposition 8.2].

Lemma 2.1.2. Let 0 < § < %, t,X,Y1,Y2,V,Q > 0 be parameters and fix an integral J of
length Vi > V and let K C J x N be a compact set. Define Z = QQ + X +tYo + Vi + 1 and

assume that )
t3

=

S
-
- > 7, Ylglsngt%,andeQ -
Y2§ tYl

Suppose that for each y € pr,(K) there is a unique xo(y) € J such that ¢'(zo(y);y) = 0.

Further, assume that
SO//(‘,E7 y) > Y1Q72 El?’ld SO(J) (:1:7 y) <<] }/ZQijv

forall j > 2and all (x,y) € K. Then

I(t;y) = /}R ay(z) e =) dy = eitelro)w) (ay(xo(y)) + 05 (XZ—%)) ,

te"(z0(y);y)
for all o,y € C*°(R) satisfying supp(cy,) C pry(K) and

aygj)(x) <; Xvi
forall (z,y) € K.

For the sake of completeness we present the proof here. As it suffices for our purposes
we only compute the leading order term. However, the proof can be extended to provide

more terms of the asymptotic expansion just as in [13, Proposition 8.2].

s
Proof. Choose a parameter U = 35721 < V. By assumption we have
ty,U? tY,U3
6122] > 7° and 5(3] <1. (2.1.2)
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Further, we fix ro € C*°(R) supported in [—1,1] such that ro(z) = 1 for all |z| < 1. We

write
L(t;y) = / ay(x) <1 — Ko (W)) et @) dg. (2.1.3)
R

fy()

It is easy to check that fgsj ) < XU on its support. Furthermore, the mean value

theorem implies that
i Un

CZR
Thus we apply Lemma 2.1.1 together with (2.1.2) and get

' (z39)| > |o — zo(y)]

N
% 5

Lty) <aViX 275 -2+ 278 ) <« 2278 |14 [ 2 < z7B.
Yé }/'26

So far we have shown that

I(t;y) = /]R%(:U)KO (95—[930(?;)) e @Y) g0 4 OB,(S(Z_B)~

Let H,(z) be defined by requiring that
pla39) = olw0(y)i9) + 579" (0(w)s1) (& = 20(y)) + Hy ()
One checks that Hé < U?Y,Q 3 and H;’ < UY2Q 3. In particular, U is chosen such that
tHgSj) < U™ forj=1,2.
For j > 3 we observe
tHY (2) = to(z;9)9) < 1Y2Q77 < (1Y2) 30U < U
With this at hand we define

gy(x) = oy (2) ko <‘””0(3g_$> GitHy (@)

and observe that gg(,j ) <j XU 7. We rewrite the integral I(t;y) as
I(g:y) = eiw(ro(y);y)/ gy(m)ew(%xo(y))wx +0p4(Z78). (2.1.4)
R

The decay of § allows us to write

gy(z)e(za:)dz—i—O(;,B(Z_B). (2.1.5)
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Inserting this expression in (2.1.4), interchanging order of integration, and evaluating

the inner integral yields

(g:y) = e +itelaow)m) 2 / 5 (2) ( () s >d
g;y) =¢e€ ’ — 7~ % 5 5 gylz To\y - z
to" (wo(y);y) Ji-zt 24" " te” (z0(y); y)

+0ps(Z277)

By Taylor’s theorem we have

. (_ 2> ) _ EK:Z%< —2n% > Xz
te"(zo(y)iy) ) 4= nt \te"(wo(y
on the domain of integration. Next, we chose K = K(B,d) big enough, extend the
truncated integral to R, and get
iy 2 1 —27%  \"
I(g;y) = e 1 Tite(zo(y);y) [ = <>
(5:9) te" (zo(y); y) n;(n! te" (zo(y); y)

—

225, (2)e (w0(y)2) dz} +0ps(Z7P).

By Fourier inversion we obtain

T4 ito(x ; g ! '
I(g;y) = & Ttelrow)) Z <2t90”(:vo(y)' y)>

n<K

+ 0375(Z_B).

In order to complete the proof we need to estimate all the higher order terms. This is
done as follows. First, we recall that xo((zo(y) — x)/U) is constant in a neighbourhood
of zo(y). Thus we obtain

2n n—j
" (z0(y) <<nz xv-i| L iy wow)]|

den i

Further, note that H?Sj)(xo(y)) =0 for j =0,1,2 and Hg(,j)(wo(y)) = U (zo(y);y) for

9(2”)(330@)) <, X (V2n+ <(ﬂg)a> ) |

Using the lower bound on ¢” together with the assumptions on the parameters reveals

j > 3. We arrive at

that the n-th term in the sum is bounded by XZ~ 2. The result follows by estimating
all but the 0-th term in the sum. O
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2.1 THE METHOD OF STATIONARY PHASE

Unfortunately this result only allows a single critical point. In practice one often en-
counters several critical points which might approach each other as the parameter y
varies. However, due to the great flexibility in the parameters, one can handle these
situations by using suitable partitions of unity. As we will see this is very cumbersome.

To complete the picture one needs satisfying expansions in some neighbourhood of
the caustic locus C. This will concern us for the rest of this section.

In the case of degenerate critical points many different outcomes are possible. The
general behaviour of (2.1.1) is governed by the ‘singularity type’ of ¢ at (zo,yo). There
is a wide range of classification results for singularities and the corresponding normal
forms. For our purpose we only need one type of singularity.

We say a critical point (z, yo) is a singularity of type A; (sometimes called fold singu-
larity) if Q(zo, yo) has corank 1 and there is Z € R™ such that for all X € kern(Q(zo, o))

we have

612;+180($07 yO) # 0

where 0, is the partial derivative in the direction v = (X, Z).
These are exactly the singularities that lead to the appearance of Airy functions in the
asymptotic expansion of I(t;y). Let us note that in the case m = 1 an Ay singularity

boils down to a point (x¢, yo) such that

dp d2cp d?’go
%(zo,yo) = @(900,3/0) =0# ﬁ(ﬂfmyo)-

For more details and further references on the theory of singularities we refer to [1].

Before we continue let us recall some basic properties of the Airy function and its

derivative. The Airy function is defined by

1 )
Aiz) = o /}R /(P /3+at) gy

for x € R and can be continued analytically to the complex plane. As we can see from
the definition, the Airy function is the prototype of a function with the simplest pos-

sible degenerate critical point. As such Ai(z) interpolates between a slowly decaying
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2.1 THE METHOD OF STATIONARY PHASE

wavefront to the left of 0 and exponential decay to the right. This is captured in the

asymptotic expansions

2.3 _
;\/;m% (14 0(1)) if z > 0,
i cos(2[z|3 - T)
Ai(z) = W(Ho(l)) if 2 <0,
5 if x =0,
3§r(§)

which can be extracted from [64, Chapter 4, Section 4.1]. Thus it is not surprising that the
Airy function and its derivative play a key role in asymptotic expansions of oscillatory

integrals featuring degenerate critical points of type As. Recall that Ai’ has the integral

representation
i (13
Ai’ _ ¢ it /3+J:t)dt
i'(z) om o e
and the asymptotic behaviour
. 2,3 .
— gt (14+0(1)) if z >0,

) 3
Al () = { [of mEEEE) (1 4 5(1)) ife <0,

=1 ifx =
L 33T(3)
The latter can be extracted from the connection formula
2 2 2
All(z) = —\/%WK%(gz%) and Ai'(—2) = g <J§(3zg) - J_§(323)>

and the corresponding asymptotic expansions [64, Chapter 12 Equation 1.03 and Chap-
ter 4 Equation 9.09].

Before we come to oscillatory integrals with degenerate critical points we will need
one more preparation. Usually we are concerned with integrals involving compactly
supported test functions satisfying certain decay properties. However, we will encounter
situations where the test function is not compactly supported. To deal with this issue

we fix a smooth partition of unity {x,}»>0 of R such that

[271717 2n+1] U [_2n+1’ _2n71] ifn > 17
supp (xn) C
[—2,2] if n=0.

Furthermore, let us assume that

< 27" for all n,l € Ng and all z € R.

l
@
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2.1 THE METHOD OF STATIONARY PHASE

It is an easy exercise to see that such a partition of unity exists."
Concerning oscillatory integrals with degenerate critical points we have the following

lemma, which is extracted from [45, Theorem 7.7.18]. See also [24, Lemma 16.4].

Lemma 2.1.3. Let (z9,y0) € K C J x N be a critical point of singularity type A2. In particular

Yo is contained in the caustic locus C. Then, there exists a neighbourhood
(xo,yo) cVxN cCcK

and a,rg,m1 € C*°(N') such that

win

I(t;y) = 2™ Wro(y)Ai(a(y)t3)t~5 — 2mie™W)r (y) Al (a(y)t5 )t

+ Ok (X min(1,U) 271,
forall y € N' and all vy € C*°(J) such that supp(ay) C V and
o) <«; XU,
Furthermore, we have

2ayo (xﬂ)

7. b(yo) = (203 y0) and a(yo) = 0.
90(3) (330;2/0)3

ro(yo) =

In particular, we have

2T (}) etrzom)a, (20
35 @"(w0in0)t

I(t;y) = 20e™Wrg (y) Ai(a(y)t3 )t + Ot 3). (2.1.6)

I(tiyo) = 5+ 0(t73) and

Note that the latter is only an asymptotic formula when y is sufficiently close to yo. More pre-

cisely, there is a fixed § > 0 such that (2.1.6) is an asymptotic formula as long as |y — yo| < 573,

Proof. By the Malgrange preparation theorem, [45, Theorem 7.5.13], there is a neighbour-
hood (zg,y0) € Uy x N1 C K, smooth functions a,b € C*(Ny) and T € C>*(U; x Ny)
with T'(zg,y0) = 0 # %(CEO,?JO) such that

3
p(z,y) = T(x?iy) +a(y)T(z,y) + b(y) for all (z,y) € Uy x Nj. (2.1.7)

17 1
In particular, we have a(yo) = 0, b(yo) = ¥(xo,v0) and T"(zo,yo) = %. Further-
more, there is a neighbourhood (zo, yo) € (U2, N2) C (Ui, N1) such that

Ty: Uy — Ty(Uz) C Vo, x> T(z,y)

1 The construction is outlined in a footnote in [24].
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2.1 THE METHOD OF STATIONARY PHASE

is invertible and satisfies 7, (x) < 1 for all (x,y) € (Uz, N2). We define V' = U and

a(T, ' (2))

W = )

Since supp(ay) C V, we have supp(d,) C T,(Uz) C V2. Even more, af) < XV
implies &) <; X min(1, V).
By [45, Theorem 7.5.6] we find o, € C*°(N3) and ¢ € V3 x N3 such that

dy(2) = q(z,9)(+* + a(y)) + r1(y)z +ro(y) for all (z,y) € V3 x Ns.

In particular, ro(y) = @,(0) < X.
Next, fix a neighbourhood yp € N’ C N3 such that ’22 + a(y)‘ > 1lon (V3\Vy) x N,
for some open set 0 € V; C Va. By construction a(y) < 1 fory € N'.

Finally, we choose a compactly supported test function &y such that £|Vs = 1 and

supp(&o) C V.
With this at hand we can perform the change of variables © — z = T,(x) and compute

that
R
_ ithlw) (To(y) / e+ gy 4 (y) / Seitl5 +a)el g,
R R
+ [ @=)alen) (2 + a5 00 s
R
P
+ [ (0= - roly) — )5 s
R
= M (M + L+ L+ 1.

for y € N'. The first two integrals are identified with

Totgy)Ai(a(y)ti) and I = —i27rrl(y)Ai/(a(y)t§).

2
t3

I =27

The third integral can be estimated trivially after performing partial integration. Indeed,

—i d 122 La(y)z -
Iy = — | —(o(2)a(z,9))e" 5 Wdz <t sup (Ja(=z )| + |¢'(=9)]).-
t Jrdz z€V3
Finally, we have to estimate the integral 1. Note that in this case the test function does
not have compact support. However, for z € supp(l — &) the phase is well behaved.

Using the partition of unity (xn)nen, together with Lemma 2.1.1 shows that

Iy <4 X min(1, V)44,
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2.1 THE METHOD OF STATIONARY PHASE

This is absorbed in the contribution of I3, which completes the proof of the main for-
mula.

The special cases follow after inserting the suitable bounds for Ai'. O

2.1.2 Estimating the K-Bessel function

The K-Bessel function often occurs in the theory of automorphic forms through its

appearance in the archimedean Kirillov model of certain representations of GL,. Evalu-

ating this function asymptotically is also a good example to see the method of stationary

phase in action. As starting point we use the so called Basset integral. For all |arg z| < 7,

s> 0and k > —1, we have

T(k/2+is+ &)2k/2His
2\/T(s2)k/2+is

Kijoyis(sz) = Ii(s; 2). (2.1.8)

Where Ij(s; z) is the oscillatory integral

I(s;2) = / v ()75 dy,

— 0o
for

o(u; z) = log(u? +1) + zu, and o (u) = (u? + 1)~ F+D/2,

For simplicity we assume s, k, 2 € Ry in all the following estimates.

The phase ¢ has the following critical point structure:
S=(1,0), L£=(0,1)andC =1.

This follows directly from

2u d? w2 —1

d
2 oy 2) = 2 d- L (w2 =2t =
dugo(m 2) 1 + z an du2g0(u7 2) CENE

The asymptotic expansion in the case k£ = 0 is well known. Therefore, we will go a bit
further and try to give precise upper bounds which are uniform in £ > 0. The method
of stationary phase, as we use it, works only for a limited range of k. Thus, later on we
will introduce some restrictions on k.

Estimate in the shadow zone

We use the partition of unity constructed above to write

B(s:2) =Y [ anuhn(w)e 0 = Y17 (s12).
n=0" ~® n=0
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2.1 THE METHOD OF STATIONARY PHASE

Furthermore, we define the compact sets K,, = supp(x») X [1 + r, C] for some parame-
tersr > 0and C' > 1.

For (x0,y0) € K,, we have the lower bound

d . 2u
'dxgo(xo,y()) 2 (x,;?eKn 21 +zl =T (2.1.9)
In the last step we used that
2 2
ufj_l—l-z) > zuu—;—iul—i—z >z ;—2251—’_1 r>r
for every u € R.
By elementary means one shows that
d7 4
@w(x,y) <27 (2.1.10)

for n € Ny, j > 2 and z € pr, (K,).

Because
dJ

o) <5 (k o+ 127G,

sup
u€supp(xn)

we can use the product rule to bound

dJ
—agXn(T)

sup Ao

u€supp(xn)

< (k4 1)72—n0+1), (2.1.11)

These estimates enable us to prove the following lemma.

Lemma 2.1.4. For any A € Ny we have

—A
(v/sr2m)—A (1 + (74 )
I,gn)(s; 2) <4 <k+1)
sran\—A
()

where z € [1+r,C| and n € INy. Furthermore,
—A N AN
(vate— ) 1+ (24) )

()

I(s;2) <a

whenever z > 1.

Proof. We apply Lemma 2.1.1 with

n

=2l ="y =1Q=2"X=2"U-=
« Jﬂ ) 7Q 9y 7U k+1

and R=r

to obtain the bounds for (™). The estimates (2.1.9), (2.1.10) and (2.1.11) ensure that the

necessary conditions are met. The bounds for I follow after summing over n € Ng. [
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2.1 THE METHOD OF STATIONARY PHASE

Estimate in the light zone

Lemma 2.1.5. For cs™9 < z < 1 — Cs 379 with suitable constants ¢ <1<C,and k < 5o

we have

I(si2) = — ST I (T e
VERETI(1 = 22)3

O 1 VI ] (1402 ).
Proof. Each z € £ comes with two non-degenerate critical points

ur =uyg(z) = —%(1:F V1-=22).

In order to treat these two points independently we need to modify our partition of unity
{Xn}nen,- We start by choosing suitable test function in order to separate the critical
points. Let x4 be two smooth functions satisfying supp(x—) C [—1,0] and supp(x+) C
[—2,—1]. Furthermore, we assume that

J

d j .
X+(us) =1, x_(u_)=1and T X < (1-22)"227%.

With this at our disposal we can compute the contribution of the critical points.
We start with u_ by asymptotically evaluating
I,if)(s; z) = / X (u) o (u)e™#91452) dy.
The parameters in Lemma 2.1.2 are as follows. First, we have V; < 2z land K =
1-1,0] x [es™',1 - C's~579]. Further, recall that oz,(j) < (k+1)i(H+1)" "3 27 on the
support of x_. Thus

i e i—i . o
dd]ozkx < (14 2%) JCT Z() (k+1) V1= 22 B
i=0
k1 iz
z z
© e (VTS )
and we have X = % and V = (zk + V1 —22/2?)"%. Naturally, V; > V as k > 0.
22+41) 2

At last we observe that
¢ (u,z) > (1 —2)z% and oV (u; 2) < 7,

sothat Y =1—2,Ys=1and Q = 2. Plugging these values into Lemma 2.1.2 reveals
k+2¢s\f€i§ eis(1+v1-22)

(-) k+1_—%
I sz 1—|—O 2 S 2 .
po(si2) = 25 a1+ VI ) el z2+m( 6( )>
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2.1 THE METHOD OF STATIONARY PHASE

Note that the necessary conditions are satisfied by assumption. Indeed

1
5
s%(l —2) > Csd > () 0> 70
c
1 s
implies % > 79, The condition V > QSL; follows from
Y,3
S
1—22 2
7 <zk+ VI-2 ) <o) (2) vt centrb <o o0
z c

The argument for x in place of x_ is very similar. One obtains

172 = [ wana)e s

—00
Zk+2¢sﬁe%eis(1—\/@) (1 Lo (2k+1 s
g - - N ) S 2)) .
5 51 VI-2) T 12 V12

The final step is to complete (x4 )+ to a partition of unity and show, using Lemma 2.1.1,

that the remaining contribution is absorbed in the error.
The result stated above follows by adding the contributions of the two critical points

together with elementary manipulations. O

At this point we note that the ranges for z are quite complicated and far from optimal.
Furthermore, for most k£ we obtain a rather crude upper bound instead an asymptotic
formula. Nevertheless, it is handy to have some results for K-Bessel functions featuring

mixed order.

The transition region

Lemma 2.1.6. There is a constant c as well as functions b(z), ro(z), r1(z) and a(y) such that
Ii(s; 2) = €0 (ro(z)Ai(a(z)sg)s*% — n(z)Ai’(a(z)S%sfg) + Oc(s*%*‘g)
for k < s sandz€ (1—c,1+c). In particular,
I (s;2) < 575
forze€ (1—¢,1+4c¢).

Proof. This is a consequence of Lemma 2.1.3 after localising around the degenerate criti-

cal point (—1,1) using a suitable modification of the partition of unity {x» }nen,- O

All together we recover the following standard bounds for the K-Bessel function.
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2.2 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GL3(R)

Corollary 2.1.7.

Kgﬂ-s(y) yfgmin(sfé,sfi\s—yri) if()<y<s+cs%,
TR o kA

l—'(% +ZS) * k —A . 1

y 2|y — s ify > s+css.
Proof. According to (2.1.8) we have

K%-Hs (y)

_k Y
[ |
If y > s, then Lemma 2.1.4 yields
K& is(y)
2t <k yfg(y—s)’A.

T +is)

2 1
In the range s —cs3 ™ < y < s+ cs3

we refer to Lemma 2.1.6 and obtain the upper
bound y‘gs_%. Lemma 2.1.5 produces the desired bounds in the range ¢’ 5 <y <

s — cs3+9_ Tt remains to show that

K2°+zs 1 , 8
< 2 < < c's9.
r(k_H i ) kS for 0 Y=

This follows from [38, Proposition 7.2] and Stirling’s approximation for the I'-function.

O]

Recently similar bounds have been established using the method of steepest descent
in [84]. Furthermore, if £ = 0, these bounds are well known and commonly used in

analytic number theory. See [83, (3.1)] as an example.

2.2 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GL2(R)

In this section we will give precise descriptions of special functions that appear in the
Whittaker models of irreducible representations of GL2(R).

Let x1 and x2 be two characters given by
xi: R* = C, x— xi(z) = |z|gsgn(xz)™ fori=1,2.
We construct the space

B(x1,x2) = {f: G(R) — C right SO; finite:

A o] = v@e@5] o)
0 d
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2.2 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GL2(R)

The group G(RR) acts on this function space and its completion by right translation. The
G(R)-representation arising in this way will be denoted by p(x1, x2). Note that usually
one considers (g, K )-modules or representation of the Hecke algebra in place of G(R)-
representations. By abuse of notation we will not distinguish between these here, this is
because for our purpose the naive perspective suffices.

By [53, Theorem 5.11] we know that p(x1, x2) is irreducible unless x1x5 1— Hit sgn™
for it € Z and m = 1(2). If p(x1, p2) is irreducible, we write x; B x2 for any representa-
tion equivalent to it. On the other hand, if x;x5 ' = |-|" sgn™ for it € Ny and m = 1(2),
then B(x1, x2) has a unique invariant subspace B, (x1, x2), which is infinite dimensional.
The restriction of p(x1, x2) to Bs(x1,x2) and all equivalent representations will be de-
noted by o(x1, x2). Note that, if X1X51 = H*it sgn™ for it € Ny and m = 1(2), then
the unique invariant subspace is finite dimensional. In this case o(x1, x2) denotes the
representation on the resulting (infinite dimensional) quotient space.

The following classification is contained in [53, Theorem 5.11].

Theorem 2.2.1. Every admissible infinite dimensional representation of G(R) is of the form
x1 8 x2 or o(x1, x2) for some quasi characters x1, x2. The only equivalences in these families
are

x1Bx2=x28x1
and

o(x1,x2) = o(x2,x1) = o(sghn - x1,5¢n - X2) = o (s8N - X2,58M - X1)-

We write it = s1 — s2, m = m; —mg and is = s; + s2. Note that the principal series
representation y; H x2 is unitary if and only if t,s € R or s € R, it € (—1,1). Similarly,
the (limits of) discrete series representations o(x1,x2) are unitarisable if and only if
s € R. Further, the discrete series representations are square integrable and the principal
series with ¢, s € R are tempered.

We start by looking at special elements in the space B(x1, x2). For k = m mod 2 let
fx € B(x1, x2) be defined by fi|x (k(0)) = (ew)k. The Peter-Weyl theorem together with
the Iwasawa decomposition implies

B(xi,x2) = P Ct
k=m(2)

Identifying K with S* in the obvious way leads to

felg (2) = 2, for z € S,
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2.2 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GL3(R)

By the definition of the induced representation one has

Fz(ED)n(z)a(y)k) = (~1)™y=* f(k),

forzx € R,y € Ry and k € K. We associate a Whittaker function to f via the Jacquet
integral
Win(o)a()k(6)) = [ flong)B(n)an.
=g
Note that for irreducible principal series representations (W} )kem+2z forms a natural
basis of the space W(x1 B x2;¢).
In order to compute W, we observe that wn(x)a(y) = z(y)a(y)_lwn(g). A simple

change of variables gives

Wi (n(zo)a(y)k(0)) = 62”ix05gn(y)m|y!1+is/ﬂaeQ”Myfk(a(y)lwn(fﬂ)kw))j%-

Next we note that

LL)TL(IE) = z2+1 241 VzZ+l  Va?+l
3 =1 =z

0 1 0 e +1 Va2l Va2+1

O () k(s 25))

Projecting on the K-component produces the map

wlwn(-)): R — St

—x +1 ) 1 )
T = — ef2tan (V= +1+:p)'

24+ 1

Therefore

N?
—T 41 7 an—1(vz T
filx (k(wn(z))) = ( T2+1> = ihtan™ (Vattlte) o gl

We chose this particular inverse trigonometric function so that our phase will be smooth

on R and corresponds to our parametrisation of S! with respect to angles between 0

and 7. Thus

Wi(n(zo)a(y)k(9))
— eQﬂixoeikGSgn(y)mz ‘y|%+52 / (.7}2 + 1)—%—%e—27rizyei2ktanfl(\/azz-i-l—&-a:) dx
R Vo
\ k
__ 2mixg ik0 mo 1+82/ (_‘T—‘_Z) —2mizy dx
=€ e sgn 2 - e — 2.2.1
gn(y)™ |yl R (@2 1 ) o (2.2.1)

— (2m) 220 M0sn (y) ™2 |y[ 2152 I(y; ki, 1),
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2.2 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GL2(R)

We further analyse this integral, as it is useful to have expressions connecting W, to
Y g P g
classical special functions. We observe that
(—x+1d)k
(22 + 1)§+%+§

k_1_ it E_1_ it
2

= i*(1 4 ixz)

Thus, for R(it) > 0, we can apply® [36, 3.384.(9)] and get

Up to constant this agrees with [66, (76)]. Further, if ¢ € R, we observe that

it
o V2
I

Wo(a(y)) = sgn(y) [y12*F K (27 Jy)).

On the other hand, if it = k — 1 € IN, then

0 if y <0.

Note that up to normalisation the last two examples are exactly the functions that ap-
pear in the classical Fourier expansion of Maaf$ forms and holomorphic modular forms
respectively. Due to the classification of irreducible representations, Theorem 2.2.1, we
have computed a basis for the Whittaker space for every infinite dimensional irreducible
admissible representation of G(IR).

Our next goal is to check that, for irreducible, tempered, principal series x1 B x2, W is
essentially L2-normalised. To do so we use the classical Plancherel theorem, exploiting

square integrability of W} (-) for unitary principal series. Indeed we define

(—z+0)"
Z‘ X = —’L.t'
gk,t( ) (332+1)%+ 5
Then (2.2.1) implies that Wy (a(y)) = [F(gk.it)](v). Thus we compute

Wil = [ Wilel) Wl = [ 1Faal0)Flana[0)

= [ oo = [y = [

We have shown the following lemma.

[

2 After analytic continuation of the integral representation to R(u + v) = 3.
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2.3 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GLo(C)

Lemma 2.2.2. For any k € INg and any s,t € R>( we have

1
NS
[Wkll2 = (5)4 :
Furthermore, if it = k — 1 one has
k—1
Wil2= =

The second part is a direct computation which we omit.
It is possible to obtain a complete asymptotic description of the size of W}, using the
method of stationary phase and (2.2.1). Because this is not directly relevant to the rest

of this thesis we will not pursue this here.

2.3 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GLy(C)

Given two characters

S; z i .
xi(z) = ElRé () , i=1,2 (2.3.1)

2]

we associated the induced representation p(x1, x2) of G(C) acting on the completion of
B(x1,x2) = {f: G(C) — C right SU3(R) finite:

ORI,
0 d d

by right translation. Note that p(x1, x2) is irreducible unless x1x5 L= 2pztforpqge Z
and pg > 0. If p(x1,x2) is irreducible, we denote it by x; B x2. Again, by abuse of
notation, this stands for the representation of G(C), all equivalent representations, the

representation of the Hecke algebra, and for the associated (g, K')-module.

Theorem 2.3.1. Every infinite dimensional admissible irreducible representation of G(C) is of

the form x1 B x2 for two quasi characters x1, x2 of C*.

This is [53, Theorem 6.2]. As in the real case we define the numbers
it =81 — 89, 18 =81+ 89 and m = mq — mo.

In order to find a convenient basis for the Whittaker space we recall some basic rep-

resentation theory of SU(2). All irreducible representations of SU(2) are uniquely deter-
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2.3 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GLy(C)

mined (up to equivalence) by dimension. We can model the irreducible representation
of dimension n + 1 on,

Vo= €P CPfor Py= X2 772",
lal<%,
=5(1)
the space of homogeneous polynomials of degree n. The action ¢, is given by left trans-

lation. The invariant inner product is determined by

n

n
(P Pp)y, = ‘512:4(5 —q)!(2 +q)!.

We define the matrix coefficients

9, (k) = (00 (K)Py. By, -

An element f € B(x1,x2) is uniquely determined by its restriction to SU(2) and
flsu@2) € L*(SU(2)). According to the Peter-Weyl theorem the set

n n
{fn,p € B(x1,x2): faplsu) = P _m,n=m(2),n 2m,|p| < 5 and 2p = n(2)}

spans B(x1, x2). We will denote the Whittaker function associated to f,, via the Jacquet-
integral by W, ,,.

Lemma 2.3.2. We have

min(2E£™

W p(a(y))

y1+252(”_m (ntm

e o ()

m T+ DT(it+2—1
| oy LU DTS 20
A1+ 5+i)[(1-p+ %)

'1F2(1+l51+l_g—it;l—p—i-%;élw?gf)

+(2ﬁy)2it+n—p—2l+% F(l B % - it)
2T (1 + ™™ — ] — p+it)

.1F2(1+g+it;1+n+m

—l—p+it,1+g—l+it;4ﬂ2y2) ,
fory > 0.

Note that this determines W, , on all of G(C) due to its transformation properties.
However, due to the complexity of SU(2) this is not as clean as in the real case. In the

spherical case, n = p = 0, a similar computation appeared in [3].
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2.3 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GLo(C)

Proof. We have

Wasa(w) = [ fuplon(:)an)e(=2R(:) 5
= 2 [ fpfen(z)e(-2R(e) 5
Recall that
wn(z) = n(x) om0

k — , L ]
0 JiePt1 bz%l VI +1

Furthermore, writing 2 in polar coordinates reveals

—Z 1 - 041 T 1 047
k , =kle™" 2 ,0]k [ ) ] kle™" = ,0].
Exploit that
I _im _im —1 ™)(— o n
O o (K[e™2", 0)hk[e™5",0]) = e OTIPTEIOR L (h)
leads to

00 T 1 -
Wp(a(y)) =y 72 ikl gmEl) 2 T
n,p Yy Yy 0 <r2+1)1+2s17252 0 o

The 6-integral can be computed as follows. First, we write

2T ™
I — / e—i(0+7r)(—p+%)—47ryri Cos(@)ﬁ — 2/ COS(&(—p + m>)e—4ﬂ'yricos(9)@
0 0

o 2 o (232)

Applying [36, 3.715.(13)] gives
T de
R(I) = —2/0 cos(0(—p + %)) sin(4mwyri COS(Q))2— = Sin(i(p — %))J,p+%(4ﬂyr).
Similarly, by using [36, 3.715.(18)], we get
(1) = 2/ cos(0(—p + %)) cos(4myri cos(@));l—e = cos(Z(p— ) J_ppm (dmyr).
0 ™ 2 2 2
Combing real and imaginary part shows

I=i"% J_pim (4myr).

The matrix coefficient can be evaluated using the binomial expansion as follows.

T (k[\/r2r+ T \/r21+ 1]>
= T s X CoE (B ()
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2.3 THE WHITTAKER MODEL FOR REPRESENTATIONS OF GLy(C)

Finally, we compute the r-integral using [36, p. 6.565.8] with p = 2 +p+2] -5, v =
p—,a=4ry, k =1,and p = it + 5. One checks that all conditions are satisfied as

long as R(it) > —2. We obtain

o) T.l+p—%+2[
/O WJ_IH_% (47Ty'l")d7’ (233)
FA+Dr@t+5—1)

= (2my) T A1+ 5141 — 2 =ity 1 — pt 4%y
(2my) A+ I+ (1—pt+Z) ! 2l b1+l =g =il —p+ sdmy)
+ (2ﬂ_y)2it+n—p—2l+% F(l B % - it)
2T (14 25 — 1 —p +it)

-1F2(1+g+it;1+n+Tm—l—p+it,l+g—l+z’t;4772y2).

Inserting this in the /-sum gives the result. O

In several cases this complex formula simplifies considerably.

Lemma 2.3.3. We have

m!(2m) s

143 +is
m = K
W ,p(a(y)) 1"(1+ % +Zt) 2 p

+z‘t(47fy)

for all |p| < %, 2p = m(2). Furthermore,

Wn +

)

©I3
—~
s
—~
<
~—
~—
|
—
|
~—

forall n > m, n =m(2).
This agrees with the results given in [21, Section 4.2].

Proof. The additional assumptions imply that the /-sum contains exactly one element.

Evaluating the r-integral in (2.3.3) using [36, 6.565.(4)] leads to the desired formula. [

We record the following lemma for later reference.

Lemma 2.3.4. If the representation m is spherical, we must have m = 0. The spherical element
is given by

_ [yl Ku(4my)
It satisfies

_ _5
[Woyoll2 = 72272,
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THE CASE OF NON-ARCHIMEDEAN FIELDS

We turn to the ultrametric situation. Thus we assume that (F, ||) is local field satisfying

the strong triangle inequality
[ +y| < max(|z[, |y]).

We further restrict ourselves to characteristic 0. Thus, F' is a finite extension of Q,, for
some p.

After recalling the p-adic method of stationary phase we will start a detailed analysis
of the Whittaker model. In contrast to the archimedean situation we use newform theory
to provide a suitable basis for the Whittaker space. As a consequence we can exploit the
connection to the local L-factors instead of the representation theory of K.

Philosophically the formula for the new vector obtained by inverting the local zeta
integral can be thought of as a p-adic Mellin-Barnes type representation. However, in
order to apply the method of stationary phase we need a suitable Fourier type integral.
The transition between the two representations requires some additional work.

The final outcome of this highly technical section are precise upper bounds for the
Whittaker new vector. We cover all of GLy(F') in suitable coordinates and all possible
tempered, unitary, irreducible representations m. The results are summarised in Sec-
tion 3.4.4.

This part is heavily based on the paper [4] by the author. However, we give significatly
more background and go into greater detail here. In the stationary phase estimates later
on we go beyond the original source [4] by treating arbitrary local fields of odd residual

characteristic and giving more explicit evaluations.

3.1 THE p-ADIC METHOD OF STATIONARY PHASE

In this section we introduce the p-adic method of stationary phase. This is a well estab-

lished formalism used to evaluate or estimate complete exponential sums. However, it
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

is our point of view that such sums should be written as p-adic oscillatory integrals. In
that language the analogy between the archimedean method of stationary phase and the
p-adic one becomes very striking. There are numerous references devoted to establishing
the p-adic method of stationary phase as a versatile tool for the working analytic number
theorist. Let us mention a few. An easy to use formula is given in [51]. A more technical
but very convenient formulation, working with Taylor expansions of the phase, is given
in [62]. Finally, a more geometrically version can be found in [32]. All the references
mentioned so far deal essentially with sums of the form
5 ()
meZ/p"Z
for a weight ®: Z/p"Z — C and a phase f. In the context of this work we encounter

such sums in a different form. For a Schwartz-Bruhat function ® € S(F™) with supp(®) C

o? and a phase f: supp(®) — o we write

5@ = [ @0w (A ()
0
This is an oscillatory integral completely analogous to the ones studied in archimedean
situation. If F' = Q,; v is the standard additive character; A = p™"; d = 1; ® is constant
ona+p"Zy,; and f(a+p"Z,) C f(a)+ p"Z,, then
“n m
Sp@;A) =p" Y D(m)e <—f()>

n
meZ/p"Z p

and we find ourselves in the classical setting.

As in the archimedean case the phase f and the weight ® may depend on parameters.
But the p-adic setting introduces certain subtleties when defining regularity properties
of f. Nonetheless, definitions can be made precise and one can produce stationary phase
estimates similar to the archimedean ones. In the interest of space we do not go into this
here.

Instead we will mostly deal with f € o[z] or f € o[[z]]. Anyway we will encounter
situations featuring shadow- and light zone as well as the caustic locus. It is an interest-
ing feature, originating from character orthogonality, that if there are no critical points
we achieve asymptotic vanishing. On the other hand, if there are non-degenerate critical
points, the integral can be evaluate in terms of the certain multidimensional Gauf} sums.

These are defined by
G(Aw™*,B) = / Y('xAzw ™ + B-x)dr for A € GL,(0) and B € F"
on

and play essentially the role of the Fresnel integral.
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

3.1.1  Evaluation of Gauf§ sums

In this section we will evaluate the multidimensional quadratic Gau8 sum G(A, B). This
is an essential tool for the evaluation of exponential integrals. Throughout this section
we assume that ¢ is odd. This makes several computations slightly more convenient. For
later applications we only need one and two dimensional Gaufs sums. Therefore we will
focus on these in some detail. We start by treating the one dimensional situation and

then move on to the two dimensional case.

Lemma 3.1.1 ([18], Lemma 6). Let p € Z, A € 0*, and B € F. Then, for q odd, we have

min(q=%, 1)yp(A, p)(—Z8%)  if B  pmin(=p0),
ey — |V

0 else,

where

xr(A)e(,xr) if p > 0is odd,
r(A,p) =

1 if p < 0orpis even.
Proof. Observe that, since the conductor of 1 is o, the case p < 0 reduces to a complete
linear sum. For p > 1 we calculate

G(Aw™",B) = Z ¢ Y (AwPx? + Bx) /w Bw’t)d

x€o/pP

The last integral is 1 if B € p~*, otherwise it is 0. Thus we assume B € p~*. Completing

the square yields

G(Aw",B) = —w( waz> 3 1/)<Aw_p <:c+w2;B>2>.

x€o0/pP

Note that due to our current assumption on B we have %2 ¢ o. We shift the summation

and obtain

G(A, B) = g4 (—if) S (Awra?).
x€o/pP

We start the evaluation of the remaining sum with the special case p = 1:

G(Aw%m:qlw(—iff) S @Az 11

z€(0/p)* X€3€1

B? B?
= <_1ZA ) Z / Y(Awt)d*z + g1 <_w4A )

Xexlv
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

By using the fact that {x € X;: x?> = 1} = {1, xr} we find

2
G(Aw™,B) = (r(1)'G(Am ™, xp)t <—Zﬁ >
1 1 w

1—2nB2
= CI*?XF(A)G(?XF)”L/J <_4A> .

If p > 1, we see that

G(Aw™",B)

o (BE)| T T awete e Y wladr)

z€(o/pP)X x€3€p, x€o/pr—1
wP B2
=9 <— ) Z / Y(Aw Px)d*x
4A Xexpr
2
o [ @ B 2—p. 2
x€o/pr—1

Since ¢ is odd, the only quadratic characters are still 1 and xr. Thus p > 1 implies
| x@utizra)ia = Gz =0
0x
The stated equality follows by a simple inductive argument. O
The evaluation of multi-dimensional Gauf} sums can be reduced to the previous case

by a suitable diagonalisation argument. This is made precise in [32, Proposition 1.3]. We

explicate this procedure in the two dimensional case in the following lemma.

Lemma 3.1.2 ([4], Lemma 4.3). Let A € Matsyo(0) be a symmetric matrix, B € F?, p e
{0,1}, and let q be odd. Then

q if p=1,1k(Ap) € {1,2} and wB € 02,

w P
‘G<2A73>‘§ 1 ifp=0o0r Ay =0and B € 0,

0 else
\

where Ay is the image of Ain A € Mataya(0/p).
Proof. Since p € {0, 1}, the quadratic Gaufs sum depends only on A,. If p =0 or A, =0,
then we are simply dealing with a linear sum and the statement is obvious. Therefore

we assume p = 1 and A, # 0 for the rest of the proof. Write
a b

A, = for a,b,c € o/p.
b ¢
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

If a # 0, we have

1 0 a 0 1 a1
Ap:

ba=' 1) \0 aldet(4,)) \0 1

The obvious linear change of variables yields

-1 -1 0 10
G<w2 A,B) = G w2 ¢ : B
0 a 'det(4,) —a~'b 1
-1 -1
_ G(@ a,Bl>G<wdet<Ap>732_bBl>_
2 2a a

Applying Lemma 3.1.1 to the remaining one dimensional Gaufs sums gives

;

wB? _1
YA (~ 50 a7
if det(4y) =0, By, By €p~land By — 2By €o,
_ - 2 2 —1
, <w 1A,B> RECHL (saty (B~ 20B1Bs + cB3) ) 4

if det(4y) € (o/p)*, and By, By € p~ L,

else
with

F(2)e(3, xr if rk(Ay) =1,
R RGO (4,

xr(det(Ap))e(5, xr)?  if rk(4p) = 2.

If @ = 0 but ¢ # 0, then the argument is essentially the same, one simply exchanges

the roles of a and c as well as By and Bs.

If a = ¢ = 0, then we must have b # 0. Observing

0 b -1 1

N
o
|
—_
—_

b 0 1 1) \0

NS
—
—_

and making a linear change of variables yields

-1
G <W2A, B) = G(w 'b,—B; + B2)G(w 'b, By + By)
—w

= Y(Ap)y(

The bounds stated above are special cases of these explicit evaluations.
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3.1.2  An explicit p-adic method of stationary phase and some tricks

In this section we will finally introduce a version ot the p-adic method of stationary
phase which will be used later on to evaluate the ramified Whittaker new vectors.

A useful tool to turn multiplicative oscillations in additive ones is the p-adic logarithm.
The following result is well known and will be used multiple times in the upcoming

computations.

Lemma 3.1.3 ([4], Lemma 4.1). Let e = e(F/Q,) be the absolute ramification index. We

define kp = [ ;57 1. For a multiplicative character x with a(x) > K there is by, € 0™, uniquely

determined modulo p“(X)_”F , such that

X(1+2zw"F) =1 bixlogF(l + zw"F) | forall z € o.
wa(X)

Furthermore, if @ < a € N, then there is b, € 0™ such that

2
X(1+ zw®) =4 ( by <zw“ - Zw2a)> forall z € o.
wa(X) 2
In particular, if @ < a €N, then
X(1+ 2%) = (b)) forall z € o.

Note that in the last two cases we do not make any assumption on Kp.

The proof of this result can be found in [18, Section 2.3]. Next, we will recall some results

on quadratic congruences.

Lemma 3.1.4 ([56], Lemma 9.6). Let a,b,c € 0. We set

S = {zeco/p":ax® +bx+cep"},

A = b —dac=Nw® for N € 0*.
If v(a) = 0, we have
D R ns . 5
S—{—2aj:2aw +aw" raco/p } (3.1.1)
with
0 i 502”, \_BJ ) 602”/
Y = f and § = 2 /
Yo ifYE =N and §y < nis even, 5 if 5o = 28 < n.
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

In particular,

15 < 2¢°.

If v(a) > 0 and v(b) = 0, we have §S = 1. Furthermore, the solution xoy € S has valuation

v(c).

For |[A\| = ¢q and p periodic f the basic estimates for Sf(1,;w™!) rely on algebraic
methods and are highly non-trivial. As pointed out in [4, Section 4], this case reduces to
a complete exponential sum over the finite field o/p. In the one dimensional situation
we have the following very strong bound due to Weil, [86]. Let g(z) = []._,(z — &)®
be a rational function with coefficients in o/p. Furthermore, let x be a multiplicative

character of (0/p)* such that no a; is a multiple of the order of x. We have

Yo xlg@)e(@ (@) < (N +1-1)vg, (3.1.2)

T€0/p,
x#&; for 1<i<l

for each polynomial f € (o/p)[z] of degree N satisfying f(0) = 0. For d > 1 we have
to involve some heavy machinery and we need some additional assumptions. Let us
assume that f € o[X1,..., X,] has degree Ny co-prime to p. We write Ny, for the degree
of the reduced polynomial f € (0/p)[X1,...,X4] and assume that the homogeneous
part of degree Ny, defines a smooth projective hypersurface. Then [57, Example 19.(5)]
yields

1S (Loasw )] < (N —1)% 2. (3-1.3)

If [\| > g, the situation is completely different because there are several elementary
methods that can be used for the evaluation. These are parallel to the classical method
of stationary phase. More precisely, one will split the integral in suitable pieces each of
which can be expressed in terms of Gauf$ sums.

In the one dimensional situation over F' = Q, an estimate for S;(1z,, ) allowing
very general phase functions f is given in [28, (5.3)]. We now translate this result in our

setting.

Lemma 3.1.5 ([28], (5.3); [4], Lemma 4.4). Let F' = Q,, for p > 2. Furthermore, let f be a
polynomial, with degree d, > 0 modulo p. If 7 = v(f’) and every o solving the critical point

congruerce

w T f'(a) €p (3.1.4)
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

has multiplicity less then M, then we have
S5 (1z,:07™)| < (dy —1)g~ 557"
forallm > 1+ 2.

Points satisfying the congruence (3.1.4) are called critical points. As already mentioned
in [4], there are different types of critical points. If they have multiplicity one, they are
referred to as non-degenerate critical points. The contribution of non-degenerate critical
points is well behaved. Indeed, if there are only such critical points, one can evaluate
the corresponding oscillatory integral explicitly. On the other hand, if there are critical
points with multiplicity bigger than one, the situation becomes more complicated. Such
critical points are called degenerate critical points, their existence usually destroys square
root cancellation in S;(®; A). Analogously to the archimedean case degenerate critical

points are responsible for the appearance of new special functions. We define

A1¢ab—q /wam + bx)d

which is a p-adic version of the Airy function. Note that Aiy(a;b) = 0 if v(b) <

min(0,v(a)). In general we have the bound
| Ay (a,b)| < 2.

The following lemma provides a very general device to treat p-adic oscillatory inte-
grals. It is a good example for the usual approach taken to evaluate highly ramified
(complete) exponential sums.

Lemma 3.1.6. Suppose that for m > k > %3 we have

er{
5 tt At 4 p™ forall t € o

fx+@"t) € f(x) + =" (g(x), t)

For some function g: o — o and a matrix A. Further, assume that ® is p* periodic. Define

Dy = D-TIL X o pr;. We have

St @@ ™) = CP(W) ™Y @)xa(en) . xalza)v(w " (%))

x€e(o/pr),
g(x)+h(x)ep

0 (F B A= 60 4 000))

g(x) = <%wma(Xi)> and Bx = diag (bggwm“(XI), e b><2dwma(><d)> :
1<i<d 1

Ty
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Note that one can refine the congruence condition in the x-sum by evaluating the
Gaufs sum. In one dimension this is similar to [18, Lemma 7]. The proof is straight

forward and left to the reader.

An important two dimensional example that lies at the heart of the upcoming sections
is the integral
K(Xl ® X2, (will ) w712>7 Uwil)
= / / x1(21)x2(22) (210 + 29w ™2 4 va 29w ) d X w1d 20
0x Jox

attached to the algebra F' = F' x F.

Lemma 3.1.7 ([4], Lemma 4.6). Suppose x1 and xs are characters on F* such that a(x1) >

a(x2) > 1. Put k = max(a(x1),l) = 2r + p for somer € Ngand p € {0,1}. For0 < l1,ls < k

and r > 0 we have

K(Xl @ X2, (will ) wilg)v vwil)

= ()%™ Z x1(z1)xa(22) (w10 + 29w ™2 + vy zow )

(z1,22)€S
—p
w o
'G< 9 Axl7$27w " pBﬂCl@z)
for
4 B —blwk_a(M) vy et !

1,72 — )
vzt ! —bgwk_a(m)
blwk—a(X1) + :L’lwk_ll + U.Tll’gwk_l

Bazl,xg - 5

byw*—0(2)  gowh e 4y ot

S = {xlaxZ € (0/pr)><: BILCL‘Q € (pr)2}
where by and by are the constants associated to the characters x1 and x2 using Lemma 3.1.3. In
particular we have
K(Xl ® X2, (will ) wib)’ Uwil)

< (p(1)%q7*"8S sup

T1,L2€S

wip
G ( 9 Azl,xga w_r_prD17$2) ’ :
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Proof. We use Lemma 3.1.3 to rewrite the integral as
K(Xl ® X2, (w_ll ) w—l2)7 ’Uw_l)

=2 ) xa@)xe(e)y (e + rew " + vsmaw )
x1,x2€(0/pT)*

wip
-G <2A$1,x2?w_r_p3961,r2> .

Using the support properties of the Gaufs sum contained in Lemma 3.1.2 it is clear that

we can restrict the summation to S. O

3.1.3 Evaluating twisted Kloosterman sums

We will end this section by applying the theory developed so far to twisted Kloosterman

sums (generalised Salié sums). These are oscillatory integrals of the form

Su(4.B.m) = [ x(a)o <A“Bx1> a%z.

oX wm
Because Vol(0™,d”) = 1, the trivial bound is 1. If A,B € 0%, m =1, and a(y) < 1 we

have the stronger bound

N

19 (4, B, 1) < 2¢r(1)g 2. (3.1.5)

This is essentially due to Weil. For a reference see [51, Chapter 11, Excercise 1]. We
will now apply the method of stationary phase to the situations m > 1. This has been
studied very well. However, we could not locate a reference dealing with general sums
Sy (A, B,m) over arbitrary local fields F' of characteristic 0. Classical references are [18,
27, 51, 56]. Furthermore, as the estimate of the K-Bessel function before, this is a good

exercise to get used to the p-adic method of stationary phase.

Lemma 3.1.8. Let g be odd, m > 2,1 € No, x € X a multiplicative character, and a € o*. If

m > a(x), then

CF(l)qf% Zﬁ: 'yF(:I:\/a, m)x(yi)¢ (%w—m _ bxw—a(x))

l
Sx(laawvm)_ z'fl:0andaeo2x,

0 else.

Here y.. are the two solutions of y* + ybxwm*a(X) —ain o*. In the opposite situation, m < a(x),
we have

S\ (1,aw!,m) = 0.
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3.1 THE p-ADIC METHOD OF STATIONARY PHASE

If m = a(x) and | > 0, then

m

Sy (1,aw',m) = Cr(1)yr(=2by, m)x(90) (250 + by)ww")g 2,
where yy is the unique solution to y(y + by) = aww' in o*.
Finally, assume m = a(x) and | = 0. Let A = b} + 4a and y. = —%X + @. If A € pand
(] > K, then

Cr(D)a % Y vr(£2VA m)x(y)o (22— b) =)

Y+
if A € 02X,

m , v(8)

G (g8 e (203 2+ mx(wa)w (22 - by) =)

S, (1,aw!,m) =

4 r T T
Ay, <_4%w3(?1—m; (8b2 — A2l ;f’})wg(#]_m)

0 else.

Proof. Let us start with the exceptional cases. Assume m > a(x). Let us write m = 2r +p
for r > 1 and p € {0,1}. We will apply the method of stationary phase. Before we do so

let us recall the geometric series
! ! J
a a Z t
w _aw LA
ytiw' oy < Y

which converges because r > 1. Thus, since r

5~, we use Lemma 3.1.3 to see that

Sy(Law',m) = Cp(l)g™" ) X(y)¢<<y+awl>wm>

ye(o/pr)> Y
“ (aSwzp’ [y” + ybyw™ ) — awl]y2w7"p) .
Yy

Before we can evaluate the quadratic Gaufs sum using Lemma 3.1.1 we have to solve the

congruence
y? + ybxwm_a(X) —aw! e p” fory € (o/p")*.

If [ > 0, then this has obviously no solution y € o*. Otherwise the discriminant A =
b2 w?m=2ax) 4 4a is a unit and according to Lemma 3.1.4 we have

b —a
Y+ = —Exwm ) £ (A);.

N |=
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Evaluating the Gaufs sum gives the desired result.
If m < a(x), we use a similar trick. Write a(x) = 2r + p and apply Lemma 3.1.3. We

arrive at

y€(o/pm)*
bX

a _ _ - -2 e
-G (y?)wH_Qr mo_ Tme P [y2wa(x) m +ybx _ awl-i—a(x) m]y 25T p> .
Thus, as before, we have to evaluate the Gauf8 sum. Note that, if m < a(x), the latter
vanishes for all y € 0*. Therefore we assume m = a(x) from now on. If | > 0, we look
at the congruence
y(y +by) € aw' +p",

which has one solution yy € 0. Further, the quadratic term of the Gaufs sum reduces to
—;wa . We conclude this case by appealing to Lemma 3.1.1.

Finally, we have to deal with the possibly degenerate situation a(x) = m and [ = 0.
We treat several cases according to the p-adic size of A = bi + 4a. This is the discriminant
of the quadratic equation y? + yb, — a = 0.

Case I: A € o*. This is the non-degenerate situation. By Lemma 3.1.4 we have two
solutions y+ to the equation in question and we conclude using Lemma 3.1.1.

Case IL: 0 < v(A) < [%]. In this case we note that 2a — y+b, € p, so that

Sy (1, awlm ) =Cr(1 ZX <<y+a;ﬂl>w_m>,

yes

where S = {y+ + aw P a e o/p 2 En ~P} is given by Lemma 3.1.4. Here we used

the fact that S is empty if v(A) is odd. Observe that r + p — (QA ) > ["F] > kr and apply

Lemma 3.1.3. This leads to

st atom) G057 a0 1+ 22 =)

+
Z 1/} ( - bX V (A)0$2wp7 U(QA) + a/4x3w7‘+2pgv(A)> .
= 2y3 3y
z€o/p 2 ~F

If v(A) = 2p > 0, our current assumption implies > 1 in which case the terms of the
sum are trivial. For v(A) > 2p we can run another stationary phase argument. In both

cases the remaining sums are easily evaluated and one obtains the result stated above.
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Case IIL: v(A) > [Z]. In this case we use Lemma 3.1.4, 3.1.3, and 3.1.1 to see that

—r b A —-m
Sx(1,a,m) = Gr(1)a ™ x(~ 2 (=)
X
3
S _A rmefem _ 2B orriery, 16627 gpriey
. ) ) 301
r+p

zeo/pt™ [="1
By completing the cube we can express the remaining sum in terms of Ai,. We get

[T [T _m b N
Sulaw!,m) = Cp()g TR (- (- )
X

4
-Aid, (_Zl?cw?)(?]—m; (Sbi —Aw_zf%p})w?’“;ﬂ_m) )

This completes the proof. O

Throughout the proof we have seen non-degenerate and degenerate critical points. In
particular, the twisted Kloosterman sum features a transition region just as the K-Bessel
function. If we view [, m and a as parameters, we can also classify their degeneracy. The

caustic locus is given by

The light zone is

L={m>a(x), aco®™}YU{m=a(x), >0, aco*}
b2
U{m:a(x), =0, agé—éf—i—p}.

The rest is made up by the shadow zone, where S, vanishes.

Remark 3.1.9. As there are different types of Bessel functions there are also other types of
Kloosterman sums. Let E be a quadratic extension of F' and let dy denote the Haar probability
measure on the hypersurface N r; #(1). We define

Se(A|E) = / £(x)n(Az)dy,

Nrgyp(1)
for a multiplicative character £ and A € E.
This function does not come out of thin air as we will encounter it in our analysis of the
Whittaker new vector. However, this generalisation of the classical Kloosterman sum seem not

to be standard in the literature. A complete evaluation of these sums would be interesting but is

beyond the scope of this thesis. We will derive the estimates needed later on in an ad-hoc manner.
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3.2 COMPUTING FINITE FOURIER COEFFICIENTS

This section lays the foundation for most of the computations in this chapter. We will
explicitly compute the finite Fourier expansion of local Whittaker new vectors. In doing
so we built on the circle of ideas introduced in [69]. Let 7 be an irreducible, admissible
representation of GLo(F') and let W, be a normalised -Whittaker new vector.

The new vector is an element of fundamental importance. Indeed, the set of vectors
W), Wala(@™)), Wrla(w™),

spans the complete Whittaker space. This can be extracted from [26]. Furthermore, we

have
Wr(griwa(w™)) = Wy (Gt—imin(0,i—1),0)-

We conclude that by understanding the new vector on the matrices g, we understand
a very convenient basis of the whole space.”
One notes that the function

v Wi (gul,v )

is well defined for v € 0* /(1 + p'). This follows from the identity

Gt lv(1+aw!) = gt,l,vn(vx)'

Thus we can expand it in its finite Fourier expansion as follows.
Wr(girw) = Y coa(w)p(v). (3.2.1)
HEX]
The Fourier coefficients in question are the constants ¢;;(x). They can be computed

using the basic identity:

t=—o00

— _ - -1 S;MT —a(%—s) a—l ,,—1
= wr(=1)e(5, pm) T st ZW 27 VG (0" ).

The proof of this formula, given in [69, Propositon 2.23], is valid for any I > 0 as long as

wr(w) = p(w) = 1.

In general it is still hard to understand arbitrary vectors as they can be complex linear combinations of our

basis. In some cases there are more direct ways to compute some special vectors directly. One example of

such are the minimal vectors studied in [48].
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3.2 COMPUTING FINITE FOURIER COEFFICIENTS

With the help of this identity we will give explicit expressions for the constants ¢; ;(x)
defined above. The resulting representation of Wy (g:;,) can be thought of as a p-adic
Mellin-Barnes representation.

The upcoming calculations work in great generality. Indeed, we can handle any non-
archimedean local field F', and any (not necessarily unitary) irreducible, admissible rep-
resentation 7 with unitary central character w, € X,,. This section is organised in subsec-
tions, each of which deals with a particular type of GLy(F)-representation on its own.
We closely follow the exposition in [4, Section 2]. Further we end this section with a

summary adapted from [5].

3.2.1  Supercuspidal representations

Let 7 be a supercuspidal representation. Because L(s, ur) = 1, for all 1, the basic identity
takes the simple form

> 1, 1 _ o

S g e (1) = (< De(gpm) G L) G23)

t=—00

By comparing coefficients we arrive at

—1,,-1
we(—1)EE )it = —q(um),
eri(p) = L) (3:24)
0 else.
Evaluating the Gaufs sum yields
(
e(3,wylm) ifl=0,t=-n,and p =1,
—Cr(1)g te(5, wrlm) ifl=1,t=-n,and p =1,

Ct,l(ﬂ) =

Cp(l)q_%e(%,M)e(%,,u_lwglw) if peX),t=—a(pr),and { >0,

0 else.

These expressions essentially appeared in [69, Section 2.7].

3.2.2  Tuwists of Steinberg

If 7 = xSt, then the situation is slightly more complicated. This is because L(s, St) is

non-trivial.
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3.2 COMPUTING FINITE FOURIER COEFFICIENTS

Lemma 3.2.1 ([4], Lemma 2.1). Let | € Ng and p € X;. If 1 = xSt for x # 1, then the

constants ¢, () are given by

e(g. 0w m)G(@w ™ ph) ifp# X and t = —2a(px)
27 e Y 7

¢ G ifu=xtandt= -2,

ca(p) =
—(r(2)7 gt G (e ) ifp=xtand t > -2,

0 else.

If m = St, then we have

WG (~w W ) ifp# Land t = 1 —a(p),
—q ! ifu=11=0andt> -1,

ce(n) = g2 ifu=1,1>1,andt > —I,
—Cr(1)g™ fpu=11>1andt=—1-1,
0 else.

Proof. If x # 1 and u # x !, then the basic identity is as in (3.2.3). It is easy to compare
coefficients.
We continue by considering x # 1 and p = x L. In this case we have
s L(s,|?)
1_g — S, |t —
> e () = —wa (1) ———-G(@ ! x).
t=—o0 L<1_5>|'|2)
For suitable s one can expand
1
L(Sv Hg)
1
L(l -5, HE)

Inserting this expression together with the explicit evaluation of the Gaufs sum and

o
=g (p(2) Y gEe
a=0

comparing coefficients completes this case.
Next we look at x = 1 and p # 1. Using the support of the Gaufd sum, (1.3.1), and
evaluating the Whittaker function, (1.3.7), yields a basic identity of the form

[e'e} L 1
> G ey (1) = (G m)G e W), g e G,

t=—0o0
Note that a(ur) = 2a(p) and a(7) = n = 1. Since we are assuming p # 1, we must have
[ > 1. We complete this case by observing that, because = = St,

L —a - —a
(o nm)G@ W ) = G-w W, p).
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3.2 COMPUTING FINITE FOURIER COEFFICIENTS

Further, we consider x = p1 = 1 and [ = 0. In this case the basic identity simplifies to

S GG 0(1) = ~L(s, 1) Zq

t=—00
Again we can compare coefficients.

It remains to check the case x = x = 1 and [ > 1. The basic identity becomes

L(s, |2 L ) )
3 ) = _q_(l_l)(g_s)(s‘)l(q L= s, [2) = Gr(1)a )
t=—00 L(1—57|.‘2)
1 1
= G CF( VL(s,|-12)(1 —q27%)
= —(1) S)—l-Zq*(a*l)s Jl-gatl
a>1

In the last step we expanded L(s, H%) as a geometric series. The result is derived by

comparing coefficients. O

3.2.3 Irreducible principal series

We turn to the situation m = x; B x2. The invariants attached to 7 are given explicitly
in terms of x; and x2. Further, the assumption w, € X%, implies that xix2(w) = 1.
Some values for ¢;;(u) have been computed in [69, Proposition 2.39, 2.40]. We refine
and complete these computations in order to list precise expressions for all possible ¢,

and pu.

Lemma 3.2.2 ([2], Lemma 2.2). Let 7 = x1 B xo with a(x;) > 0fori =1,2.If x1|ox # X2lox,

then
(3. p wr MG i)
if a(ux1), a(pxz) # 0 and t = —a(ux1) — a(pxz),
—g 2 xi(w )e(d, pwy ) Gl )
i) = if a(px;) # a(px:) =0 for {j,i} = {1,2}, and t = —a(ux;) — 1,

t+a(pm)

cr()7 a2 (@ )e(g, p g ') Gl )

if a(px;) # a(px;) = 0 for {5, i} = {1,2}, and t > —a(px;),

else.
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3.2 COMPUTING FINITE FOURIER COEFFICIENTS

I:fX1|o>< = X2‘0></ then
.

(o tor TG )

if a(puxa), a(pxz) # 0 and t = —a(pux1) — a(pxz),
¢ 'G(wu )

if a(px1) = a(px2) =0, and t = —
—q72¢r(1) G (=L ) (a (@) + xa (@)
cra(p) = if a(ux1) = a(pxz) =0, and t = -1,
056 (=~ e ) u () + (=)

+66(1) oo (@ ra(='b))

if a(ux1) = a(px2) = 0, and t > 0,

else.

Proof. The case 1 # X1, X2 is straight forward. We start by considering x1 = p~!|-|* #
X2 |-|*°. The same calculation will work with the roles of x; and x» interchanged. The
basic identity reads
. L(s|-)

(t+arm) G=), (1) = Gleot i DYe(E, i m 1)
Z q t7l(/’l/) ( ,'LL ) (2’#’ ™ )L(1—5,|'|_C)

t=—0o0
Expanding the quotient of L-factors into a power series and recalling x;(w) = ¢~ ¢ yields

L(S?Hc)

A\l -1 —as
s =" x1(@w He* + ¢r(1 Zm : (3.2.5)

Inserting this in the basic identity enables us to compare coefficients, which concludes
this case.

In the end we consider the situation where both, y1 and 3, are unramified twists of p.
Since the central character is trivial on the uniformiser we have x;(w) = x; (@) = |@|%

for some c € C. The basic identity becomes

S G au() = (16 i)

t=—00

L(1—s,]|
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3.2 COMPUTING FINITE FOURIER COEFFICIENTS

We use (3.2.5) twice to obtain

L(1 —(z’ : :gLEi's_ C\)w) =070 a7 ()7 G (@) + xa (@)’

+Z < e T 0a (@) + xe(@1?) + (e (1 22){1 l>>q_as-
We may compare coefficients to conclude the proof. O

Lemma 3.2.3 ([4], Lemma 2.3). Let 7 = x1 B x2 with n = a(x1) > a(x2) = 0. We have

u(—1)e(L, gty Er(1)g 2 xa(wker) 1)
ifu#wl, 1>0andt =—a(pwy) —1,
e, w7 ) g2 xa (wt20)
ifl=0,andt> —n,
lt) =\ —wr(=1)Cr(1)g (@)
fu=wlandt=—1-1,

w—t—zl)

ifu=wtandt > —I,

0 else.
Note that by isomorphy this covers the case a(x2) > a(x1) = 0 as well.

Proof. From (1.3.7) we infer that
Wi(a(w®)) = x1(@®)q" 2 for a > 0.

First, we consider p # 1 and assume that p is not an unramified twist of Xl_l. Using the

support of the Gaufl sum we write the basic identity in the form

S geram) (39, ()

t=—0o0
(X )y (!9 g (-al) (1-5) G o) j,1y

= (2
— (=)o e )G (1g

X1 (wl_a(l"‘wﬂ) )q(l_a’(u))s_

Comparing coefficients yields the desired constants.
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Next, we consider 1 = w; ! = x; x5 '. Again the basic identity reduces to

S geratm 39, ()

t=—o00

1 L(s,x3") I—a(u) —a(p) . —1y, —(I=n)(1—s)
=e(5 Xl)iL(l_&Xz)Xl(w )G(w™ "™ 1 )g

-1
= ww(—l)CF(l)xl(wl)q”gmq“n)a.

The quotient of L-factors can be evaluated using (3.2.5). One obtains

[e.e]

S gt Ee (0) = —wr(=1)Cr(1)g T B xa(w g

t=—o0
_’_wﬂ Zq l+n w —l)q(—a—nJrl)s‘

With this at hand it is easy to evaluate ¢;;(u).
The last case to consider is ;1 = 1. This is a very degenerated situation which splits
into two sub cases. First, we look at [ > 0. In this situation the basic identity has the

form

o)

S gramG-se, (1)

t=—o00

1
= iy (Zm 0 G >q-1xl<wl—1>q—<l—l><l—8>>

L(1—s,x5
= (5 (@) 10 <L<1 —sG") - cF<1>X2<w>q‘s> m
— Cr(De(3, X7 (g0

2
This nice formula makes comparing coefficients easy.

Second, if [ = 0, the situation is slightly different. Indeed the basic identity reads

o0

—s 1 — 1 — - —a\ ,—as
Z q(H_a(ﬂ))(% )Ct,O(l) = 6(57)(1 I)L(S?X2) = 6(5?)(1 1) ZXl(w )q .

t=—o00

This concludes the proof. O

3.2.4 Summary

We will now summarise our findings focusing on non-zero situations. This is taken from
[5, Appendix A]. For future applications we slightly rescale the coefficients. We set

l+t+a(pm)

cua(p) = e(m Lt w)Cr(L)g™ 2 Aun(pFolm*omm),
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for some d,r € IN which will be defined case by case. In most cases it turns out to be

the degree of the Euler-factor of pm. This new constants satisfy
le(m, 1, t, )] < 5q%t@§>§(\ailt), (3.2.6)

for a; = xi(w) if # = x1 B x2 and «; = 1 otherwise. Note that, since we are dealing
with admissible, unitary representations 7, we have |«o;| = 1 except for x; equals x2 up
to unramified twist.

Supercuspidal representations 7. Recall that in this case A, (p"™*) = dy—0 and 6, =0

for all u. This leads to the table below.

c(m,1,t, ) p=1 € 3\ {1}
1=0 |e(zA)r(1)7! -
I=1 —q72e(3,7) | e, m)e(3, p17)
[>1 0 e(g, pe(g, 1 '7)

Twists of Steinberg. Here we consider 7 = xSt for some ramified character x. We

have

m dm=0 if © 7é X717
)\X;ﬂ'r(p ) =
1

G 20ms0  ifp=x""

Set 6, = 1if u = x~1, and 4, = 0 otherwise. One obtains the following evaluations.

c(m,1,t, ) p=1 p=x"" pe X\ {1,x "}
1=0 |e(3:7)¢r(1)" — -
I=1 | —e(3.7)q7 | e(mgzift<—2 |e(dp'7)e( p)
(b ) if t > -2
1>1 0 e(Bmazift <2 | e(d,u7)e(d, )
—€(3. 1) Cg(i) ift > -2

Irreducible principal series. In this section we treat three cases. First, we look at

7 = x1 B x2 with x1[,x # x2/ex. In this case 6, = 1 if pf,x = X;1|0>< and 0 otherwise.

Furthermore,
dm=0 ifﬂ‘ox #Xi_l‘oxv

Xi(@™)0m>0  if prlox = x; Hox-
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We get the following table.

C(ﬂ-J’tnu) p=1 :u|o>< :X;1|o>< ME:{/\{LX;l}
1=0 |e(5,7)¢r(1)7! - _
l=1 —e(3, g7 | —e(dp m) e mx H(@)a | (L w)e(d, )
ift < —a(ur)—1
e(3p7 1 7)e(5, 1)x; (@)Cr(1) 7
ift > —a(pr)—1
1>1 0 —e(3. 07 ®)e(5. )X (@)g ! | e(§, 7 R)e(5, 1)
ift <—a(pr)—1
e(5u " F)e(g, m)x; (@) Cr (1)
ift > —a(pr)—1

Next we look at m = x1 B x2 where x1|,x = Xalox. In this case 8, = 2if f1[gx = X7 |0~

and 0 otherwise. Furthermore,

dm=0 if pufox #X;l‘oxa

m+1Y_ m+1 . _
Xl(il(wg—zzg};) )5m20 if pfox = X1 1|oX

We produce the following table.
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C(7T>lataM) p=1 M‘ox :X1_1|oX ME%/\{lvxl_l}
1=0 |ed,#)¢p(1)! - _

=1 —e(%,fr)q

ift =-1

—1_,—2 = (pt _
(3 1) (Pt xgtey — () 7)

ift >0

I>1 0 e(3.1)q 2 e(g, n ' 7)e(5, 1)

ift=-1
—-1_ -2 = (pt _
(3. 1) (ot xgtey — () 7)

ift >0

Finally, we need to look at 7 = x1 B x2 with a(x1) > a(x2) = 0. In this case we have

dm=0 if 2 7& w;1>

X2 (@™)0m>0  if p=w;t.

Also, dyr = 1if pp = wy 1 and 0 otherwise. For technical reasons we put ér = l. One has

the following results.

c(m,1,t, 1) p=1 p=w;! pe X\ {Lw!
1=0 e(3,7)¢r(1)7! - _

1>1  |e(gm)xa(w)a”

|~

—wr(=D)x2(@ gt | e(3,n7 7)e(5, 1)
ift <—a(pr)—1
wr(—1)x2 (@)

ift > —a(pr)—1
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3.3 INTEGRAL REPRESENTATIONS FOR WHITTAKER NEW VECTORS

In this section, following [4, Section 3], we use our description of ¢;;(i) to evaluate
Whittaker new vectors on the special matrices g;;,. We will obtain expressions for the
local Whittaker functions featuring several (p-adic) special functions. These functions
are analogues of well known special functions that appear in the archimedean represen-
tation theory of GL; and are interesting in their own right. Probably the most prestiges
function we will encounter is the Kloosterman sum and its twisted generalisation (gen-

eralised Salié sum). A more general function is
K(¢, A, B) = &(x)y(Tr(Az) + BNrg,p(x))dp,
ox

which we associated to a multiplicative character £: E* — S! on some étale algebra E
over I'. Here A€ F'and B € F.

However, the focus of this section is to describe the support of the Whittaker functions
as precisely as possible. This will help us later on to exclude several choices for ¢ and [
for which Wy (g:,.) vanishes.

We consider each type of representation on its own. The case of supercuspidal rep-
resentations has already been considered in [69, Proposition 2.30]. However, in many
cases the sums of e-factors simplify considerably.

The results in this section hold for any non-archimedean field F' and any irreducible,

admissible, unitary representation 7 with central character w, € X,,.

3.3.1 Dihedral supercuspidal representations

Here we will derive an expression of the Whittaker new vector for dihedral supercus-
pidal representations which goes beyond the one given in [69, Proposition 2.30]. The
following results hold for any dihedral representation even if 2 | g. However, in this case
not every supercuspidal representation is dihedral.

If 7 is dihedral supercuspidal, then so is 7. Therefore we find a quadratic extension
E/F and a multiplicative character ¢ such that © = w;. We now use the properties of
dihedral supercuspidal representations, in particular (1.3.6), to calculate the Whittaker

function.
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Lemma 3.3.1 ([4], Lemma 3.1). If 7 is dihedral supercuspidal, then

e(3,7) ifl =0andt = —n,

Vg K(€71, Q77 v ) fo<i< gandt= —n,

’yq_%K@_l,Q%,vw‘Z) ifl="%and —n <t <0,

Wﬂ(gt,l,v) ==
21

YK QT owl) if 2 <i<nandt= -2l

wr(—v VY (—v"tw™l)  ifn<landt= -2,

0 else.

\

Proof. First, we apply [73, Lemma 1.1.1] in the setting of £ and obtain
1 -1
€(5:€ (" oNrg/r))
z n —al\g ~“oNr —
= qz( (¥p)—a(&-(p~toN E/F))/ ( B g 1(l‘)M(NTE/F(fU))i/JE(fU)dME(ﬂf)
Qr¥E)—al& (™ oNrg/p)) g x

Note that, if t = —a(un), we get

n(¥) —a(€ (" oNrpg/p)) = ;i

With this at hand we proceed computing the Whittaker new vector for [ > 0 using

(3.2.4). We obtain

Welgeiw) = > (5, 1 R)G( ()

t=—a(um)

=aat [, €N @M +ow) 3 nlNesp(e)y dgedy

HEX;

||
w\w

vt [ [ QI @Ta) +ow ) 3 pNrey ey dgedy

HEX;

v [N @)(Tr(QT &) + v Nrpp(e))dpa.
DX

If I = 0, the only term in the expansion of Wx(g:.,) is ¢t0(1), which makes this case
easy.
Finally, if [ > n, we have the matrix identity
0 1 1 1+vlwh™m

[ARY :n( v wt+l) (an_l)gt—n+2l,0,v2
w" 0 0 —v2
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3.3 INTEGRAL REPRESENTATIONS FOR WHITTAKER NEW VECTORS

Furthermore, [69, Lemma 2.17, Corollary 2.2y, Proposition 2.28] imply
1

e(z,m)Wx | g = wr(det(g)) Wz (g)-

With this at hand we compute

1 0 1
Ww(gt,l,v) - 6(577T)W7~r gt,lv
w™ 0
(

) ﬁ-) Wi 9t+21—n,0,02 ) :

N | =

= wr (V) (—v @ )e(
The expression claimed above follows by using the [ = 0 case for W. O

Remark 3.3.2. It is clear from the proof that, if there is no y such that —t = a(um) and a(p) =1,

then Wr(gt1,0) = 0. In particular, if no(7) = min,ex(a(pr)), then Wr(ge1,) = 0 for all

t > —no(m). Even more, if m comes from an unramified extension E of F, then Wy (g41.) # 0

forces t to be even. On the other hand, if m comes from a ramified extension E of F, it is a

theorem due to Tunnell, [85, Proposition 3.5], that 7 is twist-minimal if and only if a() is odd.
a(m)

We observe that in this case, if a(r) is even and | = =%, then t = —nq(7) is the largest and

only odd value for ¢ that can appear for non-zero Wy (g11.)-

3.3.2 Tuwists of Steinberg

Throughout this subsection £ will denote the algebra F' x F'. In this case any multiplica-
tive character { on E* factors in & = (x1 o pry) - (x2 o pr,) for two characters x; and
x2 of F*. However, at the moment we will only encounter the special situation where
X1 = x2. In other words, £ factors through the norm map. We will now compute the local
Whittaker functions in terms of K (&, A, B) and other well known exponential sums.

We start of with the simplest case.

Lemma 3.3.3 ([4], Lemma 3.2). For m = St we have

—q ! ift>—landl =0,
Wilgeio) = § ¢t=2p (i +to=1)  if1>land 20 <t,

0 else.
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Proof. By the definition of ¢; (1) we have

Wa(gtiw) = Z ci(p)p(v).
HEX;

We will now insert the expressions given in Lemma 3.2.1. The interesting cases are

obviously ¢t < —I —1 and [ > 1. The values for ¢;;(u) calculated above yield

W(griw) = g Z G(—a", p)pu(v) = S——1-1Cp(1)g ™

pext,
—t—21 —l—t, —1
q Z G(_w v, ,U)
HEX ¢

= ¢ Xy / (=t y)dy
I+w—l-to

_ q7t72lw(_wl+tvfl).
O

We move on to the slightly more complicated situation of 7 = xSt for a non trivial x.

Lemma 3.3.4 ([4], Lemma 3.3). Let m = xSt where x is a character such that a(x) > 0 and
x(w) =1L 1Ifa(x) > 1and | # a(x) = &5, then we have

(3, %) ift=—nandl =0,

q_%CF(l)*ZK(XQ@X, (w%,w%),vw*l) ift = —max(n,2l) and 0 <1 < n,
W(gt,lﬂ)) =

XQ(—U_1)¢(—U_1w_l> lft = 2landl > n,,

0 else.

Finally, if a(x) > 1 and | = a(x) = &5, we are in the transition region and have
1o _ _ .

~Cr(2) (Mg (0 e(5 XY ift > -2,

Wr(H)?K(x®x, (o o), v ift=—2andl =1,

W (gri0) = X(v—l)e(%,X—l)gp(l)—lql—@S(l, —byv h 1) ift=-2andl>1,

g 2Cr(1) 2K (x ® X, (w%,w%),vw_l) if —21 <t< —2even,

0 else.
\

Proof. We start by expanding

Ww(gt,l,v) = Z Ctl (N)N(U)

HEX;
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Using Lemma 3.2.1 we first observe that, if ¢ > —2, the only character y € X; with non-
zero ¢y (p) is p = x L Similarly, if I = 0, the only character to consider is u = 1, which
contributes only if t = —2a(x) = —a(m). We move on to the more interesting cases and
assume [ > 0 and ¢t < —2.
If t = —2, we obtain
_ _ _ 1 4 -
Wr(9-210) = 7 Gl@ o)X )+ Y elGon XD G (@ (o).
HeX],
a(px)=1

Reversing the evaluation of the Gaufs sum given in (1.3.1) reveals

Wrlg-a1o) = ¢r(1)7? Y G(@ ' ux)’Glom! p ) (3:3.1)
peXy,
a(ux)<1
= p(1)7? Z G(w™, ux)?Glow, ut).
HEX]

To exploit cancellation in the jp-average we write the Gaufs sums as an integral. This
leads to
Wi(g-210) = QCF(1)2/( ; X(yiy2) (o' + gow !+ ysow )
oX

> u(yryays ) d ysd* yad 1.
HEX;

We observe

1 £x; if y1y2y3_1 €1+ oo,
> wlyyays ') =

HEX, 0 else.

Using this to simplify the integral we obtain

Wﬂ’ (g—Q,Z,v)

= qCr(1) 728X, Vol(1 + w'o, d*) / X(y1y2)Y (y1 ! + ot + yryavew ) d X yrd o

(0%)?

= (1) gK(x® x, (w1, wil),vwfl).

If ] =1 = a(y), we will leave this expression as it is. However, in the other cases we

write

Wi(g_210) = aCr(1) / )P (nw )G (@™ + yrvw, )y

oX
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instead. Here we have to consider two different cases. First, if [ > 1, the Gaufs sum

vanishes unless | = a(y) (which would also imply a(x) > 1). Thus, if | = a(x), we

obtain
Wa(g s.ap00) = a5 <F<1>-1e<§,x-1> R S T L
o R (i el RO (R e T e T
- x(v_l)e(%,x‘l)CF(l)_lql_#S(l, —byv ™t 1).

In the last step we observed that, if 1 < I = a(x), we have a(x) —1 > @ and thus
Lemma 3.1.3 can be used to find the desired b, € o*.

Second, if [ = 1, the situation is completely different. In this case we have

Wr(g-210) = a'~ 2 ¢r(1) (5, x7")
| e T TS
—v=lpggl-alx)ox
If a(x) > 1, we can rewrite this as follows.

/ )X (o + = O VY (g d g
—v=lpggl-alx)ox

= (=) / i Xy =TT (o = 1 0 (yr o)) 2

vw

)y Cr(1)dy
ly1 — v~

1
=¥(—) / X (1wt — T (gm0 — 1 4 @I gy T ) Xy
0)(
=1

=0.

This implies that, if a(y) > 1 we have

Wr(9-2,1,0) = 0.
Similarly, if ¢ < —2, we get
1 ., _ .
Welgrie) = Y, elgn” X )?G(@™ u " u(v) (3:3-2)
HEX],
t=—2a(px)
= ¢ 2r(1)72 ) G(w?, ) *G(@ o).
HEX]

At this point we expand the Gaufs sums into integrals and use cancellation between the

characters ;1 € X;. This yields

K3 i3 _
Wa(gt10) = ¢ 2¢p(1 / / X(y1y2) Y (Y12 + yoww? + yryovew ) d yr1d* ys

t

= ¢ 2 () 2K (x© x, (@2, 5) v ). (33.3)
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In several cases we can obtain further simplification by writing

Wi (gosn) = g~ 5 Cp(1) 2 / 1) (w8 Gl + yrow, x)d*ys.
UX

l

Let us assume for the moment that —[ # % This implies |y, Lot + v t| = max(q', q*%).

Therefore the Gau8 sum vanishes whenever max(—%,1) # a(x). Thus, if the Whittaker
function is non-zero, we must have a(x) =1 > —% ora(x) = —§ > L.

At last we consider [ = —%. From (3.3.2) we deduce that a(px) = [. Since the support
of the Gaufl sum implies ; € X] we can assume [ > a(x). Whenever | < n we are happy

with the expression given in (3.3.3). On the other hand, if [ > n, we can evaluate the

Gauf$ sum and calculate

e e / n $yax
Welos) =0~ 70 e [ () s
alx) - Lo - -1 —a -1, — —a
=q 2 ¢p(1) 1€(§>X 1)X(U 1)¢(le)/x X(wl o) —y 1y11)¢(y1w (X))dxyl-
=x"1(-vy1)

This reduces to another Gaufs sum which can be evaluated and almost everything can-

cels out. 0

3.3.3 Irreducible Principal Series

In this subsection we will treat the Whittaker functions associated to irreducible princi-
ple series representations. In this case we work with the algebra £ = F' x F. For two
characters y1 and x2 on F'* we write y1 ® x2 for the obvious character on E*.

We start with the most degenerate case. We are talking about © = w, |-|* 8 |-|”*. For
notational simplicity we will sometimes write x1 = w, |-|* and x2 = |-|°. In this case we
exploit that K (w;! ®1,-,-) degenerates to completely explicit expressions in characters

obeying some congruence condition.
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Lemma 3.3.5. Let 7 = wy |-|° B |-|~°. In this situation n = a(7) = a(wx) and we have

Ww(ﬂt,l,v)
X2(Wt+2n)q7t+7n6(%,w;l) ifl=0andt > —n,
g2 x2(w " %)e(}, w5 ) ifO<1<|2)t=—n—1,
and v € b1 + pl,
= wr(—v Dp(—o ot ) o (@A) g" s f[2]<l<nt=-n—]l
and v € bl +pn7t,
we(—v V)™ yo (w2 (—v et ) ifl>n>0andt> -2,
0 else.

Proof. The strategy is, as before, to use Lemma 3.2.3 together with the finite Fourier
expansion, (3.2.1), of Wr. One sees directly that, if [ = 0, there is only one contribution.

The same is true for [ > 0 and ¢ > —I. Therefore we assume [ > 0 and ¢ < —[. We obtain

1 e 1 4 _
Welgie) = Y, D 2xa(@ ™ )e(5, n wrHu(-v)
pex\{wr '},
t+l=—a(pwr)
G111 wr (0 (1) xa (@),
p=wy"

At this point we consider two cases. First, if [ < [ %], then we use [69, Lemma 2.37] to

obtain

where b, is the constant attached to w, via Lemma 3.1.3. From this we deduce*
1 e 1
Welgio) = Cr(Da 2xa(@ " e(G.w:") D nbeo)
HEX]
!

q§X2(w_t_2l)E<%,w;1) ifv e b;l +pl,
= (3-3-4)

0 else.

On the other hand, if [ > [ ], we write the Gaufs sum as integral and take the character

sum inside the integral. This leads to

W (g10) = wr(—v")x2(@ ) ¢p(1) g2 /1+ l wr(2)Y(—zv o) d* .

2 This is basically the argument used in the proof of [69, Proposition 2.39].
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If [ > n, the character is constant in the range of integration. We obtain

Wr(gtin) = WW(_”_l)x2(w_t‘2l)ép(1)_1q_5/ b~z ) d¥ e
1+wlo
= wﬂ(—v_l)xg(w_t_zl)q—é/ b(—av @) de
1+wlo

G PO G VR I G ) / (v o) d

=8t>_21

Finally, for [5] <[ < n we can use Lemma 3.1.3 to compute

Wﬂ(gt,l,v) = wn(—vfl)w(—fleQl)X - 2l /T/} b —v ))dw
The remaining integral can be evaluated using orthogonality of characters. O

Remark 3.3.6. Note that, if x € X, for n even, then the lemma above implies that

1

e(5:x) = x(by ooy ™),

or by, € 0* given by Lemma 3.1.3. It is not hard to see that for n odd one has
X 8 Y

1 b

e(5:x) = VF(gx,n)X(bgl)tb(bxw_")-

One can check that this is consistent with twist stability. Indeed, if p € Xn we have

]. b — n—a — n—a —-n —a
6(571”() = ’YF(?X’n)“ 1(bx + by (H))X 1(bx + by (“))T/’(bxw +byw (“))
1
= 1 (b)e(5, %)

Which is what we expect from [69, Lemma 2.37].

Remark 3.3.7. We can also give a nice integral representation for Wy (g ). Indeed, for 0 <

l < n, one can compute that

t+l1
Welita) = el n(-0 (1) 756G (<% r).

Where
Gi(y,x) = Y (yr)wa(y)d™y
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is an incomplete Gauf$ sum. This is the path taken in [4, Lemma 3.4]. Comparing this to the

results from Lemma 3.3.5 we obtain

Gi(y@", x)

[MIES

A x WX g ifl < | X k= —a(x) and y € —by +p',
=\ r(D)Y(y") if (@W <l k=—a(x)andy e —b, + pa(X)—l,

0 else,

\

for x € X,y € 0 and 0 < I < n. This is an extension of the upper bound given in [4,

Remark 5.9].
Next we will look at another degenerate situation.

Lemma 3.3.8 ([4], Lemma 3.5). Let m = x |-|*B x |-|~* for a non trivial character x. If a(x) >
Land | # a(x) = 5, we have

Y

e(1,7) ift=-—nandl =0,
q—%(F(l)_QK(X oNTg/F, (w%,w%),vw_l) if t = — max(n, 2l)
W(gtiv) = and 0 < [ < n,

(—v Hy(—v o) ift=—2landl>n,

0 else.

Finally, if a(x) > 1 and | = a(x) = &5, we have the degenerate situation

;

q_%G(vw*l, X)( . quCF(l)fl(qs(t—i-Q) + qfs(t+2))
+Cr(1) 72 kg 07 ift >0,
~q 3¢ (1) 7 G vm ™ X) (¢ +a70) ift =—1,
W (gti0) = @Cr(1) 2K (xoNrg/p, (@™, o 1), vw™) ift=—-2andl =1,
X Ve xNer(1) g =3 S (1, —bywL 1) ift =—2and 1> 1,
¢ 2¢r(1) 2K (x o Nrgyp, (w?,w?), v ") if —21 <t < —2 even,
0 else.

\
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Proof. Interesting situations occur only for ¢ < —2. For those cases we have

1

Wrlgrie) = Y elGu X PGlum™ ") +6=2g7'Gvw ™ x)
HEXY,
t=—2a(px)
= ()72 Y Gt ) Glom ™ ).
HEX

We have seen this exact sum already in (3.3.1) and (3.3.2). The rest of the proof is left to
the reader. ]

Finally, we treat the general irreducible principal series.

Lemma 3.3.9 ([4], Lemma 3.6). Let 7 = x1|-|" B x2|-|"" with a(x1) > a(x2) > 0. If
I & {a(x1),a(x2)}, then

(

(

,7)

N[ =

ifl=0andt = —n,
Cr(1)~2q~2¢*@0)=abe2) K¢ (y; ® xa, (w=000) =) yo)

ift=—nand 0 <1< a(x2),
CF(1)_2q_%qs(a(xl)_Z)K(X1 ® X2, (™) =) vewt)
Wi (gise) = ift=—l—a(x1)and a(x2) <l <a(x1),
¢r(1) 242K (x1 @ X2, (@, @), vw ™)

ift=—2land a(x1) <l <n,
wr (= p(—v ™)

ift=-2landl>n,

else.
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Ifl = a(x:) # a(x;) for {i,j} = {1,2}, then

CF(1)_2q_%q5(2a(X1)+t)K(X1 ® X27 (w_a(Xl)’ wa(xl)+t)’ 'Uw_l)
ifl = a(x2) and —n <t < —a(x1),
CF(I)fzq_%QStG(wfa(Xl)yX2_1X1)G(UW7Q(X2), X2)
ifl = a(xz2) and t > —a(x1),
CF(I)—2q—§qs(—t—QZ)K(X1 ® x2, (wH‘t, wfl), Uw*l)
Wﬂ(gt,l,v) =
ifl =a(x1) # a(xz) and =20 <t < —a(x1),

Cr(1)72q7 271G (w00 o )G (v 00), 1)

if=a(x1) and t > —a(xa),

else.

And if 1 = a(x1) = a(x2), then

;

Cr(1) 272 Y0 R K (1 @ X, (@2, w7 2), v )
—1 o s
+5t2_a(xl—1x2)CF(1)_2q_% Gvw ™!, x1)G (w0 x2) T xo)g
+G (v, XQ)G(W_“(X51X1)7 X2_1X1)q8t

if—n<t< -2,
Wﬂ' (gt,l,v) = f T

t+a(x; 'xj)+

Y-y X @ e T (5 xa)e(3, x5 )
ift > -2,
0
else.
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Proof. Let us consider the interesting situation [ > 0. For ¢ > —2 the only contribution
comes from the characters u € {x;', x5 '} which is easily written down. We thus assume

t < —2. Applying the usual tricks we end up with

ol

S TR G )Gl 2, ixe) G o )
t=—I1—la, HneX;
11,12>0

t -1 _ s
+ 5tzfa(xflxz)gF(l)_Qq_5 {G(Uw_ly Xl)G(w_a(X1 X2)7X1 X2)g

Wi (gei0) =Cr(1)2q~

-1
+Glow ™ x2) Gla 0 X o) | (33:5)
As earlier we can compress the p-sum to K(x1 ® xa, (w1, @™2),vew™"). This gives

Wa(geo) =Cr(1) 272 Y. ¢ DK (i @ xe, (@, @ '2), v ™)

t=—l1—l2,
l1,12>0

-1
0 oyt (1) 02 [G(W_la X1)G (w0 xe) o) gt
+Gvm ! x2)Glw 0 ) o)t (3.3.6)

We will treat different ranges of / case by case.

First, consider 0 < I < a(x2). In this case the J-term does not contribute. Furthermore,
we are only in a non-zero situation if ¢ = —n. This is because only /; = a(x1) and
lo = a(x2) contribute to the sum.

Next, we look at I > a(x1). This case is quite similar. Indeed, the only contribution
comes from Iy = ly = [, so that t = —2I. The §-term can’t appear. If we further assume

[ > n, then it reduces to a normal Gaufs sum involving x» and we obtain

g alxy) 1 _ _
Wi(g-a110) = Cr(1)1g 2" (5 X1 1)/ xe()xi (1 +vy)v(yw )dy
—v—lig—alx1)+gx

= wr(—v H(—v tw ™).

Let us investigate a(x2) < ! < a(x1). Again no d-term occurs and the only non-zero
situation is t = — — a(x1) with l1 = a(x1) and Iy = I.
If | = a(x2) < a(x1), we observe that for t > —a(x) only the J-term contributes and

we obtain

t —1
Wﬁ(gtﬂ(m)’v) — CF(l)—Qq—gqstG(w—a(Xz Xl)aX2_1X1)G(U?D_G(X2)7X2)'

On the other hand, for —n < ¢t < —a(x1), no é-term occurs and we have l; = a(x1) and

lQ = —t— CL(Xl).
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Similarly, when | = a(x1) > a(x2), only the §-term contributes to ¢ > —a(x1). This

gives
Wi (9-atxn) atu)w) = CF(1) 720721 G (w200 X2 T 1y0) G oo yy).

Therefore the interesting case is —2] < ¢t < —a(x1). This forces ls =l and l; = —t — .
Finally, we are left with the critical situation | = a(x1) = a(x2). Without loss of

generality we assume ¢ > —n = —2[. We can rewrite (3.3.6) as
t+l !
g _ttl i - -
Walgeaw) =Cr(1) 7272 Y ¢*T2K (g @ xa, (@2, w72), 0w ™)
la=1

t -1
+ 516241(%{1)(2)CF(1)72qiE {G(UWI7X1)G(Wa(X1 ) i xa)g
+ Gom ™, x2) G0 1) o lx)g .
O

Remark 3.3.10. If a(x1) = a(x2) =, one can see that Lemma 3.3.9 fails to provide a simple
integral representation of Wr(g¢,). Instead we end up having a sum of several integrals. We
will see later, by investigating the K-integrals for different lo, that all but one or maximally two
terms in the sum are zero. However, we can also sketch a simpler argument here. We consider
two cases.

First, let t > —2a(X1X2_1). Suppose there is p such that —t = Iy + ly with Iy = a(ux1) and

lo = a(uxz2). These are exactly the values of 1y and ly we need to consider. Suppose 1y # la, then

a(xixz ") = a((px1) - (px2) ") = max(ly, bo).

But this implies —t < 2a(x1x5 "), which is a contradiction. Thus, for t > —2a(x1x5 "), the only
possible configuration is ly = ly = —L.

Second, let t < —2a(X1X2_1). Suppose that 1y = la. Then a(XlXQ_I) < ly. But this implies
—t = 2l > —a(x1xy "), which is a contradiction. We conclude that 1y # ly. Using the same
trick as above implies that max(ly,lz) = a(x1x5 ). This leaves us with exactly two possible
configurations, namely 1, = a(X1X2_1) and ly = —a(Xlxz_l) —torly = a(Xlxgl) and |; =

—a(XlX;I) —t.
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3.3.4 Summary

For convenience we will summarise the results of this section in a condensed form. We
start by recalling the generalised Atkin-Lehner relation. Indeed, for every 7 one has3

1 _
Ww(gt,l,v) = 6(57 F)wﬁ(v)w(_v 1wt+l)W7~r(gt+2lfn,nfl,fv)

for0 <[ <n.

We state our expressions for the Whittaker new vector focusing only on the non-zero
configurations. Thus, every quadruple (7,¢,1,v) not mentioned in the following implies
Wa(9t10) = 0.

First, we look at some general formulae that are valid for every 7. With

L(s,m) = Z )‘Tr(pt>q_8t

keZ

we have#

and

_t+2l

Wr(9ti0) = wr(—v)Y(—v g 2 AR (ptTR)

for [ > n. We now treat the remaining cases of I. The best description of W is available
for twist-minimal non-supercuspidal representations. The case m = St is covered by the

formulae given above. For 7 = w, |-|* B |-|”* we have

Wﬂ(gt,l,v) ! t v

e(1,#)qz " 0<1< (2] | —n—1| vebz!+p

wi (=) p(—v lm )¢ o) (21 <l<n|-n—1|vebl4+p!

Also twist-minimal supercuspidal representation have very nice properties, in partic-
ular concerning their support. However, at this point it seems more practical to treat

them with the remaining cases. Here we distinguish two main cases. If [ # %, we have

_t _
Wﬁ(gfmax(n,Ql),l,v) = Cﬂ'q 2K(§7A7T,lvvw l)'

We record the values of Cy, £ and A in the following table.

This is a combination of [69, Lemma 2.18, Corollary 2.26 and Proposition 2.28].
These can also be proven directly using Atkin-Lehner relations and the well known values of Wi on the

diagonal. This is because the upper triangular matrices making up the small Bruhat cell can be written as

Ngun,«Ki(n).
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™ Cﬂ 6 A7r,l

_ max(n,2l)

Supercuspidal & B = Cx 0

such that 7 = We—1

max(n, max(n,2l)
XSt x®x: FxF—C* Cr(1)2 (- ) mexgna )
X1|'|SBE‘X2|'|_S X1 ®X2: FXF—)CX CF(1)72 (w*m&X(al,l)7wfmax(a%l))

_qs max(a(x1),l)

.qfs max(a(x2),l)

With the slight addition,

gF(1)—2q7%+8(2a(x1)+t)K(X1 ® X2, (w—a()ﬁ)’ wa(X1)+t)7 Uw_l)

if —n<t<—alx),

Wﬂ(gt,a(xg),v) =
N _ttn
6(%,7Tmin)€(%,xz 1)x2 1(v)q 2 Aﬁn)in(pt+a(X1))
k if —a(x1) <t
and
Cr(1)2q 2K (xy @ o, (@00, mab0)) v )
if —2a(x1)<t<—a(x1),
Wﬂ(gt,a(Xl)ﬂ}) - 2a(x1)
~ 1 _tH2a(xy) a
(b Fmin)e(3 T N (0))g A (p1F200)

if —a(x1) <t

if = x1]|"Bxz|-|"® for a(x1) > a(x2) > 0, we cover everything outside the transition
range.

If | = 5, we are in the transition region and the results are slightly more complicated.
We define mmin = x7 for x such that no(7) = ming a(ém) = a(xn). Note that this is
not uniquely determined. For principal series representations we require myi, = |-|° B
Xfl x2 || "% If we are assuming that w,,, (@) = 1, the only other choice is Tin. In the
case of supercuspidal = we will only need the invariant ng(7) = a(mmin) which is well

defined. With this at hand the results of this section are reflected in the following table.
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3
=
2
2
.
SN—

n t
3

t € [—n,—no(m)]

t
and7€Z

t € [-n,—ng(m))
K(xoNrg,p, (w2, w?), v ™)

and ¢ even
S (L ()T t > —no(r)
Ao (pHF0()
XS B[ Cr(1) 72 te[-n,—2|
~K(XoNrE/F,(w%,w%),vw_l) and t even
(5 x () 2 E A, () t=-1
(3 x XM w)g i t>0
(At (P") = €7 A (P) A (P7F1))
xilPBxe 7% ¢r(1)~2g5s(e0a)=3) t=—%—a(x1)
a(x1) > a(xz) >0 K(x1® x2, (@01 07 3) v )
xi "B xa |7, R £ > —no(m)
a(x1) = alx2) | -|€(: Fmin)€(5, X7 IXT (V) Am (P00

Tmin

+6<%aWmin)€<%aX;1)X51<U)A~ (pt+n0(7r)>:|

C(1)-2g~ 4 [ goti+2no(m) —no(m) >,

K(x1 ® xa, (w—no(ﬂ)7 wt—&-no(ﬂ))’ vw—l) t > —2ng(r)
+q—s(t+2n0(ﬂ'))

K(Xl ® X27 (wH‘no (ﬂ-) ) w*no (ﬂ-))a ,le):|

C(1)72q_%K(X1 ® X2, (w%,w%), v )

—n <t < —2np(m)

Note that in the case a(x1) = a(x2) we also implemented the results from Lemma 3.4.15
below.
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3.4 THE SIZE OF WHITTAKER NEW VECTORS

In this section we estimate the size of Whittaker new vectors, extending [4, Section 5]. To
do so we will built on the integral representations for W (g;;,) derived in the previous
section. This reduces the problem to estimate K (&, A, B) in several situations. Due to the
generality of this sum there are many cases which seem quite different in nature and
the estimation turns out to be Sisyphus work. This upcoming case study relies heavily
on repeated use of the method of stationary phase as described earlier. Throughout this

section we assume that F' has odd residual characteristic.

3.4.1 Dihedral supercuspidal representations

There are two slightly different types of dihedral supercuspidal representations. We start

with representations associated to unramified quadratic extensions of £/ F.

Lemma 3.4.1 ([4], Lemma 5.1). Let 7 be a dihedral supercuspidal representation associated to
an unramified quadratic extension E = F(\/C) of F and a character £&: E* — S1. Then we

have

n

Wr(g9) <F q12.

If kp = 1 and n > 6, the implicit constant is less than 2.
Even more, for n > 2, we define k = max(n, 2l), and write be = by + /Cba. We obtain the

following more detailed results. If 0 < | < %, we have
We(9-ni) = 17P(CNrm /i (1), 5)€ (20 + /Cha)ib (a1 + br)e ),
where xo € 0™ is the unique solution to
v e 4z — (b + (b T = 0. (3.4.1)
Ifl =% Nrg/r(b) & 0** and A = 1+ 4v?b3¢ + 4vby € 0, we have

v 1P (((Nrgyp(b) = Nrp p(ze)*0?), 2)E (s 4+ Vb)Y (24 + b1)w ™ 2)

Wﬂ—(’gfrh%’v) = y(A c 02><7

0 else
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where x4 € 0* are the unique solutions to (3.4.1). If Nrg,p(b) € 02, degenerate critical points
are possible and we end up with |Wr(g_pn ,)| < 2max(q%,qfn2). For t > —n we have the

upper bounds

qg * ift < —ng(m),
Wﬂ<gt7%,’l}) <
n ng(m)
qf#—i_ (i2 th = —no(ﬂ')

Finally, if <1 < n, we have
Woaiie = (=1)'9€ (20 + V/Chaw' ™2 ) (wom ™ + b 2),
where xo € 0* is the unique solution to (3.4.1).

Proof. We start by recalling some facts concerning the extension E/F. Since it is un-
ramified we have e = 1, f = 2, and d = 0. In particular, n = 2a(§), a(yg) = 0, and
Vol(9,dg) = 1. Furthermore, because the extension is unramified, we have ¢ € 0\ 02*.
Note that O = 0@ 0/¢ and O* = (0* ® 01/() U (0 ® 0™/(). We choose uniformisers
such that Q) = @. For z = a + by/C we compute

Nrg/pr(l1+2z) = (1+a—|—b\ﬁ)(1 +a—b\/g) =14 Tr(x) + Nrg,/r(z). (3-4.2)

We put k£ = max(2l,n). According to Lemma 3.3.1 we need to consider t = —kif [ # %

and 0 >t > —kif [ = 4, since otherwise W (g..;.,) vanishes. In these cases we have

ol

Wa(9t10) =79 /X §*1(a?)z/;(w%Tr(x) + w*lerE/F(x))dEac. (3-4-3)

We write % = 2r + p for some r € Ny and p € {0, 1}. First, we note that if » = 0, then

we must have p = 1 and thus a(§) = = —% = 1. By [69, Corollary 2.35] we have

Wﬂ'(!]t,l,v) < V 2p-
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From now on we assume r > 1. In this case we can calculate

Welgiie) =707 | €7 (@) (25 Te(x) + = 'oNrpyp(2) ) dia

=Y @) (2 ()
ze(O/Pr)*
-1

v
./Dg_l (14—%0’") VE (Q”éy—k 5 NrE/F(:U+yQT)> dry

=g 22 Z ez (w%Tr(x) + Uw_lNrE/p(:c)>
z€(O/Pr)*

/ ¢E< (_bgﬂg_a(ﬁ) + $Q§+% + UNrE/F(LIT)Qg_l) yQ—r—p
O
k k
02! bz —é) -
" ( Nrg/p(ey) + 55— | = ”) dpy.

Next we will transform the remaining integral in a 2-dimensional Gaufl sum. To do so

we recall that O = 0 & 04/C and view the integral as an two dimensional integral over o.

The quadratic term is

5 5-al)
b
Tr <vw2 Nrg,r(zy) + EZv2y2> =1ty (erE/F(m)wg_lAl + wg_“(g)fb)y

2 2
for
1 0 b b
A = Ay = 1 Cbo 7
0 —¢ Cby  Cby

and y € o2 This can be checked by a simple calculation. In particular det(Ay) =
(Nrg,p(b). Since b € O*, we have R(b) € 0* or J(b) € 0%, thus at least one entry
of vA; + Ay is a unit.

Similarly we can write the linear term as

Tr ((—bgwgw(&) trwmete 4 WNrg,/p(z)w

[N
|
~
<
N———
|
[\
o~
o
<

for

B =
In this notation we obtain

Wa(geaw) =70 272 Y € H@)o(@2Te(z) + vw 'Nrg,p(z))
rESX

-G (w_p (erE/F(x)wg_lAl + wg_a(g)Ag) , 2w_r_pB) . (3.4-4)
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Here we restricted the sum to
x T\ X k_a(e) kgt k_g .
ze s ={ze(©/5p)": — 1080 4205 1+ oNrp/p(2)0F T g}

since otherwise the Gau8 sum vanishes due to Lemma 3.1.2. Writing = = 21 + 22/ we

reformulate the congruences defining S* to

—biwt O 4 i E 4 (ad — B ey,
T

S

N+

—bgw%_“({f) + x2w§+

for 1 or 2 in 0*.
We will compute the set S* in several cases and deduce the size of Wy (gs,) using

(3-4-4)-
Case I: 0 < I < 3. In this situation we have ¢ = —k = —n and the structure of S* is

very simple. Indeed, we have
To € by +p".
This leads to the quadratic congruence

vwgflx% + a1 — (b1 + (vbgwgfl) ep’.

In the notation of Lemma 3.1.4 this puts us in the situation where v(b) = 0 and v(a)

% — 1 > 0. Thus there is one solution. Even more, if by & 0%, then x5 is not. This forces

by € 0* and the unique solution satisfies zy = z1 + 221/ € O*. We obtain
Wi (gea) = 707 (20) 00 (w2 Te(20) + veo 'Nrg p(20))G(w P Ay, 20" P B).

Furthermore, since det(As) = (Nrg,r(b) € 0 and A has entries in 0, we use Lemma 3.1.2

to see that
Wa(9ta.0) = 7P ((NtE/1(b), g)f_l(l‘l +/Cba) (21 + by)w ™ 2),

where z; € o is the only solution of

vt la? 4 x — (b1 + vg‘b%w%*l) = 0.

Case II: [ = 5. In this case £ = n = 2l and —n <t < 0. We call x5 admissible if it

satisfies
EJ,_L r
Tow?2 2 Eby+p.
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In order to determine the structure of S* we have to solve the quadratic congruence
vad + a1t — (by + vCad) € pT,

for each admissible x. To simplify notation we write a = & + £ and b = v(bs).

Case IL.1: t = —n. In this situation we have exactly one admissible x2 given by
To = b2 co/ pT.

Abusing notation we will identify x5 with the fixed representative by € 0. The quadratic
equation for z; has discriminant A = A(v) = 1 + 4v?b3¢ + 4vby. If A € 0%, we have up
to two possibilities for x;, so that §5* < 2. We now turn towards the matrix vA; + As.

We can compute
det(vNrg,p(2) A1 + A2) = (Nrg,p(be) — (Nrg/p(z)?0?.

Note that for certain compositions of v, by, and by the case det(vNrg,p(x)A; + A2) € p
can not be excluded. However, if Nrg,r(b) is not a square, then the determinant in
question is always a unit. Thus, if A € 02%, we use Lemma 3.1.2 and obtain the desired
evaluation. On the other hand, if Nrg,r(b) € 02> we can not exclude situations where
A € o* and the determinant degenerates. In these cases we estimate trivially to get a
bound of 2,/g.

Unfortunately, viewing A as an quadratic equation in v it turns out that, if Nrg, ¢ () €
0%, there are possibilities for v such that A € p. If this happens, we use Lemma 3.1.4 to

parametrise the set S* and define
1 Y
Ay =——+0b + —w .
+ 90 T 2v/¢ @ € O
Inserting the so obtained parametrisation in (3.4.4) yields

Wrlgtiw) = ¢ yet(w2Tr(AL) + oNrg, p(As)w™)

+
. Z AL + 2O Y(1 £ Y @) aw P70 + vzl P~ 2)
260/}35

G <w_p (erE e(2) A1 + A2> , 2w_’”_pr) . (3.4.5)

Here we make the convention that v = 3 if § > r and 7. =  otherwise.
Note that

1
T9 = by and z7 € —— +p.
2v
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Further, we have
1
by +Nrg/p(z)v € —20¢b3 +p and by — Nrg,p(2)v € —5, TPC 0.
In particular, b; — Nrg,p(z)v is a unit and det(vNrg,p(z)A; + Az) € p. We obtain

—Cbo 1 —Cba _
Ap _ | b1—-Nrg/p(z)v 1 0 b1—Nrg,p(z)v 1

-1 0 0 O 1 0
The Gaufs sum can be evaluated using Lemma 3.1.2. Recall, that the degeneracy of the

Gaufs sum imposes a stronger congruence condition on z;. Indeed we find

1 Y
7= —— 4+ —w’ + aw”p_‘s, fora € o/p‘s_”.
20 2o

Since E/F is an unramified we have kg = k. Therefore we can make use of the p-adic

logarithm over E without convergence issues and apply Lemma 3.1.3 to write

Wﬂ' (gt,l,v)

SIS

Y(Ap) Y 7€ (ALY (@ Tr(AL) + oNrpy p(Ar)w ™)
+

: /d) <(1 + Y@ )rw "0 + valwl ™
0

b
—Tr <025+p logp <1 + XQT+”_5>> >dx.
+

Next we open the Taylor expansion of the logarithm and obtain

I = /zp(alavw’”‘S + agx?w? ™% + azadw T30 du,
[
for

5 be

ap = 1xYx’-Tr|{—) =0,
Ay
1 b
a = v+ iTr <A§t) and
1 be

az = —gTr <14:jt> .

Our remaining task is to find further cancellation in /. Furthermore we can check that
as € Ao.

In particular, A = 0 implies a; = as = 0. We further compute

4b2 — (b2
as € 1 Cb2
12U2NI'E/F(Ai)

3+p7
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which implies that a3 € 0*. Thus, in the worst case scenario, we obtain I < q§+§p*5.
We conclude

‘Ww(gfn,%,v) <F QQ%'

Case IL2: £ +a(§) < r and ¢ > —ng(w). This and the following cases are slightly
(computationally) involved. For brevity we only treat the case p = 0. As can be seen
from the previous case the general situation is very similar but introduces some more
details to keep track of. These appear to be purely technical and do not effect the end
result.

Under the current assumptions we have 0 < a < b. Further, we may assume that
5 > kK, since otherwise bounding trivially produces the desired answer.

In our cases all admissible z are given by
o =bew *+aw" ®for a € o/p”.

The discriminant governing the possible solutions for z; is

b+r—2a 2r72a)

A(z2) =no(1+maw + ma’w

)

for

no = 4vby + @ + 4v*Cbsw >, nom = 8v*((b2)o, and non2 = 4v°C.

We see that 1y, n1,7m2 € 0*. Furthermore, in order to have solutions for x; we need to
assume that vb; € 02, since this implies 79 € 02%. We will do so and write 79 = \2. We

find
v n Y

LT Ty Ty

where Y? = A. Upon noting that z; is well defined modulo p” we can expand
Y =Y(a) = Af(a),

where

f(2) = V1 + mawbr—20 4 pya2e2—2a,

Inserting this into (3.4.4) yields

—a w2a —2r
Walgrg0) =70 0 (b= 5 )@

- Y @) + VCas(a)y <iy(0‘>w;>,

+,a€0/p®
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To continue we write a = 2s + J. Let us consider the following expansion:

Y(y+=® min(r—a,b—a)+r—a+s r—2a+2s
1 YLD () 4 i (g)mntr—oboh s g ) =202
=+ bg(y)/83wb+3r74a+33 +...,
for
Y
bo(y) = =+ 2(3)
(b2>0wmax(0,b—r) +ywmax(0,r—b)
b = v and
40%(by + vw?®
bZ(y) = =* Y(y)3

Note that Y (y + @*f )w% can be truncated after the quadratic term. Furthermore,

21(y + Bw®) + /Caa(y + Bw®) = Coly) + Ci(y) B’ + Cy(y) B2 20128

+03 (y)ﬁ3wb+3'r‘f4a+3s +...,

with coefficients

Coy) = bo(y) — % + \/E((bg)owb_a +ym ") €0* + \/Ep,
Ci(y) = V¢ +bi(y)m™mb=or=al e p 4 \/C,
Ca(y) = b2(y), and Cs(y) = b3(y).

Expanding the logarithm yields

—a _Cl(y) —r—a+s Cl(y)2 CQ(y) 2 __—2a+2s
w (S)IOgE('“)_CO(y)ﬁw + +<—200(y)2+00(y)>ﬁw +

Ci(y)®  Ci(y)Caly) 03(?/)waa 3. r—3a+3s | .
+(Co(y)3 Gow? T Coly) >5 e

After putting things together we obtain

Wi (g1, ) =700 <(b1 - 2?) w‘”) Y. NGy (bo(y)w%)

+,y€o/ps

. b1(Y) min(er) Cl(y)> r—adts
/w(( 2 "o ) T

(5501(9)2 _ beCa(y) + ba(y) a> 32 —2a+2s

w

2Co(y)?  Coly) 2
. Cl (y)3 . Cl (y>02(y) 03(3/) waa o 3at3s
b <3Co(y>3 Co(y)? - Co(y) > Blar “>d5‘
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Before dealing with the important terms we compute that

b1 @ Y (y)w"

N C
1e/r(Co(y)) = -+ 55 F 53
The linear term turns out to be jf\é;g(l;)ywr. Furthermore, one checks that the quadratic

term is contained in @w®0*. Combining these two facts leaves us with up to one choice

for y modulo p® and a quadratic Gaufs sum. We obtain the desired bound

n+t

Wilgiie) <2¢72 =2¢" 1.

Case IL3: t = 2v(by) —n and % < —r — p. As before we assume p = 0 for technical

convenience. All admissible z; are given by
xo = (ba)o+aw ™% «a€a/ph
We assume that
A = A(z9) = @ 4 4vby + 4% (2l = V0¥ 4 p"

and deal with the case Y = 0 later. Note that, if § = 0, the analysis is analogous to the

previous case and we will omit it here. With this at hand,

a Y 4
T =t f", feo/p
2v 2

We define

wa
cx(12) = —Tii—i—\/ﬂfz
v
and get

2a—1 a+d6—1
G @ Yw
W (gei0) = 74 > E €7 (ex(22)) (b )
=(b2)o+aw" ",

aco/p
Y et (ﬁm) (=" + Vo) BT + B2 ),
Beo/p?

Expanding the p-adic logarithm and straight forward computations reveal that the /-
sum reads
2
3 ¢<_ oo 5o
seaTi Nrg/p(ce(z2))
<Y61 Y w?e
_|._

v 202

s P IB2wa—6
—2¢(b2)oa(Ywo"°+ "~ + a)) QUNrE/F(Ci(xQ))Q +. >
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We have to consider two cases. First, suppose § < a. In this case we are dealing with a
linear sum, which vanishes whenever « ¢ p5. The result is,

2a—1 a+0—l1
e . w Yw
Wi (gt10) = 74 > Zf (cx(x2)) <b1w T o T )
(b2)0+aw5+7‘ a
aco/pr—?

This can be handled exactly as in the previous case. Note that, if v(A) > r and [§] < a,
the analysis is analogous.

Second, if § > a, the B-sum is a quadratic Gaufs sum, which is non-zero only when
a € p®. Thus the a-sum collapses completely. However, in this case we have to consider
the cubic term in the S-sum. We will show the computation for the worst case scenario

v(A) > r. Indeed, if this is the case, we compute

Z ”¢< <_ 8v2( (ba) o —I—Awa_”wa> s

Pyt Nrg,p(ct(z2))4v?
€7 <1 ) 2 _2a—25  bitp 3 o 35+r>
+ S 1) 8w TR .
TN, pea(@))? \o )P " eyt

We obtain the upper bound

Case IL.4: § > —r — p. In particular, v(b2) > r and the congruence condition degener-

ates to
b
NI‘E/F(ZL‘) S ;1 +p7".
From (3.4.4) it follows that we have to evaluate
_t_p _ t _
Wr(9t,2.0) = vyr(b1, p)a “2r-3-4 Z e a)p <w2Tr(:U) +vw lNrE/F(x)>.

TE(D/PT)™,
NI‘E/F(I)E%"FPT

We make the Ansatz

o =y+w"p.

If y is chosen such that (y? + %1 € 02%, then

bl _ Cy K Cbl K
= +4/(a3 T = xf(22) = £f(y) = mﬁw + 2Uf(y)3/82w2

(?byy
T ufy)

63 3,‘{:‘:.__
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Summing over 3 results in the sum

> ¢<2C <¢(b2)owb7“ + y) Ba+s

BEa/pr—r f(y)
by +<2v<b2>oywb-a> 2wt >
+ ( o (y)? B w +... ).

Here we assume that x > sp. Thus, after choosing x = L—%j, we see that there is one

such y modulo p”. Therefore the situation under consideration contributes < g 2¢73.
We still have to account for those x2 which force z1 € p. This can only happen if

—% € 02%. If this is the case, we exchange the roles of z; and x». Indeed, we put

/ 2
r1 = wy +aw” and f(z) = —22—1—2,

wy

Cf(wy)

so that

K by 2 2k 4 by B+ ...

T2 (@) T T 0 f (my)

o = +f(wy) + aw

The a-sum reads

Y(byow 2yw1+%)§71(wy +/Cf(wy)) Z 1/}(2 [1 F f((b;);) wb“} awts
ago/pr—r

(b2)owy 2,_b—a+2k+1% >
2 f () )

We see that this can not contribute unless a = b. We further observe that for the latter

sum to be non-zero we need

However, this contradicts (y? + %1 € 0?* for y € (b2)o + p. We conclude that, depending
on v and b¢, we either have contributions from z; € p or x; € o* but never from
both cases simultaneously. To conclude this case we examine the worst case situation

%1 + (b2)3¢ = 0. Choosing k = |—%| produces a linear a-sum and we arrive at

Wi (ge0) = vr (b1, p)1o(biw')g 127"

> e N (wy £ V< (@y)v(2ym't2).
+; y€o/pr—l,
F(@y)F(b2)oep! 1]
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—41 ~41
Writing y = zw! 2 | for z € o/p" '~ ["2" 1 and computing the Taylor expansion of f

at 0 produces the bound

Walgei) = 77 (b1, p)(brw)E (VE(ba)o)a 4757171

t
/7/’ <3< ba) 24H+3+5+-“>df'3 < ¢ T
2

This completes our treatment of the transition region.

Case III: 5 < I. Here we have k = 2] = —t. Observe that
Ty € byot &) p”
is no unit. This leads to the condition
vr? + 21 + (b8 — b3 ) e p’, for 1 € (o/p")*.

In particular, we use Lemma 3.1.4 with v(a) = v(b) = v(A) = 0 and find that 5> <
2. Even more, since z; is only admissible if it is a unit, we find that S* = {z¢ +

\/ZbQWZ_“(X)} where xy € 0 is the unique solution to
02?2 + 2+ (') — o) = 0.

The S*-sum in (3.4.4) has only one term and we get

t

Wr(g-2100) = (=1) e (o 4+ /Corw' ™2 ) (zow ™2 — b 2).
This was the last case to consider and the proof is complete. 0

Remark 3.4.2. Note that if n = 2,1 = 1and t = —2 we have

Wr(gtiw) =g Z E 1 (z)r 2 (z + 29 + 52911).

xGFX
q?

This is a sum over a finite field. However, due to the large exponent, Weil’s bound (3.1.2) only

gives the estimate

|W7r(gt,l,v)| <qg+1.

This is worse than the local bound in this case.

Remark 3.4.3. Let us make some remarks concerning twist-minimal supercuspidal representa-

tions. For simplicity let us assume that kp = 1. There is be € O such that

£(0) = e (gt lose() ) (5.46)
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for all x € 1+ P. Furthermore, we can write be = by + ba+/C as above. We make some observa-
tions.
First, since Tr o logy = logr oNrg,p and & does not factor through the norm, we have by ¢

i’

Second, let x = &- (o Nrg ) and let by, be € O* and b, € 0™ be the numbers attached via

the logarithm. We have

by

o 08e(@) = x(2) =§($)M(NrE/F(x))

Ve (Qa()logE( )WF( 1OgF(N”E/F( )

— oo ([t + o] 1ogE<x>>

for all suitable x. Suppose that a(ur) < a(w), in other words  is not twist-minimal, then we

vi(

must have a(p) = a(§) = @ > @ = a(x). In particular,

9% 5000798 (b +b,) =b, mod PV
———
b1+bu+b2v/C
Because by, is in F' this implies (b1 +b,,) € p and by € p.
We conclude that, for a(w) > 2, 7 is twist-minimal if and only if by € o*. Furthermore,
no(m) = n—2v(ba). If a(m) = 2, the representation is automatically twist-minimal.
Concerning the degeneration of Whittaker new vectors we can say the following. If w is
twist-minimal, we might encounter degenerate critical points leading to large values of Wi.
However, W features nice support properties. More precisely, we can always assume t =
—max(n, 2l) since otherwise the new vector vanishes. Further, we can always find a twist p
such that Nrg,p(by) € 0> which ensures that there are no degenerate critical points and we
get the expected size. If 7 is not twist-minimal, the support degenerates and degenerate critical

points appear for t = —n and t = —ng(7).
We turn to supercuspidal representations associated to ramified extensions of F'.

Lemma 3.4.4 ([4], Lemma 5.2). Let 7 be a dihedral supercuspidal representation associated to

a ramified quadratic extension E/F and a multiplicative character . Then we have
W7r (g) <F ql% .

If kp = 1, the implicit constant is bounded by 2.
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34 THE SIZE OF WHITTAKER NEW VECTORS
Furthermore, if 0 < 1 < 5, we have

Wﬂ(g—n,l,v)
YyE(2be, 1)E (o + Qbo)h(zow™ 2 +biew™2)  if nis even and 21 > [2],

=Yy +Q$0)1/)((930+b2)wn771) if nis odd and 21 > [5],

e(3, )y (v Nrpg,p(be)) if2l < 51,
where xg € o is the unique solution to

n__ n__ . .
Vo 2 Zx%+x1—b1+vb§w2 Hl—y if n is even,

ntl n=1_ . .
—vw 2 gt 4 ay —bytobiw 2 =0 if n is odd.

In the transition region | = 5 we have the bound

ntt _t

\Ww(gt,z,vﬂ K 2q 1 12,

Even more, if t # —n, —ng (), we have the stronger bound |W(g.1.,)| < 2q’nT+z.
Finally, if <1 < n, then we have
Wr(g-a110) = 772 (20, ) (20 + QS (0% ™)) ¢ (20 + R(bQ* ")) w ™),
where xy € 0™ is the unique solution to

vat + 21 — v (b QP )2 — R(bOQ? ") = 0.

Proof. Since E/F is a ramified extension we have f =1, e = 2 and d = 1. In particular,

n(¢g) = —1 and the additive measure on E is normalised so that

N

Vol(D, up) = q 2.

Without loss of generality we assume that £ = F(y/w) and choose 3 = /w. The

identity (3.4.2) still holds.
The log-conductor of 7 is given by n = a(7) = a(§) + 1. We observe that
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3.4 THE SIZE OF WHITTAKER NEW VECTORS

Thus we can assume [ > 0 and define £ = max(a(§), 2l — 1) = 2r + p. Using Lemma 3.3.1

and Lemma 3.1.3 we compute

i _ _
Wi (ge10) =v¢ 2K (€71, Qv

=g 2" Z (@) (Tr(2Q) + v 'Nrg,p(x))
x€(O/Pr)*

. / b5 (’UNI'E;F (.It) QF—2+1-p-1 + %tZQkfa(x)fpfl (347)
O

+ (—ngk_a(f) + 2QFF I L N /F(x)Qk_Ql“) tQ_”_p_1> dpt.

We need to estimate this for t > —k if [ = § and for t = —k — 1 otherwise. In all these
cases the remaining integral reduces to a quadratic Gauff sum over E. Thus we can

restrict the z-sum to
S ={xec(D/P): —bQF " 4 2QFT L N1, p(2)QF 2 € pr.

Case I: 0 < [ < 5. Due to the support properties of W, we can assume that t = —n =

—a(§) — 1. Obviously k = a(§). The set S is determined by the congruence
—bg + o+ vNrg/p(2)Q 2 € P

If n — 2l > r, there is exactly one solution. Namely = b modulo ‘B". Otherwise we

write z = 1 + x2Q). If n is even, this leads to the two congruences

—b1 +z1 + ’UNI‘E/F(SU)W%_Z S p[%L

—by+ 19 € pL%J.

Using Lemma 3.1.4 we observe that there is a unique solution (z1,22) € 0/ p[a X o0/ pLgJ.

Furthermore, one quickly checks that x; is a unit. If n is odd, we have to solve

—by+a; € plal

717l

—b2+x2+erE/F(x)wnT S pL%J

instead. We find « = by + /Czo, where z is the unique solution in o to the corresponding

quadratic equation determining .
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3.4 THE SIZE OF WHITTAKER NEW VECTORS
We recall n(yp) = —1, Vol(D, ug) = gz and k—1— p > 0. With this in mind we
evaluate the quadratic Gaufs sum and obtain
Wﬂ(gfn,l,v)

Ve (2be, 1)E (w0 + ng)@[)(xgw*% + blwfg) if n is even and 21 > [§],

= Y €L (by + Qo) ((z0 + bo)w T ) if n is odd and 2! > [2],

e(%,w)@b(vw_lNrE/F(bg)) if 20 < [3].

Case IL: | = 4. In this case k = 2l — 1 = a({) and p = 1. We write z = z1 + 22Q
and b = by + b2(), to transform the congruence condition defining S into a system of
congruences over F. For simplicity we consider further subcases.

Case IL.1: ¢ > —5 — 1. In this case the congruence defining S degenerates too
bL | pre]
NI‘E/F(ZL’) S ; +p'2h.
This case can only occur if v(b) > [ 5]. We get

Wr(gti0) = v7E(bes 1)¢(blw_l)q_%_r_l Z 1 (z)(Tr(zQ)t)).

€O /P,
I\TIHE/F(QC):%1

Note that the latter sum in non-empty if and only if bjv € 0?*. We will assume so for

the rest of this case. Take
29 =y + aw” for a € o/plzl=*.

Any given xp determines x; up to sign by the (convergent) Taylor expansion of the

square root. Indeed,

wy " + Wbl a2w2f€ + ... ’

O 2vf(y)?

for f(y) = /¢ + @wy?. We compute

! e - (LWL o,

1 =xf(y) £

(
(y) +Q
bs(if (y) ) if”(y)bﬁ 2k—r—1 2
+<(if(y)+0y) (if(y)+0y)>w “ +>
_ 2(b2)0awb7r71+n (b2)oy
= (i f(y) + (f(y)?)a2mbti—r+r + - ) .
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3.4 THE SIZE OF WHITTAKER NEW VECTORS

If ¢ is even, then Tr(zQ)!) = 2w1w% and we obtain

Wa(gtiw) = 178 (be, Do(byow!)g 2 Tal7=t Y™ ¢t )+ Qy)ip(£2f (y)w?)
+,yco/p”
2rt+5+1
/1/1 ( (y + (b2)ow )ozw"”'%+1 + (vt + (bg)oywb“"’l)az?(y;; +.. ) :

Thus, choosing x = |—2], collapses the y-sum to one term and produces the estimate

_ntt
Wa(ge10)] < 2¢~ % .

t+1

If ¢ is odd, things turn out slightly different. Indeed, Tr(zQ)) = 229w 2 , so that we
find

Wi lge10) = 17 (be, D (b 3B 3™ e (£ (y) + Q) 2y 7))
+,y€o/pr

1 141 2 __1+b—r+2k
-/w <i2(f(y) 1 (ba)ow" " Yot 4 (b2)°yo}g)3 +. > .

the integral only features a

This forces b = r + t“ . Furthermore, taking x = |— tHJ

linear phase. This introduces an additional congruence condition on y, which reads

Note that, depending on b, only + or — can contribute. Without loss of generality

we assume it to be +. Furthermore, we only investigate the worst case situation when
2 b _ : . ,

(b2)g — 2= = 0. We can parametrise the possible y’s by

b4l
y = A" for Kk = {[241—‘ .

Further, we find that

_ [t U 02 2k/+1
fly) = U+4blﬂw 4+

Inserting these observations in our formula for W, gives

H11-151-}

Ww(gt,l,u) = *va(bé, 1)¢(b1w_l)q[_7
> e (2 (y) + Qy)v(2ym )

yev/pl_%%
t+1
F(y)£(bs)oep ~ ]

b . L er 1
_’Y'YE(bfv )é 1( 1) ¢(blw )q2’— +1-‘ —&'=[51-3

3R/ H1HEE
[ (2l [Tz s Yap
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3.4 THE SIZE OF WHITTAKER NEW VECTORS

We obtain the upper bound

ntt __ 1

‘Wﬂ'(gt,l,'uﬂ KL 2q 4 Tz,

Recall that the only odd value ¢ that gives a non-zero outcome is t = —nq (7).
CaseILz:n+t>0evenand ¢t < —% — 1. We set b = v(b2) and a = [ + L. We arrive at

the congruences

—b + 1@ + w:% — vw:r% S p@,

T

—bo + 29w € pLiJ

The first equation is quadratic in z; with discriminant A(v, z2) = @?® + 4v(by + wvz3).
Since be € O we have b; € 0* and therefore A € 0. There are up to two solutions

modulo pfﬁ for x; for each given z,. Furthermore, we can assume that
zg = (by)ow’ % + awlzl=% for a € o/p°.

Thus the two congruences define a set S modulo " given by

@t Yiwo)
2v 2v

S = {_ + Qxo: 20 = (bg)owb_a + OéwL%J_a for o € o/pa}

for Y (zo) = \/4vby + 4wv?a? + w22, In particular, we are assuming that 4vb; € 02%,
since otherwise the set S is empty.

We have to deal with the sum

, atj
Walgti0) = vgE TNy (blwl _Z >

2v
—1 w? Y(xz) Y(J,‘Q) é
-;mg (—%i 5 +Qw2>w(i 5y @ )

Writea = 2s+dand 22 = y + aw!z! =579 fory e o/plz! "% and y € (b2)ow® ™+ plzl-e,

The Taylor expansion of Y (x2) at y reads

4v? r 8wv’by + 202w r
Y(22) = Y(y) + 2L agpttlsl-s=d 4 SRV E 20T 5 slg)as

Y(y) Y(y)?
Thus, with
Y(y =°
— 4 -
vy
Cily) ==+ + O and
)
402%by w0 + vew?e
C ==+
Q(y) Y(y)3

106



3.4 THE SIZE OF WHITTAKER NEW VECTORS

we obtain
2.

—s—3 wats . y |
Wi (9t,0,0) =7 29 <b1w Y > &1 (Coy)) v <i2(vy)w )
yeo/pthfsﬂsJ
ye(by)owb—a4plzl—e
5501 y) | vywst! s
' wE( ( :l: oo 2 S
/ () Y (y)
b:C 2 .0
+< ¢C1(y ) ¢Ca(y)

C a+1
2Co(y)? L

w 2.205]-r—1-a=5 |
+ a‘w
Co(y) 2 )

) do.
As in the case of an unramified extension we can compute the linear and the quadric
contributions to find the following. The linear term is of the form

b1y aw 151
<NrE/F<co<y>>Y<y> *”) ‘

Furthermore, the quadratic term is contained in p2™. This leads to the bound

_ntt
Wr(gt10)| < q

4 .

Case I1.2: 2/ +t > 0 odd and t < —5 — 1. We write 2/ +t¢ = 238 — 1 for some 3 € N
We have to solve the congruences

—bo —|—m1wﬁ71 € ]JLTJ (3-4.8)
—vwr; + Pry— by + vzt € plzl, (3-4.9)
Looking at the first congruence reveals that, unless § — 1 = v(b2) < [§], there are no
solutions for z; € o*. Thus, without loss of generality, we assume the latter. There are
¢°~1 solutions for x1. Namely

(b2)o + awlzl = fora e o/p

Let S, be the set of admissible z2 given z1. Note that S,, is empty unless v(b2)
In non-empty situations we have

2—bep.
-1 vy
Sy = {w L Yl

+ Bel31-1-0. g ¢ 0/p5+1}.
2v 2v
Here A(z1) = w72 + 4v(va? — by) = Y (z1)?w? with the usual convention that
d = U W ] and Y (x1) = 0if A(z1) € p/217L. Let us execute the -sum first. To shorten
notation we write © = zo(z1) + fw2!7%Q and —e = 2[%] — r — 1. We arrive at
We(g11.0) = 1y (be, 1) ™"

S U(Tr(zo(21)Q)w e +vw Nrgyp(z0(21)))
z1€(0/pT)*

) Y et

f§1—1—50)
BEU/P6+1 (xl

(@ FY (21)@) Bl 2171707 — B

252051-20-1-2)
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3.4 THE SIZE OF WHITTAKER NEW VECTORS

To investigate the phase of this integral we note that

by w21 Y( )
NrE/F(Zo(xl)):;— 202 T 9,2 =

We logarithmically expand ¢! and compute the resulting linear, quadratic and cubic

term. This produces the S-sum:

28 s
(b2)oax + 2ol5l-b w0t
ﬁe%ﬂw<< 2)o >NrE/F(Zo($1))

+ (£20Y (@)= + ) T O ey (bl(ng)O +p> Bralalto=3-te 4 >

If b > ¢, then this reduces to a linear sum. Furthermore, we pick up the condition a €
po*1. One can deal with the remaining sum as before. In the case b < § and Y (1) # 0
we obtain the strict condition o« = 0 and bounding the remaining exponential sum gives
a satisfying result. We are left with the most degenerate case Y (z1) = 0, in which the

valuation of the cubic coefficient forces the condition o = 0. We obtain the bound

t

_nit_
(Wa(geao)l <27+ 12

Case II.3: ¢ = —2I. If this is the case, there is only one admissible =5 given by z2 =

by + pl2l. Everything boils down to the quadratic congruence
va? + a1 — wubs — by € plal

with discriminant

A =1+ 4vb; + 40°b3w

Depending on the p-adic size of A we have to examine different cases.

First, assume v(A) > 1. Then z; is of the form
— £ 2w +awl2l7if A =Y%w for some § < 1[5] for a € 0/p’,
— & + awl21-? if v(A) > [5] with d = |3[5]] and a € o/p’.

We define B to be the a independent part of x. This determines x € S up to *B". We

obtain

S = {Bi+aw[5_5+b20:aeo/p5}.
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Next, we reinsert this parametrisation in (3.4.7). Each element of S is of the shape

Ag + Q23172 for AL = By + by(). We find
Wal(gonzw) = D y2ve(—20, 1) (AL)y(Tr(Az) + v 'Nrgp(AL))

727 i
>t )
aco/pd, *
BEo/p

$(2(1+ vBy)aw B0 4 uale? 512y,

We use Lemma 3.1.3 to transform ¢ into an additive oscillation. The Taylor expansion of

logg, is given by
be & ~o[r1-26
—Tr <()a(£)+1 10gE(1 + A:;Q 2 )

:Z(;,l)jTr

>

be
AL

o | il 51-r=io=1,

Since r — 46 > 0 we can truncate after the third term. Writing :—? = a; + a;Q) allows us
+

to take a closer look at the coefficients. We give more explicit descriptions in the critical

case By = -1

2v°
[ be ] A
Tr|—| = 2df=——— —2(1+vBy),
| A ] ' Nrg/r(Az) ( £)
F o
Tr A—g = 2a) € —v + Ao,
[ be | , 201 B 3
Tr| 5| = 2 7% x.
r_A3_ a3€NrE/F(Ai>3a +pCo
This shows
Wﬂ(g—n,%,v)
= Z'yifyfy};(—%, DAL Y(Tr(Ax) +vo !Nrg,p(AL))
+

. Z ¢(_§aéa3w3f%1—r—1—3é + (v + d))ade?lE]-r—1-2
aco/pd
+2(1 4+ vR(4L) — a))aw~L217179),

In particular, the worst case turns out to be cubic cancellation. Even more, if A = 0,

we are left with a clean cubic coefficient and obtain
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3.4 THE SIZE OF WHITTAKER NEW VECTORS

If A € 0%, one obtains

Wﬂ (g—n n

1o

v) <2

The details are left to the reader.
Case III: § < [. In this case we have k =2/ —1,p=1and t = —k — 1 = —2[. In order

to compute S we write x = x1 + 22() and obtain the system of equations
byt xy e plal
vt 4z —vwrs — b € plal)
where b + b,Q = b*~". Because 2/ > n, we obtain a quadratic equation for z; with

discriminant in 0*. Thus, due to the special shape of this equation, we obtain exactly

one zg € (O/P")* solving the quadratic congruence. We have
S ={zo} C (O/P").
Inserting this parametrisation of S in (3.4.7) yields

Wi (9-2000) = 77520, 1) (20) Y (Tr(Q'0) + v 'Nrg, p(20)).

In particular, [Wr(g-211,)] < 1.
O

Remark 3.4.5. We observe that, if 7 is a twist-minimal supercuspidal representation coming
from a ramified extension E/F, then there are no degenerate critical points and we get explicit
evaluations of Wy (gy1.) in every case as well as the very satisfying bound |W(g)| < 1. How-
ever, if 7 is not twist-minimal, then there are always v for which there are degenerate critical

points.

3.4.2 Tuwists of Steinberg

In this section we analyse the behaviour of W, when 7 is a twist of Steinberg. If 7 = St,
a complete evaluation is given in Lemma 3.3.3. If x has large enough ramification, we
can use the method of stationary phase to derive (more or less) explicit evaluations of

the Whittaker new vector. This is captured in the next lemma.

Lemma 3.4.6 ([4], Lemma 5.5). Let m = xSt for some unitary character x with a(x) > 1. We

can evaluate the Whittaker function explicitly as follows.
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Ifl # %,O, then

2(z 20— b)w™ s ift=—k,
o) = LD

0 else,

where x is the unique solution to v la? 4 1 + bows ) = satisfying v(xo) = 0.

Ifl = §and =2 >t > —n, then Wr(gs ) = 0 unless —bv € 02%. In the latter case we

observe that

n+t b

Wﬁ(gt,l,’u) = q_T’YF(_§7 )w(_bw_l)

Yr(EY, —E)x (-2 (£2Y w?)

V2 b o 2 !
fY*=—2¢coandt > -2[5],
1

DL ECIRS (bf‘*“’”> ¥ (At +2old))

vA:F—$0w7%7L7J

fY?= —dbv+ "t =Aco*andt < —2[%],

t
where xq € o solves (3.4.13) below and Ay = —w;? + X

- Ay (—16b03w 3142051315151 Ao 13- 15151y
for v(A) > [L], and [2] > kp; and

v(8) v(A
Wr(gtiw) = Oaerexq © > yr(—1+ VA, p)yr(d+ VA1 - (2))
+

1 VA n, A—3

: X2(—% + %)w(wff( T )

for 0 <v(A) < [L], and [2] > kp or v(A) = 0.

The cases | = 0,1 > n or t > —2 have been treated to our satisfaction in Lemma 3.3.4

and are ignored at this point.
Proof. Define k = max(n,2l). For 0 <! < n and t < —2 Lemma 3.3.4 implies

t t t
Wﬂ(gt,lﬂ}) = {F(l)_Qq_EK(X © NrE/F7 (w§7w§)7 vw_l)7
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for E = F x F. We will evaluate the oscillatory integral K starting from the prototype
given in Lemma 3.1.7. To do so we need to investigate the structure of the critical set S
in several cases.

Case I: 0 < I < 3. In this situation we have k¥ = n = —t. The matrix A, ,, given
in Lemma 3.1.7 is diagonal modulo p and independent of x1 and 2. Furthermore, the

congruence conditions for (x1,x2) € S read

T1— T2 € pr,
Uwg_lac% +x1+b € p.
By Lemma 3.1.4 we conclude that §S = 1. Therefore we have
_k _
Welgriw) = ¢ > X(w0)d(2uow ™2 +vw'ap)
(z0,20)ES

G(_gw_pv (b+zo+ vx%wg_l)w"“‘f))?

By Lemma 3.1.2 we arrive at

Wi (gt1.0) = x(0)%9 (20 — b))

where 1z is the unique solution of vwg_lx% + 21 + b = 0 satisfying v(zo) = 0.
Case II: | = 7. This is the transition region where the Whittaker function can be

non-zero for several ¢. Recall that the congruences defining S are

b+ wtir oz € p’, (3.4.10)
b+ ot iry forizy € p’. (3.4.11)

Case IL.1: —a(x) — p <t < —2. The congruences simplify to 21272 € —% +p” and has a

v

unique solution xs for each 21 € (0/p")*. Using the fact that the S-sum in Lemma 3.1.7

is well defined modulo p” we obtain

_t_o, b —a i b
Wﬂ’(gt,a(x),v) = q 2 2 X (_’U> P (—bw (X)> Z P (gng e lvw2>

z€(0/pm)*
w2—ﬂ -b —b ,w’"+% x
—b —b -2
Evaluating the Gaufs sum using Lemma 3.1.2 yields
w_p _b _b t Xz b _p
G| @' =r(-5.0)0 8
—b —b _b
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if t > —a(y) or t = —a(x) —1 and 2% € —2 + p. Otherwise, the Gau8 sum vanishes.

Thus, for t > —a(x), we get

b b t P b
Wﬂ'(gt,a(x),v) = IF <_27/0> X <_’U> Y (—bw_l) CF(l)—lq_E—T—E,S’l (1’ _;7 _;> .

Evaluating the Kloosterman sum using Lemma 3.1.8 reveals

Wil =% S (~500) e (41,2 )x (7 ) vt~
(3.4.12)
ify?=-2 b ¢ ¢2%. Otherwise, the Whittaker function vanishes.
For t = —a(x) — 1, we observe that the critical points of the Kloosterman sum are
congruent to Y modulo p. Thus, we also arrive at (3.4.12).

Case IL.2: —n < t < —a(x) — p. The first congruence, (3.4.10), can be rewritten as
x) € —b(w“’% +vze) Tt "
Substituting this in the second congruence, (3.4.11), yields
vad + iz, +bepTz L

It is easy to see that the discriminant of this equation satisfies v(A) = 0. We can

parametrise x2 using Lemma 3.1.4. We compute

t t
Wilgiin) = q 2 7 x(—b ZX z9)X (e + @2 ) (202
2.2 [—p —
el b @ P, w3 !
2 ?
b —b vrd + zow!ts +b

We use Lemma 3.1.4 to parametrise the family z; and set Ay = Y& € 0% to
shorten notation. Observe that vAL + w2 = —vAz. For® —t > 2kp + a(x) — p we can

use Lemma 3.1.3 and get

bA ¢
Wﬂ(gt,l,v) = z —*,p ZX( i) A:I:w§ —bwil)

iV |
/ 0| S-ryal - 4 <“t> (it | gt
]>2 b

5 Note that since t is even this always holds if kK = 1. In case this assumption fails we can still estimate the

xo-sum trivial and obtain ]Wﬂ( gt l}v)| < 2. However, this is not as satisfactory as an explicit evaluation.
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One checks that A7 — A2 = i%w“’%. Furthermore, the binomial expansion shows that
((—1)7 A%, — A;) cplta. Evaluating the remaining oscillatory integral yields

_t_nmn _ b
Walguo) = a4 Fp(=bw)ap(=5.0)

i i
D @,—E b : QZJ w(Aiw%+mowL%J—bw_l>,
— 207 2 -4-1%

VA —zow 27 2]

where z € o is the unique solution to

-1 (—1)74% — A7 L
Z —v (—%x)j ()l%w_”_(]_l)% =0. (3.4.13)
§>2 w2
Case II.3: t = —n. In this case we have to solve the congruences

T
rL—T2 € p,

vx%+a:1+b e p.
The quadratic congruence has discriminant
A=Aw)=1—4b.

For some v the discriminant might be (p-adically) small, so that there are many solutions
for z;. In this case we have to argue slightly more carefully.

Using Lemma 3.1.4 we parametrise

S = {<—1 + Xwé—i—osz_é,—i + Ywé—I—ozwr_(s) € ((o/p"))?: a € o/p(s}.

v 2w v 2w
(3-4.14)
We set
1 Y
A = —— + - °
+ 2v 2Uw

and v+ = 1 if v(A) < r and v+ = 1 otherwise. We can rewrite the Gauf sum from

Lemma 3.1.7 as

- [-1 1) [—-b—va? 0 -1 1
G wT 1 @ By
11 0 —b+va? 11
w Pxy —w ° e 9
=G 1 ,0)G 1 (=2b—2x1),w " P(x1 +vz]+D) ).
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First, we consider the degenerate case, v(A) > 0. In particular, we have —2b — x; € p and
v(A) > 2 > p. Therefore, we obtain the stronger congruence vz? + z1 + b € p" 7. Using
our parametrisation of S in Lemma 3.1.7 yields
Wr(geiw) = a2 Y vr(As, p)x*(Ax)(w 2 (241 +vAT))
+

Z 2 (1 4+ Aiwr+”_5)w((1 +Yw)aw "0 + valw’ ).
+
a€go/pd—r

For [%] > kr we apply Lemma 3.1.3 and get

Wr(geiw) = €72 r(As, p)X*(A2)p(w™ 5 (241 + vAT))
+

2b b 2b
. 14V é ¢ —r—4 _ t2 p—26 t3 r+2p—36 dt.
/gd)(( w +—Ai) w + (v —Azi) w +73A§t w )
226
=moar T oA € GLQJE‘S +pre

The sum is truncated after the third term because 2r — 46 > 0. It is obvious that the cubic
coefficient is a unit. If v(A) > r + p, we have

n

. 3 . oo s
We(ge10) = q12vF (=20, p)x 1(4v2)w(@w 2)Aiy (—16b0° " T2 730 A 0).

If p < A <r+ p, we arrive at

[N

Wﬂ(gt,l,v) =4q Z'YF<_1 + \/Za p)’YF(A:l: \/K76_10)

+
1 VA _

Note that in this case Wy (g:,,) vanishes when A ¢ F?*.

|3

A—3
< 1o >> (3.4.15)

Second, if 0 = v(A), one easily checks that (3.4.15) holds as well.
Case III: 5 < [ < n. Here we have k£ = 2/ and the Whittaker function is non-zero only
for t = —k. The congruence conditions defining S yield the system of equations

T
Ty —T2 € p,

1 1 b
(x1+%)2 € ——;wg_a(X)—l—prCoX.

The quadratic equation has a unique solution modulo p” which is in 0*. Thus £S5 = 1.

From Lemma 3.1.7 and Lemma 3.1.2 we obtain

k
2

Wi (g2110) = x(20)20((z0 — bew? X))~

)

where 7 is the unique solution of va? + x1 + b ) = satisfying v(zo) = 0.

This was the last case to be considered and the proof is complete. O

115



3.4 THE SIZE OF WHITTAKER NEW VECTORS

Corollary 3.4.7. If 1 = xSt with a(x) > 1, then

I

and sup |Wr(g)| >r q12.
g

n
2

Wr(9) <p q1
Even more, if [ | > kr, the implicit constant in the upper bound is less than 2.

Proof. If the necessary conditions on kr, t and n are full-filled, the explicit evaluations

given above imply imply the desired bound. If a(x) = 1,1 =1, and t = —2, we have

Wﬂ(ng,l,v) - QCF(l)_QK(XONrE/Fv(w_law_l)avw_l)

1 1 T
e 2 1 -1 —, -1 / < ) —1 d>< .
¢2Cr(1) el x ) SV & e (@ z)d e

This is an exponential sum over a finite field and (3.1.2) implies

|W7r (gt,l,fu)’ <2

In all the remaining cases trivial estimates are sufficient.

. r+2p-3[5]

The lower bounds follow from

n
:q12

’Wﬂ (gfn

QL)
127 4p

O]

Remark 3.4.8. If we write \/1 —dbvwlt Tl = 14 fb(v)w|%_l| for the (in F convergent)

power series

Fo(v) = 2bv — 2202wl 5 ! 4 4332l E U — 10pt et el 4

Wa(9tiw) = wr (T) ¥ <<]%2<:) a b> w3>

as long as 0 < | < 5. The case n > | > 5 can be treated similarly. Indeed one obtains

then we have

Ty = —% + fb(v)wl_%.

Remark 3.4.9 ([4], Remark 5.6). There are several other ways to evaluate the integral K (y o

Nrg/p,-,-). For example one may compute that

K(XONVE/F,(wk,wk),UWZ):/ x(2)Y(zvw )81 (1,2, k)d*z.
UX

For k > 1 the Kloosterman sum can be evaluated and one is left with a twisted quadratic Gaufs
sum. The remaining sum is amenable to the (1-dimensional) method of stationary phase. This

turns out to be similar in spirit to the calculation in [18, Lemma 10].
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3.4.3 Irreducible principal series

The last category of representations to deal with are principal series representations. It
is already known from [69] that in certain degenerate situations the Whittaker function
can be as large as the local bound [69, Corollary 2.35]. We consider several different

situations starting with one that is similar to the twisted Steinberg representations.

Lemma 3.4.10 ([4], Lemma 5.7). Let 7 = x || B x ||~ for some s € iRU (-3, %). Then we
have

Wr(g) <r q12 and sup |Wx(g)| > qiz.
g

Even more, for t < —2 and a(x) > 1 we can evaluate the Wy (g, explicitly and obtain the

same expressions as in Lemma 3.4.6.

Note that in practice (as long as the Ramanujan conjecture is not known in general)
one might encounter real parameters s as constitutes of automorphic representations.
However, in this case, one can restrict s € (—7/64,7/64) which is the currently best
known bound towards the conjecture. See [8]. We ignore the unitary complementary
series representations with |s| € (1/2,1) since in this case Wr(g; = ,) does not seem to

be bounded for ¢t > 7.

Proof. As in the proof of Lemma 3.3.8 we see that for ¢ < —2 we are in the same situation

as for m = xSt. The remaining cases can be estimated trivially using Lemma 3.3.8. O
We move on to the unbalanced principal series m = x1 H x2 with unramified x».

Lemma 3.4.11 ([4], Lemma 5.8). Let 7 = x|-|°B|-|"® for s € iR and put n = a(x) > 0.
Then
Walg)] < q2'3).

This follows from [69, Corollary 2.35] as well as from our explicit expressions given
in Lemma 3.3.5. In [69, Proposition 2.39] it is shown that this bound is sharp. Note that
this features the case of twist minimal principal series representations.

We move towards more generic situations.

Lemma 3.4.12 ([4], Lemma 5.10). Let m = x1 || B x2|-|® be a irreducible principle series
representation. Also assume a(x1) > a(x2) and s € iR. Define m = max(2l,n). We have the

following evaluations for the Whittaker new vector.
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Ifi <%,
L —Hn oy 5(t4n)
Ww(gt,z,v) :E(gaﬂ)q 2
Xy (1 —vbiw®™!)  ifl<agandt= —n,
Xy (—vby + @) ifl=agand —n <t < —a

ort:—nandvgzbl_l—FP,

X5 (1 —vby) ifl > ag,t = —a; —land v € b]' + w%20%,
\0 else.
If 9 <l<ay,
A (07 0204y, )G (e
(o™ + boro2)
Walgii0) = ifl <agandt = —norl=agand —n <t < —ay

orl=ag t=-—n,andv b +p,

0 else,

\

where xg € 0™ is the unique solution to

U$2wt+2a1 _|_ x(thrn _|_ vaI_1X2) _|_ b2 = 0

Ifag <1< ®3% and || > kp,

(

Wi (gt1,0) = ift=—l—ajandv € by' + @ 20%,

0 else,

where xo € 0™ is the unique solution to (3.4.19) below.

Ifl: %/ a72 > ,%F,andA:ﬁQ—‘Lble €o0%,

l—ag 1

Wr(9—i—ayj0) = q 2 6(§,xfl)x51(v) %:VF(““ - \/ﬁg),az)

aj]—ag

e(%, 7~r)q_t+7n+s(t+”)xl_l(l + :L‘o(w“l_l)xg(—%)w(:cov_lw_l + bow—2)

e l+w 2 a)y(apo o 2),
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where the sum is understood to be taken over the (up to two) solutions of (3.4.22). If A € p, we

have the upper bound

az

l_i
‘Wﬁ(gflfal,l,v)‘ S 2q§ 3.

Ifal—giw<l<a1ﬂ1’ld£a2*ﬂ21€p‘,

Ul s(ay—1)

q 2 1 1 lfaQ)

Xg(bgvxal)m(—v* — v lzgw

(=071 + 2w 792w — by 92)
Wﬂ'(gt,l,v) =

ift=—l—ajandv e bl_1 + a—lgx

0 else,

where x¢ € 0™ is the unique solution to (3.4.23) below.

Ifa1 <l<n,

(

q—HTm—s(twLQl)

X1 (l’o)XQ (xowt+21 — bxf1x2)¢(x0wt+l — bzwfaQ)
ifl=ayandt > —2lorl=a;, t= —2l,andv¢bf1—|—p
Wa(gti0) = x1(z1 + bxflmwl"“)X2(901)¢(961w7l — by ™2),

ifar <l<nandt= -2l

0 else,

where xo € 0 (resp. x1 € 0*) is the unique solution to

vlot + 21 + z(w' T — va1_1X2) +by =0 (resp.va?® +x(1+ vaf1X2) + byw! %2 = 0).

Proof. To simplify notation we write a; = a(x1) and a2 = a(x2) and put k = max(a;,!) =
2r 4 p. Fori = 1,2 we set b; = b,, € 0™ for the constant associated to x; via Lemma 3.1.3.

We will focus on the cases 0 < | < n and t < —a;. We have to understand
K(X1 & X2, (w_ll,w_b), Uw_l)

for suitable 0 < 11,lo < [. If [ is small, we find it easier to exploit the stability of e-
factors directly instead of using the method of stationary phase. This is similarly to the
approach taken in [69, Proposition 2.40].

Case I: | < % and t < —a;. In this case we have I = a1, and l3 = —t — a;. Since we
assume t < —ay, the d-term in (3.3.5) does not contribute. We have

Wa(gea0) = Cr(1) 20727 N7 Glw™, jx1) G (w2, px2) Glow ™ i),
HEX;
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Recall from [69, Lemma 2.37] that

6(%#‘1)61) = 6(5)@1)#(—61)
This implies
G(w™™, px1) = CF(UQ_%H(—bl)G(%aXfl)
Inserting this expression above yields
Walgiao) = Ce(1) a5 ¢ 2e(5007) Y Gl i) G(-ebi™ ),
HEX]

We can evaluate the y-sum by writing the Gaufs sum as an integral, taking the p-sum
inside, and exploiting full cancellation. One arrives at

_ al+t

art g gy 1 a _
We(gea) = Cr(D)7Hq 2 ¢ 2e(5 00 )G(@ ™ — @™ loby, xa).

By evaluating the remaining Gaufs sum we obtain

1 n
We(gt1w) = 6(5777)q_t+7+8(t+")

X2_1(1 - vblwarl) ifl <agand t = —n,
Xgl(—vbl +o" ™) ifl=asand —n <t < —ay

ort:—nandvgbl_l—kp,

X;l(livbl) ifl>a2’t:7a17land’l)€b171—|—wl_a20><’
0 else.
Case II: ©* < I < ap. In this case we have [y = ai, Iz = a2 and t = —n. Note

that a; —az > r implies ap < 4. This situation was covered in Case I, so that we
assume a; — ap < r. Our starting point is Lemma 3.1.7 together with Lemma 3.3.9. Using
Lemma 3.1.2 we compute the Gaufd sum to be

b1

w P e )
G<A1‘1,1‘27w " prl,x2> = (q 27F(_77p)5

2 2
whenever x; and x5 satisfy
by + 21 + vryzew™ Tl € p" and bow™ T + xow™ T2 + vrirew™ T € p" e,
This can be reformulated to
xr1 € J}Qwal_aQ + bX;1X2 + prv

r3vw™ !+ 29 (1 + vaf1xgwa24) + by € p’ PO
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According to Lemma 3.1.4 3 € 0™ is uniquely determined modulo p" %271 If z is the
unique solution to

P (1 + va;1X2wa2_l) +by=0

in 0*, then we have
S = {(wo™ %2 — by + bew™ "2 3o + aw" TPTRTNY) o € o/pT 2P}

We insert this parametrisation in the S-sum from Lemma 3.1.7. Elementary rearrange-

ments yield

Wr (gt,l,v)

2 —r+s(t+2a1) b1

Yr(——=,a1) x1(z1)x2(22) (2104 + 29w~ %2 + vz 200 )

(z1,2)€S

ag b - B -
qs +s(t+2a1)'yF(_§1,al)Xl(xow‘” @2 4 bxl‘le)Xz(ﬂCoW(wa “+ le_1X2w )

’ <F<1)_1G7"+p+a2—a1 (_bQW_CQa X2)~
After checking that 7 + a2 — a1 < % we apply Remark 3.3.7 and obtain

b1 1

Wi(geiw) = a2 yp(= 5 an)e(5 x5 D (ro@™ = + b0, )xe ! (<bag ')

cp(zow ™" 4+ bxl—l

X2w_a1).

In view of Remark 3.3.6 we get
1 — al1—a — — —a
Wr(gti0) = 6(5’ 7~T)qs(Hn)Xl (b7 (o™ ™2 + bX1_1X2))X2 (o )i ((xo + b2)ww ™).

CaseIIl: 5 <l =az.Wefind k =2r =ay, 11 = aj,and Iy = —t —ay for —a; >t > —n.

The situation turns out to very similar to the one in Case II. Let z( be the solution of

vt 2 a (@ ob o) by = 0.

Note that if ¢ = —n and v € b;' + p then this has no solution in o. According to

Lemma 3.1.7 we obtain

b a
Wi (Gt.agw) = VF(*gl, a1)g~ TS 20) (ot | byt ) (0wt — by )
Z xa(xo + aw®? ") Y((w*" + vaewt 29 + b1, Jaw™").

a€o/pr1—a2=r
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We rewrite this as

bl t+ag +s

Wﬂ(gt,ag,v) = 7F(_57a1)q7 2

(+201) ¢ (1) "y (o T2 + byitxs)

—as

: 1/J($0wt+al + bxfl

wial)XQ(xO)Gaz—r(_bQW 7X2)-

X2

Using Remark 3.3.7 and Remark 3.3.6 we arrive at

~\ —ttn _
e(5.®)a = T (b (mow T2 b))

-1 —1 t+ay —az
Xy (—baxg )Y (zow' ™ + by ™2)
W (gt,az,v) =

if —n<t<—alort:—nandvgbl_l—kp,

0 else.

\
Case IV: [ = a;. We have [y = —t — [ and —a; >t > —2I. The congruences defining S
can be simplified to
To € xlwt+2l + bl o b2wa17a2 + pr’

x%thﬁl + z1(vby + ot vbow™ T ?) + by €.
Depending on t the behaviour can be quite different. The matrix A, turns out to be

Ap _ —b1 VIx1T2
VX1T9 0
Case IV.x: t > —2I. In this case we have (vb; + @'*% — vbyw®~%2) € 0o*. Thus,

Lemma 3.1.4 implies that S = {z¢} for zy € 0™ solving

?vw' T 4 g (T - v, -1 L@ 7)) +b1 = 0. (3-4.16)

X
We obtain
b2 -
Welgrar) = a2 i (wo)xa (@™ b, 1 (wom'™ — by 2).
Case IV.2: t = —2I. Each z; determines a unique x> modulo p”. The quadratic congru-

ence determining z; reads
vm% + z1(vby + 1 — vbew™ ™) + by € p"
and has discriminant

A = (1+vby — vboyw™ %) — duvby = (1 —vb)? — dvbyw™ 2.
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We can rewrite the quadratic equation as
(2uzy +1+wvb)2 € A+,

for b = by — bpw™ 2. Suppose that v(A) > 0. In particular, 1 —vb € p. So that any
admissible = satisfies

6_7_7
S

Each admissible z1 determines a unique x2 by
, 1 b
€T +b+p C——+—+pCh.
2v 2

But we need x2 to be a unit. We conclude that if v(A) > 0, then S = () and therefore
Wﬂ‘(972a1,a1,’0) =0.

If v(A) = 0, we have S = 1. This is because when x4 are the two solutions of (3.4.16),

then we have . € pand z_ € 0*. We get

x1(z)xa(z- —b -1, J((z- —bo)w™") ifv &by +p
Wﬂ'(972a1,a1,v) - XX !

0 else.

Case V: a1 <l < n.Here we have t = —2I[, and l; = ls = [. The set S from Lemma 3.1.7

is given by the system of congruences

xr1 € o — blwl_al + bgwl_a2 + pT,

vazg +zo(1 — byl T + vbgwl_‘”) = p".

One can check that the discriminant of the quadratic equation determining x5 satisfies

A € 1+ p. Therefore S = {x¢}, where 2y € 0 is the unique solution to
vr? + (1 + va;1X2wl*a1) + byww! ™2 = (.

Furthermore,

0 V1T

=
I

VLT 0

Thus we obtain

Wa(9-2120) = x1(x0 = b1, @'~ )xa(wo) v (zow ™ — bow ™).
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Case VI: max(a—zl, az) < 1 < aj. This constitutes the transition region and it turns out
that the approach we took before mutates into very messy calculations. We therefore

choose to take a different approach. We calculate

K(Xl ® X2, (wial 7wil)7 vwil)

= X (z2) (@ ) G(w™ ™ (1 + @™ vas), x1)d™ 22

oX

= (1’X1 Yer(1)g™ ;/ox Xl_l(l+w“l_lvx)xg(x)w(acw_l)dxx.

Using the same trick in the z, integral yields

K(x1® xa, (wfal,w*l),vw*l) :/ xl(xl)w(w*‘“xl)G(w*l(l +vx), x2)d 11
UX

—e(5xa (= (o ) (1)g

. / x1(1 — v =22) x5 H(z) Y (v~ —92)d % .
UX
We insert these expressions in Lemma 3.3.9 and obtain

1
Wo(g-i—ay10) = x2(v1)e ( ATHer(1)! g+s(a=)

/ X+ @ )y (2) (v e d e, (3.4.17)

as well as

1 1 n—1
We(9-i-ar10) = 6(*,x;l)[Xlxgl](—;)@b(—v—lw—al)CF(1)—1qT+s(a1—l)

2

. / x1(1+ @' 22) x5 @)y (—v tew! ™1 792) %z, (3.4.18)
oX

Note that estimating the integrals trivially recovers the local bound given in [69, Corol-

lary 2.35]. We will use the 1-dimensional method of stationary phase to find further

cancellation. We consider different cases.

Case VL1: ap < | < %392, We start from the integral appearing in (3.4.17). Suppose

az = 1 then the current situation implies [ < QITH

but obviously this yields I < %- which
is excluded from Case IV. Thus we assume az > 1 and write ay = 2r + p for p € {0,1}

and 7 € N. Assuming a; — [ > kp, for any max(r, kp) < k < ag, we calculate

Wﬂ'(g—l—al,l,v)
1
= x2(v He(5

—1\ t—k+s(a;— — a1— — —
oo gz e R T (1 e e (y) ey )

yE(o/pr)x

b tooh ot by ,t t2
/¢ <_w‘111 logp(1+ “ — )+ 2 (—w" — —2722“) + v_ltw”_l> dt.
0

1+ whywa w2y 2y
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The Taylor expansion of the logarithm reads
b1 tegrtart
w(ll logF(]‘ + 1 + wﬁyw(ll -1 =

Z (—1).]b1tﬂ (1 + ywn ) Iir+i—Dar=il
j>1

We first observe that, since | < ¢11+th2, we can choose x = r and truncate the Taylor

expansion after the 1st term. We get

— L L k+ts(ai— a1—
Wi (9-t-artw) = X2 (0 H)e(5, x7 gz =@l Z x1(1+y@ xa(y)

2
y€(o/pr)>

b b b
. -1 —1 2 -1 1 as—l | Y2 —r—p
vy )G< 22" <(U 1+ywm’>w - y>w >

We see straight away that there is a unique solution z € 0™ to
v lytwmtee=2 Ly (v — b)) w2 4 ™) F by =0 (3-4.19)

if and only if

1—-vb € wl_a20><.

Evaluating the GaufS sum yields

g
l—ag

(3, 7M)q 2 TN (1 + o™ ) xo (F22) (R + byw )

vbo

Ww(gflfal,l,'u) = ifove b;l + wl—a20X7

0 else,

as long as [ %] > kp.

CaselIV.2: [ = ‘%ﬂ Note that this implies that a; and as have the same parity so that
n must be even. Similar to Case IV.1, assuming a; — az > 2k, we deduce from (3.4.17)
that

a]—ag %

v —by =fBw = for some B = B(v,x1) € 0%.

Assume |%] > xp and split up the integral from (3.4.17) in ¢"-pieces as above. Using

suitable Taylor expansions we can write

_ 1 _ LfT' _ ay]—a y _ajta
Wi (9t10) = x2(v 1)6(§,x1 g2 Z x2(y)x7 (1 +w e Qy)w(;w 52 2)
y€(o/pr)*
b1 b2 v 4 y(B 4 by ™) 4 by
-G ——= |w "’ .
2(1 + yowm—H)2 292 y(1+ ywwnt)
Thus we have to investigate the equation
v y(B+baw™ ) 4 by € p” (3-4.20)
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with discriminant

b
A= (B+ by 2 — 4=
v
If y solves this congruence, then we can compute that
b —QEL(A BVA) + (3-4.21)
2 tymn D)2 22 " 20T P 3-4-

Note that the existence of VA in F is necessary for the existence of solutions y. If A € 0%,
we are in a non-degenerate situation. In particular, since v™t € by +p we have A € 0% if
and only if (% — 4b by € 0. Further, we remark that, if VA € +6 + p, then we only have

one solution to the congruence which is a unit. Evaluating the Gaufs sum yields

S r

Wr(gt10) = qTe(g,xfl)x?(v) zi:w(v(l - \/Z)7a2)X2<-Ti)

aj—ag !

-Xl_l(l-l-w 2 xi)w(aciv_lw_ﬁ),

where 24 € 0 are the only solutions to
v P+ y(B+ byw™ ) + by = 0. (3.4.22)

Depending on the number of such solutions the £-sum can have 0, 1 or 2 terms.
We still need to consider the case A € p. In this case the y-sum is potentially long. By

using Lemma 3.1.4 we obtain

1 aj+tag

Wi lgiw) = x2(v e(=,x7 g2 (Ao "2 7)

2
S (e +ye NG (14 Aew ™ 4y 2 ) (L
y€(o/pd—r)x Y

_a1-e
2

).

After expanding the characters using Lemma 3.1.3 it is clear that we get an oscillatory
integral with a cubic phase. Even more, only x2 contributes to the leading coefficient.

Thus, as many times before, we get the bound
_ap
(W (ge1.0)| < 245

At this point we could give an expression for W, involving the p-adic Airy function but

we will not pursue this here.

126



3.4 THE SIZE OF WHITTAKER NEW VECTORS

Case VL3: | > 9392 This case is very similar to Case IV.1. However, one uses (3.4.18)

instead of (3.4.17). We assume that %2 > xp. For £ = r we have

1 n—l1
Wi (geiv) =e(3, X2 D Xl (—v)y(—v ) g sl
Yo x4y ) () (—o yw! )
ye(o/pr)*

by _ 1 e bow TP byl TP
B I a1—r—p _
G( 2y2w ,< v w ” + = .

vebt + M loX

We deduce that

is necessary for the Whittaker vector to be non-zero. Evaluating the Gaufs sum gives

W (ge10) = x2(bavag ) xa (vt — v tzow!92)

S~ (1 4 2o ) — b2w—a2)qa17_l+s(a1—l)7
where zy € 0 is the unique solution to
— v 2w g (b — oD@ TY byl T92) — by = 0. (3-4-23)
0

Corollary 3.4.13. Let 7 = x1|-|° B x2|-|”° be an irreducible principle series representation

with a(x1) > a(xz2) and s € iR. One has

_ t+max(2l,n)

Wﬂ(g) S 2q 2 )

as long as n is odd or biby & 02X, If n is even and b by € 02X, we get the weaker bound

a2

|W7r<gt,l,v)| < q%_?.
The implicit constant is bounded by 2 if kp = 1.

Proof. If | ¢ (ag,a1), then the claim follows directly from the expressions given in
Lemma 3.3.9 and 3.4.12.

Thus, we have to deal with the remaining cases. First note that the general upper
bound follows trivially from the local bound as long as “2—2 < k. Thus, we can assume
without loss of generality that a is large enough. If as < [ < W’T@, the claimed estimate
follows from the expression given in Lemma 3.4.12. The same is true for %39 <[ < g

and | — as.
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Finally, we treat the case [ = %2“2 If ap = 1, we compute

_ 1 _ 1 _ ap—1 _ _az+l
Wr(9-t-aio) = x2(v el Daz ™ D0 e (Ut @ =y yw 2
ye(o/p)*
NP ST _ byy?
—a e X e (=0 (L4 1)).
ye(o/p)*

The remaining sum can be treated using Weil’s bound (3.1.2). One arrives at

l—a

2
‘Ww(g—l—al,l,vﬂ < 2(] 2
The remaining cases were covered in the previous lemma. O

Remark 3.4.14. The condition biby € 0%* is sensitive under twists. Thus, there is a twist of
with the same conductor but no degenerate critical point. In other words, we can twist the large
value of W, away. This was not possible for twists of Steinberg where we can always create a

degenerate critical point by choosing v accordingly.

As preparation for the last situation we prove some estimates for
Ki, = K(x1 @ x2, (@72, @72),vw™) (3-4-24)
when a(x1) = a(x2) =1> 1.

Lemma 3.4.15 ([4], Lemma 5.11). Suppose® a(x1) = a(x1) =1 > 8k .
First, consider a(x1x5 ") < [2]. If —2a(xix3 ') <t < a(xix5 '), we have

)
n _ _ —1 _
NG () e0Gh 1S o (1 -2w00a 4 oG )

ifla = —a(xixz ') —t,
_ n _ _ -1 _
Kt = g 3¢ ()x7" (0) e )8 0 (1,—%w2“(’<1x2 I a(xaxg 1))

iflo=alxaxa'),

0 else.

Ift < —2a(xixy '), Ki, # 0 if and only if l, = —%. We find that

1

_n _ by t
K o =q i¢r()xg ' (v)exzt §)Sx1x2_1 (1, —;2, —2> ) (3.4.25)

rolok

6 The numerical value 8« is taken for safety reasons. It is obvious from the proof, that when F' = Q, one

can use 1 instead.
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for —2a(xix3 ") >t > —2[2]. In the range —2[%] >t > —n we find that

= (r(1)%q i ,xg Zw vy, — m(xi)x Y2 4 vzy ) (wras),
(3.4.26)

where x4 € 0™ are the unique solutions to

vr? + a:(vbmxglw_%_a(’“x;l) + i tE) 4 by = 0.

Second, we look at a(x1x3") > [2]. In the range —a(x1x5"') >t > —2a(xixy'), the
integral K, is non-zero for ly = —a(x1x5 ") —tand Iz = a(x1x3 ). Ifla = —a(x1x3 ') — ¢,
we obtain the expressions

_n_baxgh) 1 _ 1. boottalxixs )
K, = Cp(1)%q 3 2 e(xa " 2 )e(xq 1X2’§)X21(U)w <2b ;

2 v _
xX1x5 "

for —a(xix3') >t > —alxixg ") — [§1; and, for —a(xixz ) — [§] >t > —2a(xix; '), we

have

—1
ajtalxixg ) ]

Kl2 = <F(1)2q7 2 By XQ_I)’YF(_QbX1X27 a(XlXQ_I))

(
2
' Xl(xo)xgl(wHa(XlX;lHal + varo)T/J(w*a(mx{l)afo),

where x¢ € 0™ is the unique solution to

2 t+a(xixy ) +a t+2a(x1xs ') —
ve® + z(v vhy st t @ X2 )tany 4o X2 ) = (.
In the range —2a(X1X2_1) > t > —n, the only non-zero situation is ly = —1. Ift # —2a(X1X2_1),

ay - a(x1x2_1))2 B

we recover the expression (3.4.26). If t = —2a(x1x5 ") and A = (bXIX 1+

% € 0%, then we get (3.4.26) as well. However, if A € p we encounter degenerate critical points.

In this case we still have the upper bound

‘K_% < 2¢p(1)%q 2 5. (3-4-27)
Finally, ift = —2ay and A = (1 — valxglwaka(mx?)ﬁ — 4vby € 0%%, we have
Koy = Cr(1)7¢" ZXF xt — by)® + biby) x1 (w2 — bmx;lwara(mxgl))
Xe(rL)Y((Te —b1)w™ ™),
where
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However, if A € p we have degenerate critical points. In this case we have the upper bound
(3.4.27) holds. Note that, if a(x1x5 ") < a1 this can always happen. If, on the other hand,

a(x1x2) < a1, then there are critical points if and only if —1 € 0**.

Proof. An important invariant in the following calculations will be v(b; — b2). Note that

we have

by — alx1)—alxixs ")
by b2—bx1x;1w X1 XXz )

We write S, for the set S defined in Lemma 3.1.7 to keep track of the I, dependence. We
set a; = 2r 4 p as usual.
Case I: a1 — Iz, a1 +la +t > r. This leads to a very simple structure of \S;,. Indeed the

congruence condition can be transformed into

b
Ty = —— +p"and by — by € p".
VI

Thus, if v(by — ba) > r, then every z1 € (0/p")* determines a unique 5. Otherwise Sy, is
empty. Even more, by investigating the Gaufs sum appearing in Lemma 3.1.7 we observe
that the matrix has rank 1. This imposes stronger conditions on x; and possibly b — bs.

For —l3 —t > I3, we compute

K, = ¢ 5¢p(1)%x <—l;2) U (—bow ) yp(—2b2, a1)

Z [X1X2_1](1‘1)1/) (xlwt+l2 _ zfriw_b)

z1€(0/p")*
-4 -1 1 1 by 91,4
= ¢ 2¢r(xy (v)elxy ’§)SX1><51 <17—UW 7=l —t> .

In the last step we used Remark 3.3.6 to identify the epsilon factor and we ignored the
conditions on z; that may appear for p = 1 since these conditions match the critical
points of the twisted Kloosterman sum. Finally, let us use some facts concerning the
support of twisted Kloosterman sums from Lemma 3.1.8. If —ls —t = a(x1x5 1), we
encounter two cases. First, if —2ly —t = 0, then t = —2a(X1X2_1) and [y = —%. In
this case we can encounter degenerate critical points. Otherwise, if —2i; —¢ > 0, then
ly = —t— a(Xlxgl). In particular, ¢t > —2G(X1X§1)- If —lh—-t < a(xp@l), then the
twisted Kloosterman sum vanishes. Second, if —ls —¢ > a(x1x5 1Y > 1, then due to the
support of twisted Kloosterman sums the only non-zero situation is ¢ = —2l; and we
have square root cancellation.

For Iy < —ly —t, the same argument with x; and x5 interchanged yields

_ 91 _ 4 1 bl
K, =q 2C)x;t () elxi? i)SXQXI—I <1, —?w%”, —l2> .
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Taking Lemma 3.1.8 into account completes this part of the proof.
Case IL.1: a; — Iz > 7 > ay + Iz + t. In this situation the set .S, is slightly more compli-

cated. It is described by the congruences

b
To = B —HJT and xlwaﬁ'lﬁt = —b; +by+ pr.
VX1

We observe that this implies a(x1x5 1) > 4, since otherwise there are no solutions for

1. Furthermore, S;, is empty unless Iy = —t — a(x1x; ' ). We can parametrise z; by

r1=-b, -1+ aw X2 )rp for o € o/p‘”_a(XlX?_l).
2

The degenerate shape of A, further implies
2w Tt o Tl € py by TP,

This automatically imposes some conditions on «a. Indeed, we get

p? ifay —la >1r+p,
o€
R . b - _|_p,0 if al —l2 =Tr.
X1Xo

Each choice of z; determines x5 by

J ) _ .
po=_ 2 _b2 X iabaxy )i
2 = = 1 (7 .
vy vy
720 “xaixs

Note that, if a(x1x;"') = a1, det(4,) € o* and there is a unique z; and A, is non-

degenerate. Thus we obtain

a(xp@l) -1 1 b2wt+a(X1X51)

Kiy = Gr(1)2g 15 6(X2=2)6(X1_1X2,1)X2_1(—v)¢< Ub

5 ) . (3.4.28)

xixg "

Assuming the contrary we use the parametrisation above and write

_ _ -1 b a —1
K, :Xl(_bX1x;1)X2 ' <Ub><1><2_1) (G <_b><1x51w abaxg™) p 2 pttabaxg )>

be1x51
1 14 (0] -1
'6(5’ Xz—l)CF(l)2q—a1+§ Z [XlXQ_I] (1 o ; — wa(X1X2 )—r)
aeg/palﬂl(mxgl)fﬂ XXz
o | o +%2 jfj St Dataxs )i
721 Txaxgy

b2w2
vb?
X1Xo

is excluded by the current assumptions we observe that the quadratic term is dominated

—1
a(x1xg ~)tt—r

The linear term in the remaining sum is . After observing that ¢ < —2a(x1x5 ")
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by —b;11X;12_1w“(X1X2_ ")=2r Thus the Gauf sum is non-zero whenever t > —a(y1x5 ") —
r. We find that (3.4.28) remains true. The case a; —ly = r, corresponding to ¢ =
—a(x1x5 ') —r — p is slightly different, but the result turns out to be the same.

Case IL.2: a1 —lp < 7 < a; +l2 +t. This case is exactly the same as the previous
one. After exchanging roles of x; and x2 we find that we must have a(x1x5 1) > 7 and
la = a(x1x5 ). Also the rest of the argument remains essentially the same and as long
ast > —a(xixy 1) — 7 one arrives at (3.4.28) with x; and o interchanged.

Case III: a; +t+1ls,a1 — o < r and t > —2[. We observe that —l, > —aq, since

otherwise we are in the situation where ¢t = —2[. We compute

K, = /Xl(xl)G((w‘“_lQ+v$1)w_a1>X2)¢(wt+l2x1)dx$l
UX

a1

a1 _ a1 —
= (r(1)g > 6(2’X21)/ x1(z1)x5 (@2 + vz )Y (@' TP ay ) d 2y
UX

Using the p-adic logarithm yields
_a_, 1 1/ ai—
K, = (%2 (300" Y g (@R +ea)d(w )
xz€(o/pr)*

/w (t(wa1+l2+t + bi _ vbs )wﬁ—m
0

r  vr 4 owuh
(Y e,
j o (vr+wnl2)i ’

for every k > k. From the linear term we obtain the quadratic congruence

-1
X1X71Wa1fa()(1x2 ) _|_w2a1+t) + blwalfb c pli’
2

vl T 4 g (vb
which is necessary for the ¢-integral to be non-zero. For this congruence to have a so-
lution it is required that at least two of its terms have the same valuation. We con-
sider the corresponding cases. Note that the cases a1 +la +¢ = 2a; +t < a; — l2 and
a1+ 1o+t > 2a; +t = a; — ls can not occur due to our restrictions on ¢.

Case IIL.1: I +t < —Iy and a7 — a(XIXQ_I) < 2a; + t. These assumptions imply that
there are solutions only if Iy = —t — a(xlxgl) and in particular a(Xlxgl) > r+ p. We
choose k = LCL(X%X?)J This is possible if we assume a; > 4xp. Under the current
assumptions we can truncate the sum in the integral after the second term. We are left
with a quadratic Gaufs sum. Looking at the entries carefully reveals that there is exactly
one admissible = for which we can evaluating the Gauf} sum to get

—1
_artabaxy ) 1
2

Klz = CF(1)2(] 6(57X271)7F(_2bX1X27a(X1X271))

xa (o) xa (@™ + vag )y (w2 ay),
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where xy € 0 is the unique solution to

va? + x(vb, 1+ w1 TE) 4 w22 =,

X1Xo

Case IIL.2: Iy +t > —ly and a1 — @(X1X2_1) < 2aq + t. This is dual to Case III.1 and can
be treated by exchanging the roles of z; and z3. As a result we find that ls = a(x1x5 1).
The expression for K;, is as expected.

Case IL3: t = —2ly # —2a(x1x5 ') If a(x1x5 ') > 7+ p, we choose k = L%J This is

possible since l» > a(x1x3') > % > 2kp. A familiar arguments yields

_aryt 1 t _ _
K, = ¢r(1)%q 21+4€(§aX21)Z’YF(xia_g)Xl(Ii)le(wal 2 tory)y(wt Ry,
T

(3-4-29)

where x4 € 0™ are the solutions to the equation

71w12*a(X1X271) 4 wa1712) +b =0. (3430)

2
VL z(vb
+ X

In particular, z — =+ exist if and only if —vb; € 0%*.
If a(x1x5 ') < 7+ p, we argue slightly different. We note that the current assumptions
imply that —n < t < —2r — 2p. The quadratic term in the ¢-integral is given by

— ( brox + O(p)) 22t s
22 2

T
vr + w™2)

We choose k = —|%]| and take solutions x4+ of (3.4.30). In particular, we assume that

—vby € 0%*. Evaluating the remaining Gauf8 sum yields the same result as in (3.4.29).
Case I1L.4: t = —2a(x1x5 ). Note that the current configuration implies a(x1x5 ") > 7.
For this situation there might exists degenerate critical points. We have to solve the

congruence

wm—(l(XlXQ_l) bl

2t alby g+ T ) e

Calxir =l
If the discriminant A = (b, 1 + w1 mexaxy )

2 4by - .
G - ) 2L is a unit, we may argue as above.

Let us assume A € p and focus on upper bounds. We write a(x1x5 ") = 2’ + p/, choose

x = r’ and parametrise

b ar—a(x1x3 ") Y I /
:c:—X12X? -z B iiwaqtozw”f“‘sforozEO/lfﬁ‘S
v
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and

0 ifv(A)>r+),

Y = (4) and
Yo ifv(A) <7’ +p and (A)y = Y,

p

(2] ifu(A) >0 ),

\60 if U(A) =2y < r’ + p’.

Reinserting this parametrisation in the z-sum gives

Ky, = Cp(1)2q 270N "y / w(m
+ 0

-y (=1 (b bav? i =6)=a1 \ gy
j A (xa )Y

= (VA + wn—a
1 b><1><71 wal_a(XlXEI) Y_§
for some A; € F,some v+ € S and A = ——52 — + L-w?. Observe that
i 2 2 2

A(vA + wn—ebaxy 1)) € 0%, so that the j-th coefficient satisfies

bil. . bQUj _ ' c pa1—a(X1X271)'
Al (pA 4 wur—alaxa )

Furthermore, we check that

(vA + wn—abaxa )iy, — Adp,
— Adyd (bl _ b2> _|_jvj—1Aj—1wa1—a(X1X2_1)b1 + p2al_2a(X1X2_1).
This helps us to check that the second order term is in p®1—¢0xxs ")+9 and the third order
term is in 3~ 1w 201Xz )o X Note that we can truncate the Taylor series latest after the

3rd term. Thus, in the worst case scenario, we obtain the bound

-1
2a(x1x5 )

K| <2¢r(1)% 2~ 3

Case IV: t = —2I. In this case we will take a very familiar approach. First, we note

that Iy =t + Iy = | = a;. Thus, the congruences reduce too
vrs + (1 - va1X2_1w“1*“(X1X2_1))x2 +byep”and 1 = x9 — bX1X2—1wa1*“(X1X2_I) ep.

We can solve the remaining quadratic congruence as in many of the previous cases. Its

discriminant is given by

—1 —1
A= (1—vb, 1w 02— doby = 1 —20(by + by) + UZbilxgle‘“_Qa(XlX? ),
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A short computation modulo p shows that det A, € o™ if and only if A € o.
If A € 0%, then obviously S,;, < 2 and using Lemma 3.1.7 we can give a satisfying
expression for K,, in terms of 4 € S, .
From now on we assume that A € p. In particular, A, is singular, which implies a
slightly stronger congruence condition. We define
5 5] ifv(A) >, v 0 ifu(A)>r,
do  ifv(A) =26 <, Yo if (A)g = YZ and v(A) < 7.

Assuming S,, is non empty, we parametrise it by

Sa, = {(Ai +aw P70 By + apr*‘S) o€ o/p‘sfp} ,

for Ay = —% — blng + z%w‘s and B4 = —% + blgbz’ + %w‘s.

We proceed by inserting the parametrisation of S,, in the S,,-sum. This yields

Kq, =
v (=2b1,a1) Y x1(Ax)xa(Be)(Asw™™ + Biw ™ 4+ vALBrw ™)(p(1)%q 72
+
Y o+ w1+ )y (1 Y )aw T 4 vatwh ).
A B4

a€o/pd—r

As usual we use Lemma 3.1.3 and the p-adic logarithm to deal with the two characters.
Observing § < 7 enables us to truncate the Taylor expansion of the logarithm after the

3rd term. We get

K, = ')/F(—Zbl, a1) Z X1 (Ai)XQ(Bi)K/)(Aiwfal + Byw M + vAiBiwfal)

+
b b
Cr(1)2g7 8 /q/) 1+ Yo + 25 4 22 )
0 AL Bi
1,0 ba _95 3 by b2 2p—36
Plo— (= + 2= p (S gt dt.

For S, to be non-empty it is necessary that A4, B+ € 0. This translates into
v Q :i:(bl — bg)_l +]J

492 4 P

we conclude that AL B4 € o*.
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Note that if the linear or the quadratic term are units then we have at least square root
cancellation. Thus, we are left with showing that the coefficient in front of t3 is (close to)

a unit. The following computations are modulo p. Indeed, A € p implies
1+ 02(51 - b2)2 S 21)(b1 + bg) +p.

We also compute
b b
A2 € ;1+pandBi € ;2—1—;3.
Using this, an easy computation shows

by b2 1
— + = ¢ (ALB Co*.
Ai-i-Bi ( + i) +pCo

Thus we are left with an p-adic Airy function and get the bound”
Ko, | < 2¢p(1)%~ "5
O

Lemma 3.4.16 ([4], Lemma 5.12). Let 7 = x1 |-|° B x2 |-|”* where s € iR, and a(x1) = a(x2)

but x1 # x2. We put k = max(l,a(x1)).
If0<l<mnandl # 5, then

W (gt1,0) = vr (brba)*s=e0c0) x (o — bxlxglwk_a'(Xl))Xz(l“o)l/J(ﬂEow—k — by, w—a(x1)),
fort = —k and Wr(g4,1.,) = 0 otherwise. Here xo € 0* is the unique solution to

_lw2k—a(x1)—l) 4 b2wk—a(X1) =0.

2, k-l
vrw" T+ (1 by s

=13,

o~

Walgiiw) = Cr(1) ¢ 2 [G(le,Xl)G(wa(Xllx2)7 X7 x2)g

for =2 >t > —ng(rw);
Wa(giaw) = Cr(1) 28 (020 K, g 020K, ),
for —ngy(m) <t < —2ng(7); and

t
W (gt0) = CF(l)_2q_2K_%7

7 If F = Q) we may apply Lemma 3.1.5 to obtain cube root cancellation.
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for —2ng(7) <t < —n. Evaluations for K, can be found in Lemma 3.4.15. In particular we

have

n

Wr(9) <r q12.
If a(xix2) < % and —1 & 0%, then we have the stronger bound
Wx(9)| <F 1.
If kp = 1, then the implicit constants can taken to be 2.

The proof follows our usual strategy and is very similar in spirit to the proof of

previous lemmata. Thus we will be very brief.

Proof. If | = 0 or Il > n or t > —2, the formulas given in Lemma 3.3.9 can be easily
estimated. The cases 0 < [ < n and [ # § follow directly from Lemma 3.1.7 in a standard

manner. Finally, if | = 5, the work has been done in Lemma 3.3.9 and Lemma 3.4.15. [J

3.4.4 Summary

A consequence of [69, Corollar 2.35] is that
[Wa(g)] < V2q213)

for all g € G(F). In this chapter we went through great pain to establish tight bounds
for W; using the g;;, coordinates. Here we give a brief summary of our findings.

First of all let us observe that for I # § and any m we have
Wa(gt10)| <Fe q(s_%)(tﬂLmaX(n,Ql))‘

Furthermore, whenever 7 # x1 |-|* B x2 |-|° with a(x1) > a(x2) > 0 or I # a(x2) we can
take the implicit constant to be 1 and remove the €. Also note that in conjunction with
the support properties of W stronger bounds might be possible.

We turn to the transition region. Here we have®

Wﬂ'(gt,%,v) <r &(m,t). (3.4.31)

The values of £(m, t) are recorded in the following table.

8 The implicit constant is 2 for F' = Q.
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u t E(m,t)
supercuspidal t =—n,—no(m) R
—n <t < —no(m) g T
xSt or x|-[*B x|~ t=-n g1z
—n <t qJLTH
X B~ R i
xPBx || 7% for a(x1) > a(x2) >0 t=—-%2-m g3 1z
B fora(u) =a(e) >0 | t=-n -
—n <t < —2np(m) g T
t = —2ng(m) q’nTH“'nO(W)
—no(m) <t q*nit*M

Let to(7) = min{¢: Wﬂ(gt%,v) # 0}. The (essential) sharpness of (3.4.31) depends on
the existence of degenerate critical points. The following table summarises sufficient and

necessary conditions for the existence of such points.

T to(m) Condition for degeneracy
7 = wg, E/F unramified -n Nrg,r(be) € 0% (e.g. non twist minimal)
7 = we, E/ F ramified -n n even (i.e. non twist minimal)
xStor x|[-|°Bx||* -n none (always exists)
XA —3n no critical point
x1 P B8xa -] 7% —5-m byybys € 02
a(x1) > a(xz2) >0
Xt P Bxa |77 —n —1 € 0%
a(x1) = a(x2) >0and m < §
x1 P Bxa |77 -n none (always exists)
a(x1) = a(xz2) >0and m = 5
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3.5 MISCELLANEOUS INTEGRALS

We will conclude this chapter by evaluating some local integrals that appear in the

residual part ot the spectral expansion. More precisely we will calculate the integral

I(x) = / f(g)x(det(g))dg (3.5.1)
Z(F)\G(F)

for several choices of f. In particular, all f, that appear in Section 4.7.1 below. These
computations have previously appeared in [2, Appendix A].

First, we consider

wr(2)"t  for g = zm with z € Z(F), m € Maty(0),det(m) = k,
0 else,

for some k.

Lemma 3.5.1 ([2], Lemma Az1). For k > 0 we have

x (@)ool (Xy)  if x is unramified,
/ ri(9)x(det(g))dg =
Z(F)\G(F) 0 olse

Proof. The calculation for unramified x is straight forward. Thus, we assume that x is

ramified. In this case let us write X}, = U;«a; K. We clearly have

/Z(F)\G(F) ri(g)x(det(g))dg = ;X(det(ai)) /Z(F)\G(F)X(det(g))ﬂK(g)dg-

Using the choice of Haar measure and the fact 15 (n(z)a(y)k) = Lo,(x)1,x (y) yields
/ rr(9)x(det(g))dg
Z(F)\G(F)
= Soxtder(a)) [ [ wh) [ ) s () =0,
i 0 0%
This concludes the proof. O

Second, we look at

vol(Z(0) \ Ko(1))lw;t(2) if g=zk € Z(F)Ko(1),
flg) =

0 else.
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Lemma 3.5.2 ([2], Lemma A2). For a quadratic character x and unramified w, we have

I(x) =1
Proof. We first observe that for each g € K(1) we have det(g) € (0*)? + wo. Thus, if
a(x) < 1 we have x(g) = 1 for all g € Ko(1). Further, since x is quadratic, the case

a(x) > 1 can not appear in odd residual characteristic.

O]

After this warm up we come to the most interesting case. We consider the truncated

matrix coefficient. More precisely we look at

b (a(w ™ )ga(w™ if ZK",
o) = wyq) = { 7T ) e

0 else,
with

0 K if n is even,
K%1) ifnisodd.

We obtain the following result.

Lemma 3.5.3 ([2], Lemma A3). If x? = w,, one has

unless a(m) = 1. In this case the integral may be non-zero but we still have I () > 0.

Before we begin with the proof we recall some properties of ®,, which date back to
[30]. For any unitary, generic representation m of G(F') we define the matrix coefficient

associated to a Whittaker new vector W by
D (g) = (Wa,7(g9) W) .
Lemma 3.5.4 ([2], Lemma Ag). We have

cDﬂ gt l 1 Z W Z Ct+m71(u>G<—wml‘, wﬂ-u).

meZ neX;

Proof. First we use the definition of ®,. We arrive at

@ (n(@)geiy) = (Wr,m(n(z )gt,z,l)W>
= [ W) Wrlaln @i )

= 3 Wala(=") / ()W (al@ o) n(@)ger i (v).

meZ
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3.5 MISCELLANEOUS INTEGRALS

It is straight forward to check that

1 0
a(@™v)n(z) g1 = n(@™VT) Gy 01
0 v

—_———
€Ky (n)

Expanding W (g;;.) in its finite Fourier expansion and recalling the definition of the

Gaufs sum completes the proof. O

Proof of Lemma 3.5.3. Put b = max(a(x),n). Then x o det and ®, are bi-K; (b)-invariant.
Further, we recall

7 (9) = Lzke(9)®x(a(@ ™ )ga(=™)).

Thus a simple change of variables yields

I(x) = / x(det(9))®x(9)1 7 (a(e0™ ) ga(@ ™)) dg.
Z(F)\G(F)

It is easy to check that 1zxe(a(@™) - a(w™ ™)) is bi-Ky(b)-invariant. It follows that the

hole integrand is bi-Ky(b)-invariant, so that we can use [30, Lemma 3.2.4]. This yields

b
I(x) = ZCZth”/ X(@" )@ (n(2)ge0,1) 1 2o (a(@™ ) () grg1a(ww ™) )dp(x),
1=0 F

=0 teZ
for some positive constants ¢;. We remark that, since w, is trivial on the uniformiser,
so is x. Next we will investigate which restrictions on z, [, and ¢ are imposed by the

characteristic function (up to the center). One checks

wkx wm—lJrkx o wt+n1+k

a(@")n(z)g1a(w ™) =z-

—n1+k k-l

w w

Here we use the center to force all coefficients to be in o. This holds for
k > max(nq,l, —v(x), —v(z) —ny +1)

and suitable t. But we also need to make sure that the determinant is in 0. This implies
t+2k = 0.

We now consider n to be even. In this case K° = K and we get the conditions
k=mny,t=—2n1,l <np, and —v(z) < ny. (3.5.2)

After inserting the formula from Lemma 3.5.4 for the matrix coefficient we obtain

ni

100 =Y ad ™ S Wela(@™) 3 cronlW) [ G- wan)du(a). (353)

1=0 mezZ LEX, w "o
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3.5 MISCELLANEOUS INTEGRALS

Inserting the evaluation of the Gaufs sum together with character orthogonality shows

that most of the integrals vanish. We are left with

Z aq™™ Y Wa(a(@™))em—an, a(wr)
l=a w,r meZ
Zq—t+n1/ G m+t ni,. )d/J( )

>0
We have to consider different cases. First, we deal with representations that satisfy
L(s,n) = 1. In this case using (1.3.1) and (1.3.7) yields

ni

I(X> = Z Clql e 2n1,l Wﬂ anl t/ G t= ”11) 1>d,u( )

I=a(wn) >0
l—2n —t
= Z g =M c_gn 1 (wrh) ) [ D am el = 0.
I=a(wr) t>ny

Second, we consider the case m = x1 H x2 with a(x1) > a(x2) = 0. In this case we have
a(wr) = a(x1) = n > 0. Recall that at the moment we are considering n even. Thus,
a(wyr) > ny > 1. We conclude that I(x) = 0 since the I-sum is empty. Let us remark, that
m = xSt for unramified x has conductor 1 and therefore does not need to be considered
yet.

We have checked that I(x) = 0 for even n by considering all necessary types of =.
Now let us move on to n odd. In this case K° = K°(1) and additionally to (3.5.2) the

characteristic function forces v(w?" ~'x — 1) > 1. This implies
l=n;and z € w ™ (14 wo).
Analogously to (3.5.3) we get

100 = g™ 32 Walal@™) 3 o 0] [ G~ ", wapt)dpa(a)

mez pEXn, @™ ™M (1+wo)

o S Wala(@™) Y o (0 [ G ) d().

meZ p,e,'{nl, (1+w°)
a(pwr)<1

In the last step we used again the Gaufs sum evaluation (1.3.1) and orthogonality of
characters to remove all u with a(pw;) > 1.
We have to consider different cases again. First, let us look at 7 with L(s,7) = 1. In

this case me have n > 2, since we assume n odd. By (1.3.7) we get

100 =cn 3 om0 [ Glw s wo)dula) =0.
He:{np (1+w0) ;,0

a(pwr)<1
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Second, let m = x1 H x2 with a(x1) > a(x2) = 0. If n = a(x1) > 1, we immediately
have a(wru) > ny for all pu € X,,. Thus, in these cases, I(x) = 0. So we can assume

1 =n=n1 = a(x1). Using (1.3.1) and (1.3.7) we have the identity

100 =eVel(t+mo. 0 Earlns (e el (- Du(-1)

2’
neX,
pFwy
+ Z X1 (@™)g 2 e apma(wr’)
m>1

—Cr(1)q” 021(%1))

Inserting the expressions for ¢; 1 () given in Lemma 3.2.3 yields

I(x) = aVol(l4 wo,du)w,(— ( Z ¢r(1 -1 Z qm+<F(1)2q2>

,u,;éwﬂ m>1
= aVol(1 + wo, du)wx(—1) (Cr(1)*¢ (g —2) + Cr(1)g™ " + Cr(1)%g ).

Observe w,(—1) = x(—1)? = 1 and deduce that I() > 0.
This leaves us with the case 7 = xSt for unramified y. In particular, we have w = x? =

1. Thus we are dealing with 7 = St and we have a(7) = n = n; = 1. We obtain

O=a > a Y el [ =" pd(e).

m>0 HEX

Evaluating the Gaufs sum reveals

10 =avol(t+wo)( 3 G e (=12

a(p)=1

+ Z g™ Cm—z,l

m>1

—Cr(1)g™ 021(1)>

Using the evaluation of ¢;;(-) given in Lemma 3.2.1 one obtains

I(x) = aVol(l+wo) ( PIRGOEEDY q2m+CF(1)2q2)

a(p)=1 m>1
= aVol(1+ o) (Gr(1)%g (g = 2) + 4 Gr(2) + Ce(1)20 %) > 0

This was the last case to consider and the proof is complete. O
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Part II1

GLOBAL APPLICATION

In this part we seek to apply the local methods developed so far to the sup-
norm problem for automorphic forms. This is a global question and it re-

quires non-trivial arguments to put the local pieces together.

We treat essentially two aspects of the problem. First, we exhibit large values
high in the cusp. Here the local to global argument is straight forward solely
relying on the uniqueness of Whittaker models. Second, we prove upper
bounds for the global sup-norm. The latter requires some beautiful global
techniques developed in [20]. Essentially we will be extending the results

from [2].

Throughout this section we will deal with an arbitrary number field F' of
degree n. This base field will be considered as fixed and thus we allow all
constants to depend in it. In particular, we will freely discard contributions
like 2™ or N (d). All corresponding local fields with their associated objects

will appear with subscripts.






THE SUP-NORM OF CUSPIDAL AUTOMORPHIC FORMS

Classically the sup-norm problem is motivated by quantum chaos. However, in the set-
ting of automorphic forms there are close connections to the theory of L-functions. We
will start this chapter by briefly reviewing the classical theory including some previous
results. Then we will set up the necessary notation and start to prove Theorem 1.2.1. This
proof will occupy the remainder of this thesis. We closely follow [2], making the modi-
fications necessary for the slightly general set-up allowed in Theorem 1.2.1 respectively

Theorem 4.8.1 and Theorem 4.8.2 below.

4.1 BACKGROUND

The goal of this section is to introduce the sup-norm problem by briefly painting the
classical picture and then giving an overview over previous results on the sup-norm of
automorphic forms. Since there is a huge amount of literature on this topic we organise

this section according to different aspects.

Classical aspects and local methods

Let (M, g) be a n dimensional, compact Riemannian manifold without boundary. Such
a manifold comes naturally with the (positive) Laplace-Beltrami operator A4, whose
spectrum, Spec(M ), can be seen as an important geometric invariant of M. Since we
assume M to be compact, Spec(M ) is discrete and has no finite accumulation point. We

are interested in understanding the map

My : Spec(M) — R,

A = sup HQSHOO
Agi=x¢ [19ll2

This quantity is closely connected to the multiplicity of eigenspaces and the remainder

of the Weyl-law. Indeed, from the local Weyl-law one can deduce the bound

Moo (M) <t AT (4.1.1)
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4.1 BACKGROUND

This local bound originates from the work of Levitan [58], Avacumovic [6], and Horman-
der [44]. It improves upon the trivial bound coming from standard Sobolev estimates.

While the estimate (4.1.1) is sharp in general, as can be seen considering the (eu-
clidean) sphere S, it is possibly far from the truth in general. In [77] the authors show
that there is a close connection between the true size of M., and the dynamics of the
geodesic flow on M. Roughly speaking, they show that if (4.1.1) is sharp for M, then
there must be a point x € M at which a positive amount of initial directions lead to
geodesic loops. It turns out that this is almost sufficient [76].

For more background and references concerning the microlocal analysis of eigenfunc-
tions we refer to the very nice survey [91] and the neat book [75].

The estimate (4.1.1) mentioned above relies purely on the local structure of M. How-
ever, if M possesses global symmetries considering only the function M., might lead
to loss of information. The reason for this is that M., takes the supremum over the
whole eigenspace, but it might be enlightening to single out special elements in each
eigenspace. This can be illustrated by looking at the sphere Ss. As mentioned earlier, the
local bound for M is sharp in this case. However, VanderKam exploited the presence
of Hecke operators to construct an orthonormal basis ¢; of Laplace-Beltrami eigenfunc-
tions satisfying

5
[@5lloc < A (4.1.2)

Thus it makes sense to consider specific sequences of eigenfunctions and investigate the
eigenfunction growth along these.

A similar phenomenon can be observed if M is a compact locally symmetric space. In
this situation the commutative ring of invariant differential operator D(M ) is generated
by rank (M) elements. Therefore we can consider functions ¢ on M which are eigenfunc-
tions of all operators in D(M) simultaneously. Such ¢ are in particular Laplace-Beltrami
eigenfunctions and we refer to them as joint eigenfunctions. In his famous letter [72]

Sarnak observed that (generic) joint eigenfunctions satisfy the improved bound

H¢HOO n—rank(M)

<A 4 . 1.
lo)s <7 (41.3)

This has been further investigated in [60] and [67].

The last two points raise the question about the growth of the L>-norm of eigenfunc-
tions along sequences of eigenfunctions. Furthermore, one can try to identify families

with similar growth properties. Part of these questions is what we call the sup-norm prob-
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4.1 BACKGROUND

lem. It is the problem of improving upon the bound (4.1.1) or (4.1.3) depending on the

setting.

The purity conjecture

The most general conjecture in this area is the so called purity conjecture posed in [72]. It
states that, for any sequence (¢;); of L?>-normalised Hecke-eigenfunctions with regular
spectral parameter on a compact, arithmetic, negatively curved Riemannian manifold
(without boundary), we have

n —rank(M)

1 illoo 1
ACCM C -ZnJ|o, 1 ).

log A; 4

To get a feeling for this conjecture we consider the example M = I'\}#(?), where T is
a co-compact arithmetic lattice. The local bound implies that the accumulation points
that can appear must lie between 0 and 1. We first note that, as stated here, the purity
conjecture includes the existence of a sub-local (subconvex) bound. This is because the
accumulation point § is excluded. Thus, in this particular setting, the purity conjecture

is equivalent to the very strong sup-norm bound
[9]loc <e A for any € > 0.

Note that the conjecture does not apply to the sphere S2. In this case the high di-
mensional eigenspaces are responsible for the existence of many different basis which
make it possible to accommodate for arbitrary accumulation points in the interval [0, 1].
A well known example is the sequence consisting of zonal spherical harmonics, which
is responsible for the accumulation point %. On the other hand, we can look at the or-

thonormal basis consisting of Hecke eigenfunctions considered by VanderKam. In view

of (4.1.2) this sequence only yields accumulation points in the interval [0, 2]. It seems
reasonable to believe that this sequence is pure in the sense that it really has accumula-

tion point 0.

Non-compact spaces.

Up to this point we assumed that )M is a compact Riemannian manifold without bound-
ary. However, many interesting manifolds fail to be compact. Prominent examples are
quotients of the upper half plane #(? by congruence subgroups, which are of great

interest to number theorists. Thus, one would like to consider the sup-norm problem
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4.1 BACKGROUND

in this setting as well. But the failure to be compact makes it impossible to define the
global sup-norm in general. There are several ways to go around this. First, we can fix a

compact set K and consider the restricted sup-norm

16]ls0,c = sup | (z)]
zeK

for smooth functions ¢. Second, we can exclude the continuous part of the spectrum
and restrict ourselves to eigenfunctions that appear in the discrete spectrum. Functions
in the discrete spectrum will have essentially compact support so that it is possible to
consider the global sup-norm. If M = SLy(Z) \ #(?), then the second approach amounts
to studying the sup-norm of classical Maaf$ cusp forms.

At this stage a word of warning is in order. It is not possible to translate all the
results and conjectures from the compact in the non-compact setting. Indeed it has been
shown in [24] that the bound (4.1.3) fails for GL,, cusp forms if n is large. Also the purity
conjecture does not generalise to the non-compact setting without compromises. Indeed,
it has been shown in [7] that certain Eisenstein series on SL;(Z) \ GL;(R)/O(R)R*
violate the purity conjecture. In view of these two negative results the global behaviour
of eigenfunctions on non-compact manifolds is far from transparent. This warning aside,
it is still believed that most classical results, as well as the purity conjecture, carry over
to eigenfunctions in the discrete spectrum restricted to a fixed compact set.

Instead of looking at non-compact spaces, it is also possible to pass to suitable com-
pactifications. See [23] for a detailed account on the subject of compactification. Unfor-
tunately, the compactification will usually be a manifold with boundary or even with
edges. This leads to the study of elliptic PDE’s with boundary condition. For example,
on M = SLy(Z) \ H? the property 'vanishing at the cusp’ would translate to Dirichlet
boundary condition on an appropriate compactification. To get intuition for the global
behaviour of Maaf$ cusp forms on non-compact spaces one might have a look at classical
results concerning mass concentration of Laplace eigenfunctions with Dirichlet bound-
ary condition. It has been shown in [74] that (4.1.1) still holds for eigenfunctions of the
Laplace-Beltrami operator with Dirichlet boundary condition on 2 dimensional Rieman-
nian manifolds with boundary. However, on the disc {z € R?: |z| < 1}, some Laplace
eigenfunctions ¢ with Dirichlet boundary condition concentrate within a neighbourhood
of the boundary, which is roughly of size )\;%, [37]. Such Phenomena might explain the

growth of Maaf$ cusp forms on GL,, shown in [24].
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The level aspect

Instead of bounding the L*-norm of eigenfunctions in terms of the spectral parameter
A, one can bound it using other invariants of M. One instance of this is the volume.
To make this precise we consider a sequence of manifolds M,, with vol(M,,) — oo as

n — oo. Then questions about the size of

“ |p()|

p sup

Ad=A, M, ||B]l2
AT

in terms of vol(M,,) arise. This is often referred to as the level aspect of the sup-norm
problem. The first supremum ensures that the size of the spectral parameter remains
comparable throughout the sequence of eigenfunctions under consideration. We can not
fix a specific eigenvalue since it might not be contained in the spectrum of all M,,. One
can naturally ask the bound to be explicit in both 7" and the volume. Such estimates are
usually called hybrid bounds. The name level aspect comes from the fact that one usually
considers families of the form M,, =T, \ X for a fixed Riemann symmetric space X and
a sequence of lattices I';, C I'y. The volume of M,, can then be expressed as the "level” or
index of the lattice I, in T'y.

One instance of a hybrid bound appears in the works of Blomer and Michel on el-
lipsoids over number fields, [16, 17]. The sequence of manifolds under consideration
comes from Eichler orders in totally definite quaternion algebras over totally real fields.
These manifolds have an arithmetic structure, which allows to establish hybrid bounds

for Hecke-Laplace eigenfunctions.

Sup-norm bounds in the GLg-setting

In this section we try to give an overview on sup-norm bounds for eigenfunctions living
on quotients of the upper half plane #(?). We call this the G Lo-setting, since most of the
objects appearing here are instances of automorphic forms on G L, as defined in [22].

A milestone in the history of the sup-norm problem is the work of Iwaniec and Sarnak
[52]. They consider L?-normalised Hecke-Maaf} forms on I\ H?), where T is a lattice
arising from a maximal order in a quaternion algebra. They adapt the amplification
method, which is a known tool in the analysis of L-functions, to this setting, and are
the first to obtain a sup-norm bound superior to (4.1.1). Indeed they obtain the power
saving estimate

2 4e
| 6]loo Ke A;ﬁ for all € > 0. (4.1.4)
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In the appendix they sketch how to modify their argument to make it work for the
non-compact quotient SLy(Z) \ H (2.
Blomer and Holowinsky, in [12], prove a bound in the level aspect. More precisely
they show that
[6lloo < NEF2T,

where ¢ is a Hecke-Maaf newform on I'o(N) \ #(?) for square-free N. Their theorem
holds also for modular forms of positive (non exceptional) weight. Furthermore, they

work through the details sketched in the appendix to [52] and derive
oo < N%“A;%“
for square-free N. This leads to the hybrid bound
[6lloo < N3~ 2350

for N square-free. It follows an explosion of work on the sup-norm problem for Hecke-
MaaR newforms on Io(N) \ #?). The papers [39-41, 81] refine the amplification process
and establish increasingly good bounds in the (square-free) level-aspect. This progress

then culminates in the hybrid bound
1 € kR €
6llo0 < NaFN2T (4.1.5)

for square-free N, which was proven in [83]. This combines the best known bounds in
level and spectral aspect.

The first step towards removing the square-free condition was made in the paper [71]
using classical language. However, soon after A. Saha obtained the state of the art hybrid
bound

1 5
18lloo < (MNg)3+eNg T A2

for a Hecke-Maafs newform ¢ of level NgNg, where N, is square-free, and central char-
acter x with conductor M. This was proven in [70] exploiting the powerful language of
automorphic representations.

Note that despite all the effort, the bound in the spectral aspect has been untouched
since the groundbreaking work of Iwaniec and Sarnak. Further, it has always been as-
sumed that ¢ is an eigenfunction of all the Hecke operators. Even if strongly believed,
it is not known in general, if one can improve the local bound without this assumption.

In this direction there is the very interesting work [54] which considers Maaf3 forms that
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are eigenfunctions of only finitely many Hecke operators. In this case it turns out that
each Hecke operator yields a log-saving upon the local bound.

The sup-norm bounds have also been generalised to the number field setting. One of
the cases considered were quotients of the space #(3) by congruence subgroups. In this
situation Blomer, Harcos, and Mili¢evi¢ obtained a hybrid bound which is as strong as
(4.1.5). As usual they had to restrict themselves to square-free level. Quite recently they
extended their work to arbitrary number fields. Together with Maga, [20], they proved
a hybrid bound for square-free level. Over totally real fields their bound is of the same
strength as (4.1.5). This is the point where our result fits in. We treat Maaf§ forms of
powerful level and with arbitrary central character over number fields using the tools
from [7o0].

There is an obvious version of the sup-norm problem for Eisenstein series. In this
scenario it is impossible to consider the global sup-norm. However, one can investigate
the size of Eisenstein series restricted to compact sets. The first to look at this situation
was Young in his note [89]. He establishes the bound

sup
zeK

1
B(z 5 + iT)‘ <o TSTE

for the standard Eisenstein series F on SLy(Z) \ H(?. Here K is some fixed compact sub-
set of H(?). The interesting feature is that the explicit construction of Eisenstein series
allows for an optimised amplifier. This leads to an improvement upon the seemingly un-
beatable exponent 2—54 in the spectral aspect. This work has been generalised to Eisenstein
series of square-free level in [50]. We extend it further to Eisenstein series over number
fields allowing powerful level and central character in [3]. A similar improvement in the
eigenvalue aspect can be achieved for dihedral Maafs forms using a related amplifier.
This has been worked out in [49].

One can also investigate the size of holomorphic cusp forms on #(?). In this case the
situation is slightly different. This is due to the appearance of non-trivial K-types at
infinity. One has to make a slight change in the definition of the sup-norm. We set

I8lloo = sup S(2)% |o(2)],

2€H(2)

where k is the weight of ¢. For compact quotients of #2) it has been shown in [33] that,

H¢Hoo <K k%_i‘%
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Note that the spectral parameter in this case is roughly k? and the bound above indeed
improves upon the local bound k2. In the non-compact situation one can use the Fourier-

i/\lhittaker eXpanSion at lnflnlty to ShOVV
1 1
k7476 << H(Z)H:: << k74+6.

This has been calculated in [87]. It remains an interesting open question if this bound
remains sharp if one restricts the modular form to some fixed compact subset. In the
level aspect the bounds derived in [40] carry over to the case of holomorphic modular
forms. This is due to the fact that bounds in the level aspect rely purely on information
at finite places. For details see [88]. Furthermore, non-integral weight modular forms
have been considered in the papers [55, 78, 79].

Most of the results mentioned so far work for forms that in one sense or another
correspond to a new vector in the corresponding representation. However, automorphic
representations contain many interesting vectors, whose mass distribution can be stud-
ied. The paper [48] goes in this direction. Here the authors study other minimal vectors
for which they can produce sharp sup-norm bounds using only the Whittaker expan-
sion. Classically these forms live on quotients of the upper half plane by a special class of
arithmetic lattices which are different from the classical principal congruence subgroups

mentioned above.

Higher rank results

In higher rank spaces the game is to find sequences of joint eigenfunctions along which
one can improve the local bound (4.1.3). This is usually achieved by looking at eigen-
functions of Hecke operators and applying an appropriate amplification argument. The
first instance of a proper higher rank sup-norm bound which features a power saving
in comparison to the local bound was established in [19]. After this breakthrough many
more higher rank situation have been studied. For example self dual Maafs forms on
GL(n) have been treated in the sequence of papers [14, 15, 43]. The most general results
at the moment are [59, 68], which can deal with Maaf forms on a wide variety of reduc-
tive groups. All the results mentioned so far only deal with the size of eigenfunctions
in the bulk of the space. Only very recently Blomer, Harcos, and Maga established the
first global sup-norm result in higher rank, see [9, 10]. These feature explicit exponents

which however are worse than expected. Due to the delicate analysis of high rank Whit-
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taker expansions. An very strong saving in the exponent for Hecke-eigenfunctions on
53 was established in [80].
In the depth aspect the only result to date is the work [47]. However, the author does

not consider newforms, but instead looks at certain minimal forms.

4.2 SETTING UP THE SCENE

In this section we are interested in bounding the sup-norm of cuspidal automorphic

forms of G = GL; over F'. More precisely we will study functions
¢ € Li(G(F)\ G(Ar),w) C L*(G(F)\ G(Ar),w)

which are right K (n)-invariant for minimal n and satisfying some reasonable archimedean
restrictions. Indeed, we allow for a mix between Maafd forms and Hilbert modular
forms. The associated automorphic representation will be denoted by 7, As explained
in [22, p. 4.6] each cuspidal automorphic representation with central character w can be
(uniquely) realised as a closed invariant subspace of L3(G(F) \ G(AF),w). In this way
the problem of estimating the sup-norm of ¢ is closely linked to properties of 7. How-
ever, the sup-norm itself is only defined for smooth elements in L3(G(F) \ G(Ar),w)
and it does not make sense in different realisations of 74. Therefore we will make the

following convention.

Convention 4.2.1 ([2], Convention 1). Let (7, V) be a cuspidal automorphic representation
with central character w, with an intertwiner o: Vyz — L3(G(F)\ G(AFr),ws). Then the

sup-norm of a K-finite vector v € V; is defined to be

= el

Let us make some remarks concerning this convention.

* Note that this is indeed well defined. First, we observe that by multiplicity one for
GL; the intertwiner o is unique up to scaling. However, the scaling does not matter
since we L2-normalise the image. Secondly, K -finiteness ensures that the L>°-norm

of o(v) is defined.

¢ This convention may seem unnecessary at first. But it gives us the flexibility to
realise 7 in arbitrary models without changing the fixed cusp form whose sup-

norm we want to bound.
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¢ The restriction to K-finite vectors shows that we should actually work with the

G(Ar)-module underlying .

Let us describe the structure of the cuspidal automorphic representation 7, keeping
in mind that we are mainly interested in (almost) spherical Maafs newforms mixed
with Hilbert modular forms. We write V. for the representation space of 7. First, note
that since (, V) is an cuspidal automorphic representation it is in particular unitary
and admissible. For convenience we assume that the central character w, of 7 satisfies
wr|r, = 1. This can be achieved by an unramified twist.

In order to describe the automorphic forms we will consider, we specify the underly-

ing representation. To do so we write
=@ e @
v P

where (my, V) (respectively (m,,Vy,) ) are irreducible representation of G(F}) (reps
G(F,)) with central character wy , (respectively wy ,). Note that this decomposition pre-
serves the subspaces of K-finite vectors.

To describe the structure at infinity we decompose the set of archimedean places in
Soo = Shol U Sspnh with the only restriction that Spo C Sgr. For v € Sg,, we assume that

m, = x1 H x2 with

Xi(y) = |y\zyt” sgn(y)"v if v is real,

X; (T619) — 02 gm0 else.
Recall the invariants

t, = tu,l - tl/,27 my = mMy1 — My2 and s, = tl/,l + tl/,2'

Furthermore, v € V. , is an eigenvector of the Casimir operator with eigenvalue

2
lzt” if v is real,
=
1+t2  else.

This justifies calling ¢, the spectral parameter of w. At places v € Sy, we assume that

7, = o(x1, x2)- In this case we have the invariants

k, = ty1—tyo+ l1eNand s, = ty1+ty2.
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4.2 SETTING UP THE SCENE

Here k, is the weight of 7, and we will usually assume that k, > 2. For v € Sgr N Sy,
we set k, = m,, mod 2. In this case k, € {0,1} will be the weight of the archimedean
new vector.

Note that all together we must have wy o|r+ = |-|E”[F vi Rlsy, Thus, the assumption
wr|r+ = 1 implies Y [F, : R]s, = 0.

Next we will single out a special element in V. Again we do so place by place. If
v € S¢, we assume 7, to be spherical, in particular m, = 0. In other words, (7., V)
contains a K, -invariant vector v; which is unique up to scaling. If v € Sg, then v, € V,
will be the unique lowest weight vector. More precisely, this vector is distinguished by
assuming that m, (k(0))vy = e**%v7 for all 6 € [0,2n). Note that v € Syon N Sk then
k, is either 0 or 1 and we are still dealing with principal series representations. At the
non-archimedean places we define n, = a(m,) and let vy € V;, be the up to scaling
unique K y(np)-invariant vector. Globally we define the arithmetic conductor of 7 to be
the ideal n = [[,, p"». Thus V; contains a unique (up to scaling) vector which is K1 (n)gin-

invariant and has the prescribed transformation behaviour at infinity. The vector
= Qe
v p

does the job and we will call it the (global) new vector. Under the action of the center
Z(Ar) the new vector v° transforms with resect to the central character w,, which has
conductor m = [], p™.

With this restrictions on 7 in place we observe that

b0 = o (1) (4.2.1)

is a newform over I’ with central character w,. At the places v € Sgpy, it has Casimir

eigenvalue (/\,,)l,essph and it has weight (k,),cs, . Furthermore, by our convention

_ 1ol

v° = .
1l = g, T

This is exactly the setting in which we will study sup-norm problem. It is the natural

generalisation of classical Maafs wave forms and holomorphic modular forms on the
upper half plane H(?).

By imposing that ¢ is spherical at all complex places we exclude the interesting case
of vector valued modular forms. We make this assumption for technical convenience.

Indeed, it allows us to ignore issues arising in the amplification process caused by the
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4.3 LOWER BOUNDS FOR NEWFORMS NEAR THE CUSP

non-spherical spectral transform. On a smaller note this assumption makes the spherical
test vector more natural and the archimedean Whittaker functions easier to handle. With
some additional work it should be possible to allow fixed non-trivial K,-types or m, > 0
at complex places. However, it seems very difficult to prove bounds which are good in
the m,-aspect. These issues, which are certainly very interesting, lie outside the scope of

this thesis.

4.3 LOWER BOUNDS FOR NEWFORMS NEAR THE CUSP

We start by investigating some obstructions to small sup-norms. In our setting there are
essentially two such obstructions. One produces large values attained in the bulk of the
space. These have been studied already in [52] and in many articles after. Instead we
focus on the other one which can be thought of as a resonance phenomenon happening
high in the cusp. In particular we follow the approach from [69, 82] to give qualitative
lower bounds, which we expect to be sharp. This section can be seen as a supplement to
[69] relying on the new local results produced in Part ii.

We start by reproducing [69, Theorem 3.3] in our setting. To this end let us recall that

SUPgyeG(F,) (W, (9)]

h —
() Wals

where W, is the new vector in the Whittaker model of 7,. We collect the ramified pieces
together and set

) = H h(my).

pln
Proposition 4.3.1. Let ¢, be a newform of level w and arbitrary central character. Then
[[bolloo
I boll2

Proof. Without loss of generality we assume that ¢, is L?>-normalised. Observe that

>Fe ‘k|}wl ‘Tysph N ()" h(ma).

swp [ Wouo)l = swp | [ ou(n()gyi(-o)da
9eG(Ar) 9eG(AF) |V F\AFR
S VOl(F\Ar,pay) sup [do(g)]-

geG(AF)
Thus, we reduced the statement to the study of the Whittaker function. Recall the defi-

nition

(R, (2 HW¢> o3 CF ) Woo 3
re — L* ,A ’1 v [} p [oF}
HW¢O|| g (ﬂ- d )H HC 'ﬂ'p,Ad 1)
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4.3 LOWER BOUNDS FOR NEWFORMS NEAR THE CUSP

from [61, (2.2) and (2.3)], where L* (7, Ad, 1) is the regularised value of the (finite part of

the) adjoint square L-function. According to [61, (2.4) and Lemma 2.2.3] we have
||¢OH§ = CFHW¢0 Hzeg and L*(Tr, Ad? 1) <<F,€ (N(l‘l) ’T|sph |k‘hol)€7

for some positive constant Cr depending only on F. Furthermore note that for p { n we

have
CFp(2)”W¢07P % _ ‘ (1)|2
CFp(l)L(ﬂ-p’Ad)l) forb '

Thus, by restricting the range of the supremum, we find

17 SWPge (R (W
sup W, (9)] >r.e (N(0) [Tg [kl40)
cGhr) ph 1 ho! l:I [Weewll2

Cr, (1)2L(y, Ad, 1)z
] A(m) = 5
H ’ (R (2)2

SUPge ()| Woo.v |
Weo,vll2

Whittaker functions. Note that [W;,_ .| is independent of s,, so that the lower bound

Recalling lower bounds for

via the transition region of archimedean

does not dependent on these parameters. Finally, observing that

Gy (1)2 L(mp Ad, 1)
Cry(2)2

yields the desired statement. O

Even though the case of high ramification was already treated in the works [69, 82] let

us give the following corollary.

Corollary 4.3.2. Suppose that n | m?, then we have

m2

1
1, 1_. 4 e
60l 0 Tl 118N (5 ) A7)l

If wis a perfect square, then there exist forms ¢, such that

m4

1
1. 1. 12 .
bk 17180 () A0l

[@olloc >F.e

Proof. The result will follow from Proposition 4.3.1 after evaluating h(m,) locally. We
start with the first lower bound, which holds in general and does not depend on the

existence of degenerate critical points. Note that

h(myy) > 1
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4.3 LOWER BOUNDS FOR NEWFORMS NEAR THE CUSP

for all possibilities of m,. This trivial lower bound is sufficient for all places where
my = . At the remaining places we find that m, = x1, B x2,, for two characters
satisfying a(x1,p) > a(x2,). For these representations it follows from Lemma 3.3.5 and
Lemma 3.4.12 that

2mp—ny

h(my)) > g

The bound stated above follows by combining these local lower bounds.

The second bound relies on the existence of degenerate critical points and does not
hold for every newform. In particular n being a square is a necessary condition for this
bound to hold. We have to construct local components 7,, which feature degenerate
critical points and where h(m,) is large enough. To do so we let m, = x1, B x2,,, where
the characters are chosen as follows. If p | n and 2m;, = n,, any characters satisfying
a(x1,p) = a(x2,p) will do the job. At the remaining places p | n we assume that a(x1,) =

my and a(x1,p) = np — my. Furthermore, these characters must satisfy

le,p : le,p € ((OF/p)X)Zﬂ

where b, , and b,,, are associated to the characters using Lemma 3.1.3. In all these
cases our construction ensures the existence of degenerate critical points, see the second
table on p.138. Thus the bound (3.4.31) is sharp and we obtain
dmp—np
h(mp) > E(mp, to(mp)) = g ™

The size of &(mpy, to(mp)) can be read off from the first table on page 138.

These observations are insensitive to unitary, unramified twists of the characters x1
and x2,,. Thus we find a global cuspidal automorphic representation = with suitable lo-
cal components by using [65, Theorem 3.2.1]. By construction the newform ¢, associated

to m will have the desired properties. O

In the opposite situation, when the central character is not highly ramified, we obtain

the following interesting result.

Corollary 4.3.3. Let n be a perfect square such that —1 € (Op/ n)2X. Further, let w, be a
character of conductor m such that m | n2 then there are newforms ¢ of level n and central

character wy such that

1_e 1_e 1
[@olloc > F e [Elpor Tl g N ()72 602

E)
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4.3 LOWER BOUNDS FOR NEWFORMS NEAR THE CUSP

This is maybe surprising since it provides counter examples to [69, Conjecture 3].

Proof. We start by constructing local representations having the desired behaviour. To

do so fix p | n and choose characters X1, x2p: Fy* — S1 such that

a(x1p) = a(x1p) and Xx1,pX1p = Wrp-

This is possible because a(wxp) = my < % Furthermore, if m;, = %, we make sure that

a(prxig) < % We set m, = x1,, H x2p and o, = Xl,pXQ_,; H 1.
By Lemma 3.3.9 we find that

n —

Wﬂ'p (g—n z ’U) = CFp (1)72%35 K(XLP & X2,p7 (wp

19

|3

n
2

w0y 2 ), Ty )|

n
2

By construction of 7, and because —1 is a square in o, the Fourier type integral for

K(x15® X2, (w2, 2),-) exhibits a degenerate critical point vy € o). Therefore we

have

np

h(ﬂp) 2 Wﬂp(g*m%,vo) >F, quz'

This is the context of Lemma 3.4.15. Note that these observations are not affected by
twisting x1, and 2, with unitary unramified characters.

Thus we can find a global Hecke-character x» satisfying x2|r, = 1, which has con-
ductor m and with local components equal X2, up to unramified twist. Furthermore we
use [65, Theorem 3.2.1] to construct a cuspidal automorphic form 7 of level n, central
character w, ;> and local components equal to o, up to unitary unramified twists of

the characters. The result follows by applying Proposition 4.3.1 to xa. O

Remark 4.3.4. Note that we only used large values caused by principal series representations
in the corollary above. However, also supercuspidal representations can lead to big peaks of the
Whittaker functions. However their behaviour is slightly more subtle to describe and we refer to

Section 3.4.4 for precise conditions which force the existence of critical points.

Finally, let us look at the following neat example which lies exactly at the border to
highly ramified behaviour. The interesting point of this example is that it contains an

easily constructible family which always exhibits degenerate behaviour.

Corollary 4.3.5. Let 7 be a cuspidal automorphic representation of level 1 and let x be Hecke

character of conductor m. Then we have

1 1 1
X ® olloc > pee [kl 1715, A ()5~ Ix © ol |2
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4.4 THE GENERATING DOMAIN

Proof. Note that the local components at primes dividing m of x7 are of the shape

|

xp B-|°* xp- Thus we conclude by using Lemma 3.4.10. O

Remark 4.3.6. Note that the tools developed in Part ii are strong enough to produce precise lower
bounds for any cuspidal automorphic representation 7 as long as one knows its local constitutes.
However, in general the statements are combinatorial hard to formulate and therefore we do not
give a general statement here. We hope that the examples given above are shedding some light on

the general picture.

4.4 THE GENERATING DOMAIN

In this section we follow [70, Section 3.2] and [2, Section 2] to derive a generating domain
for

Z(Ap)G(F)\G(AF)/Ki(n).

From this we deduce that the global sup-norm problem reduces to the study of (twists of)
¢o on very special elements of G(AF). The central result of this section is Corollary 4.4.7
below. Note that the newform ¢, as defined above might not transform trivially under

the action of K (n) and Z(A ). However, |¢,| does.

4.4.1  Local preliminaries

Several steps necessary to deal with powerful level rely on local methods. In this section
we briefly recall the ingredients needed from [70] and Part ii. We start by collecting some

simple results capturing the behaviour of the invariants defined in (1.3.5).
Lemma 4.4.1 ([2], Lemma 2.1). Let g € Kya(w, ). If ny is odd, then
nip(g) =nop <= g€ ng(l)a(wgl’”).

If ny, is even, then

n1p(g) = nop-

Proof. The first part is a consequence of [70, Lemma 2.2,(2)]. The second part is trivial.

O
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4.4 THE GENERATING DOMAIN

Lemma 4.4.2 ([70], Lemma 2.3). Let n, be odd. Further take k € Ko (1) and

0 1
Gpe 17
w, 0
Then

kepwa(wy'?) = wk'a(wy P )e,z

for k' € KJ)(1), z € Z(F,) and

1 Zfﬁp = ].,
€& = 0 1

else.

p
@, 0

Proof. The case ¢, = 1 is very simple. One writes

kepwa(wy ) = w (™ kw) a(wy, ).
=k

It is a straight forward calculation to check &' € KJ(1). In the remaining case we write

— o 0P 0
kepwa(wy ™) = w (w T kw) (@, ")e, i
=k 0 —wgoﬁp

As before we have k' € KJ)(1). To verify the equality one only needs the observation that

since ny, is odd we have ng, = nyp — 1. 0

4.4.2 Finding the generating set

Our goal is to recreate the argument from [70, Section 3.2] coupled with the results from
[20, Section 5]. As one expects this general setting brings the class group and the unit

group into the picture. We start with several definitions. For any ideal £ in Or we define

e = I 1T

ple \@,® 0/ pte

he = [Je(=) 11

0

ple pte

Ke = [[&[[{1} C GL2(Ap),
ple pfe

Jg = th,g and

Je = {g€Je:nip(gp) =nop¥p | £}
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4.4 THE GENERATING DOMAIN

Let us make the following little observation.

Lemma 4.4.3 ([2], Lemma 2.3). For g € J¢ one has

n1p

gEJe < gp € ng(l)a(wp ) for all p| £ with n, odd.
Proof. The proof proceeds by applying Lemma 4.4.1 for each p|£. ]

Corollary 4.4.4 ([2], Corollary 2.1). For g, € J, and v € o, we have a(v)g € J,.

Proof. Obviously a(v)gy € Jp. One concludes by using Lemma 4.4.3 and

a(v)w =w

In terms of the local invariants we write

ny = Hpno,p’nl — 1—‘[pn1,p’n2 — Hpnl,p—no,p‘
p p p

Note that ny is square-free and that we have n = ‘(1(2)112.
Now we want to use the generating domain from [20] for the square-free ideal ns.

Recall the group

0 1
K* = Z(Foo) Koo [ [ 2(Fp) Ky [ [ (Ko, (1), )
pfnz plno @y 0

defined in [20, Section 2]. Let F(ny) be the generating domain for G(F) \ G(Ar)/K*

defined in [20, p. 14]. An element in F(ny) is of the form

where |y|, is maximal and §; € Op,1 < i < hp, is some representative in the class
group. Furthermore, we can assume that y is balanced and that z, < 1 for all v. This

follows as in [20, (5.9)]. We will call such matrices special. Define

y Yy T
Foy = :Ji e {1, - ,h} such that a(6;) € F(ng)
01 01

We can write down a generating domain in the spirit of [70, Proposition 3.6].
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Proposition 4.4.5 ([2], Proposition 2.1). For g € G(AFr) we find £ny and 1 < i < hp such
that
9 € Z(A)G(F) (a(0;) Tn X Fny) ne k1 (n).

The proof follows the steps in [70] exploiting that the fundamental domain F(n2)

from [20] is already given adélically.

Proof. Let w, be the diagonal embedding of w in K. Then the determinant map
wnha K1 (N) finhy Iy H op

is surjective. Thus we can apply strong approximation to the element gh,'w,; ! and find
gooti € G(Ar) such that
g € G(F)gootiwnhy K1(n).

Using the properties of F(n2) we write goot; = v fzk* with v € G(F), zk* € K* and

[ € F(n2). By construction of K* we can assume

o ky € K, if p { ng,
.=
k{JEP G K07p€p lf p | nQ,
ky, € K,.
0 1 )
fore, € ¢ 1, . Define
@, 0
8= H p
ps.toep#l
and write
geZ(A fHk‘* H kywa(w H kpwa(w Hk:epwa PYKq(n).
pin plnpnz plnz,pte plL
——
€Ki(n)

Let us treat each product appearing above separately. First, we include the product over
p { ninto K;(n). Next, we notice that if p | n but p 1 ny then n, must be even. Since
kyw € K, we apply Lemma 4.4.1 to absorb the second product into J,. In the two
remaining cases, namely p | ny, n, must be odd. First, for p { £ we apply Lemma 4.4.2 to
obtain

kywa(wy™") =w ky a(wmy'?).
—~—

eK2(1)
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4.4 THE GENERATING DOMAIN

It follows from Lemma 4.4.3 that also the third product is contained in 7. Finally, we
use Lemma 4.4.2 and Lemma 4.4.3 again to get
KQ(1)

kyepwa(wy ™) =w ky a(wy'’) e;JZz).

€In
Thus

9 € Z(A)G(F)fT]] & Ki(n).

One concludes the proof by writing f = pa(6;) for a special matrix p € F,, and some

i€ {1l hp). 0

4.4.3 The action of ng

The next step is to understand how 7g acts on ¢, Let us define the character ws =

£ £
wmoo Hp wﬂ',p by

. L ifp| L,
wﬂ—vp|0;< -
(JJﬂ-7p|U;< lfp'fg
We also impose that w,ﬁoo| Fs., = L. Strong approximation for Aj shows that there is

such a character which is F'* invariant and unitary.

Let us make some observations. Locally one has

-1 .
W | X if p ‘ £
-1 £ m™,plo ’
Wr pWrr p o) = ’ (441)

1 ifpf L.
Let (7, V) be a cuspidal automorphic representation. We define the twisted represen-
tation (7%, V) by
™(g) = wy ' wy (det(g))7(g).

This representation is sometimes denoted by 7* = (w;'wE)w. The central character of

7 is wr(wE)? and looks locally like

-1 .
7r,p(("‘)72r,p)2|g>< = Wn,p\apx ol % (4-4-2)

w'ﬂ',p|0;< lfp*,g
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In particular, the log-conductor of the new central character coincides with the log-

conductor of w,, namely
m= H pme.
p

Further, we note that this twist does not change the spectral data at co. Concerning the

conductor of 7* we have the following statement.

Lemma 4.4.6 ([70], Lemma 3.4). The log-conductor of 7* is n and

vg = m(ng)v° (4-4.3)

is a new vector in 7*.

Proof. Note that for p { £ one simply has 7Té: = m,. However, at the places p | £ the
representation wf is equivalent to 7, up to some unramified twist. Here 7, denotes the
contragredient representation of m,. Since a(m,) = a(#,) it suffices to show that the
vector given in (4.4.3) has the correct transformation behaviour under K (n).

We proceed place by place. For p 1 £ and v there is nothing to do. For p | £ we

calculate
a b 0 1 0 1 d cw, ™
c d w,?" 0 wg” 0 w;”’b a
=kp€K1,p(np) =k}, €Ko,p(np)

It is easy to verify that kyz(det(k,)) ™" € Ky ,(np). Therefore, using (4.4.1) and (4.4.2), we

have

Wf(kp)vz,p = W;ja(det(kp))ﬂp(kp (nelp)vy
= wrp(det(ky)) mp (2(det(ky))) mp ([nelp) [ ( 2(det(ky) ™) ky )vp ]
— S——

:wp(det(kp)) EK1,p(np)

—1,0
_Up

= WP([UE]P)US = Ugp
0

Observe that (7%, V;;) is also a cuspidal automorphic representation. Furthermore, an

intertwiner o to L3(G(F)\ G(AF),w;(wg)?) is given by

[05(v)](9) = wy 'wr(det(g))[o(v)](g).
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This leads us to the definition of the twisted newform ¢f = 0°(v3). One immediately

observes that
bo(gne) = wr(wy) ' (det(g)) 85 (9)-

Giving us exactly the ingredient we needed to understand the action of g on ¢.. We

derive the following corollary.

Corollary 4.4.7 ([2], Corollary 2.2). If ¢, is the newform associated to a cuspidal automorphic

representation (m,V,,) then

sup  |po(g)] <sup sup  sup
gGGLQ(A) £|n2 1<i<hp g€Jn ><-7:n2

o5 (a(6))g) . (444

We have reduced the sup-norm problem for the newform ¢, to bounding the new-
forms ¢¢ on very special matrices. In the following we will fix an arbitrary £ | n, write

¢ = ¢¢ and bound ¢ on a(6;)( Ty X Fu, ).

4.5 COUNTING RESULTS

In this section we provide the necessary counting results that will be crucial for later
estimates. The first part of this section is taken from [2, Section 3.2] and based on [20].
Here we recall counting results for lattice points in adelic boxes with subtle arithmetic
constraints. This will be essential for our treatment of the Whittaker expansion. The
second part is dedicated to counting integer matrices. The arguments are extracted [20].
However, we relax the constraints at real places. This is important for our amplification

argument as our test function will not necessarily have compact support.

4.5.1  Counting field elements in boxes

This subsection is concerned with estimating the number of field elements in different
adelic boxes. These can be archimedean boxes or p-adic boxes. The choice of parameters
in this sections may seem arbitrary. However, it is well motivated by applications later

on.
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4.5 COUNTING RESULTS

We start by considering some archimedean boxes. The following argument is almost

completely taken from [20]. Take parameters R, > % and an ideal ¢. Further, fix a € ¢

such that
2

N () < N((a)) < (W) " IV G). (4:5.1)

This is possible by [63, Lemma 6.2]. In particular one has az™! C Op.

Define
{& e Fflyla|lRy, <& < (I, +1)]a| Ry} ifl, >1,
{& € FX: 6] < lal Ry, 1 < ||6] = 925 | < =L, +1} i1, <0
L) = and v € Sgpp,
{& e B 6] <la| Ry, —1, <|&)] < =1, +1} if 1, <0
and v € S
\ (4.5-2)

For e Z" 2, let [(£) =[], L. (l,).

Let us start by establishing a simple but crucial property of these sets.

Lemma 4.5.1 ([2], Lemma 3.6). Ifl, < —||a| R, |, then I,(1,) = 0.

Proof. We start with v € Sy,;,. Suppose I, < —||a| R, |. We consider two cases. First, let

€| > 2|i||ZZ|. The two inequalities in the definition of I, (-) yield
la| T,
R, < <la|Ry,.
o+ Ll ] <160] < Jal By

But the set of such &, is empty. Second, we assume |¢, | < @%. This gives

la| T,
< — R, <0
6] < gy, Ll B
which is also impossible. The case v € S, is trivial. O

Our next goal is to establish good estimates for #(1(€) Naz~t). This will be achieved
by a standard volume argument. Choose a fundamental set P for the lattice ar ™! C F..
Without loss of generality we can assume 0 € P. Let D be the diameter of P. It is an

elementary fact, see [63], that

Vol(P) ~p N((a))N (271 =p 1.

169
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Further, we define

{¢,€F,: 1, Ja|R,—D < |¢&| < (l,+1)|a| R, + D} ifl, >1,

Ju() =N{e, e F,: —1,-D < €| = 92| < 1, + 14D} ifl, #0and v € S,
{¢,€F,: —1,-D<|¢|<—l,+1+D} if I, # 0 and v € Sho.

and J(£) =11, J.(Iv).

Lemma 4.5.2 ([2], Lemma 3.7). The volume of J,(1,) is given by

2la| R, +4D ifvisrealand [, > 1,
4(142D) if v € Sgpp is real and 1, < 0,
Vol(J, (L)) = 2(1+2D) if v € Spey is real and [, <0,

7(2l, + 1) |a| Ry(la| Ry +2D)  if vis complex and I, > 1,

2'“!%(1 +2D) if v is complex and [, < 0.
Proof. The proof is an elementary volume calculation.

As consequence of Minkowski-theory we can choose P such that

D < N(a™)n <5 1.

Therefore
Vol(J(£)) <p [ [ £2(),
for
laR,|+ 1 if visrealand [, > 1,
1 if visreal and [, <0,
fV(lu) =
ll,(% +1)2 ifvis complex and [, > 1,
lalTy 4 4 if v is complex and [, < 0.
\ v

With this at hand we can establish the following counting result.

Lemma 4.5.3 ([2], Lemma 3.8). One has

fa ' N 1) <r [] fo ().
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4.5 COUNTING RESULTS

Proof. By construction of P we have

Vol(Ugea-1nr (4 + P)) _ Vol(J(#))
Vol(P) ~ Vol(P) °

#la” N 1(e)) =
One concludes using (4.5.3). O

Furthermore, we will need to count field elements with strong non-archimedean re-

strictions. We will be able to reduce this problem to the following lemma.

Lemma 4.5.4 ([20], Lemma 7 and Corollary 1). Let a € A7 be any idele, y € FX and m C F

be a non-zero fractional ideal. Then
1. ﬁ{(l) € F: ’x‘y < |aV‘l/ and |‘T|p < ’ap|p} < |a"A’
2. t{w € F: 2], <], and |z], = |ap|,} <c afa,

3. tH{z e F*: |z|, <l|y|, and zO0p C m} < NL&:),

4 e e P |z|, < |yl and 20p = m} <, (/‘ﬁ};o)) .

Define the sets

B(R) = {z€Fyx: |z,] <R},
z" = [[{ky €Z: ky > —v,()},
pln
bin = {a € Agin: vp(ap) > —vy(1)},

C'(k,[u]) = {acCk): ay = wp?al, with [a] = [u,] € 0/ (1 +wp®* o) Vpln}.

It will be useful to know the volumes of these sets.

Lemma 4.5.5 ([2], Lemma 3.9). We have

Vol(AY;,, ditpin) = N(2),
N(2)

Vol(C' (k). dpufin) = G e ™
( ( ) f ) N([Z]n) ( )p|n p
Vol(C*(k; [u])dppin) = Vol(C'(k, [w'])dp),
Z N -
VOI(C (k. [l digin) = o [T ). 453
Y pln
Proof. This is a standard adelic volume computation done place by place. O

Finally, we are ready to prove the following counting result.
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Lemma 4.5.6 ([2], Lemma 3.10). We have

B[, N (2) o
N (no(g))N ([2]a) £

pln

£((a '\ {0}) NB(R)C"(k, [u])) < Fr(k) =1+

uniform in [u]. Furthermore,
(F*NB(R)C'(k)) \ {0} =0

for Ty @ > |Rloo N (i),

Proof. Let S be the set we want to count. If S is empty, we have nothing to show. Thus

take go € S. Define the shifted set S’ = inS — 1. Any z € ' satisfies

lz|, < 2|—| forallv,
q0 |,
—vp(2)
|, < “ for all p { n and
40
10,5(9p)

z|. < |w for all p | n.
el < |mp®| forallp|

Define the idéle s by s, = 2!/[FvR] qﬁo and

—vp(2)

P
wp .
B m ifp fn,
Sp =
wgo‘“ () else.

After noting that 0 € S’ we conclude that
45 < 1+ #{z € F*: [a], < |s|, and |a], < |s|,}.
To estimate the last set we use Lemma 4.5.4. We obtain
1S <1+ s, -

The adelic norm of s is computed using
- - —k
ITleol,  TTHaoly =[] laol, = ][ @ -
v pin pln pin
To prove the second claim we suppose [ [, qf” > |R| N (:71[2]s) and define the ideal
m = Hmnpkp. In order to have ¢ € C*(k) one needs N'((q)) > N(m):[s]; L. But for
q € B(R) we require |q|, < |R|.,. We conclude by

1=lqlp = ldls lal i = N’%'(zo)) < |R|j\of?n[1(z[)dn)

< 1
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Roughly the same reasoning applies to elements of 1! N B(R).
Corollary 4.5.7 ([2], Corollary 3.2). If |R|, < N(2)7L, then

11N B(R) = {0}.

4.5.2 Counting integer matrices

Throughout this section we fix two ideals n and q. Let
P(L) C{a € Op: N(a) € [L,2L]}

for a large parameter L. Later this set will be the basic support of the amplifier and we

will impose further restrictions on its elements. Define
, a b 1 1
T;(i,1) = € GLy(F): a,d,0; "beb;, a—debjq, cebd; g,
c d

and ad — bc = l}.

for I € Op. Recall the definition of the generalised upper half space H, (1.3.10), as well
as the local point pair invariants w,, (1.3.11). Throughout this section we fix a special
matrix n(z)a(y) € Fy, and define the point P = (P,), € H by setting P, = y,i, + z,.
Let 6 = (4,), € ]R’jj”2 such that 6, < 1 for v € Sgpn. We consider the subsets of
matrices
T;(i,1,6) =T;(i,1,6)° UTE" (i,1,6) UT4" (4,1, 6).

Here, we define

a b
[;(i,,6)° =y = € T;(i,0): u,(v.P,.P,) <6, forallv p ,

0 d
T;(i,1,8)P" = {v € T;(4,1): tr(y)? = 4det(y) and u,(v.P,.P,) < §, for all v} and
T;(i,1,6)9" = {y € T;(4,)\ (T;(4,1,8)° UT;(i,1,8)"): u,(v.P,.P,) < 6, forall v}
The goal of this section is to bound the number of elements in these sets. For notational
simplicity we write § = (max(1,4,)),. Note that §, < 1 for all v € Sp. In the upcoming
estimates we have made no effort to optimise the dependence on 4.

We will closely follow [20, Section 10], starting by deriving preliminary estimates

coming from the archimedean restriction.
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a, b,
Lemma 4.5.8. Suppose vy, = € GLy(F),) such that u(v,P,, P,) <6, and a,d, —
¢y dy
byc, = 1,.
Then we have
1
lev Py + dol| = |ly]2 (14+ O(Vév)), (4.5.6)
1
lev Py —av| = L[> (1+O(Vdy)), (4.5.7)
1
levyn| < 1202 (1+ \/@), (4.5.8)
2¢,2, — ay + dy| < 2[20,]2 (1+/3,), (4-5.9)
jay + dy| < 220,02 (1+/5,), (4.5.10)
I, 1
Emyz - nyi + (au - du)l'u +b, < Yv ‘2lu|é V 51/7 (4511)
‘_Cuxz% + (au - dV)xV + bu‘ S Yv ‘2ZV’% (2 + 3\/5)7 (4512)
2 vy — Wy dl/
§R( vt \/g + >’ < /26, and (4.5.13)
3 a”+d”>‘ < /26 1
S ( T )| SV (4.5.14)

This lemma is a summary of the inequalities [20, (10.2)-(10.10)]. The proof is taken
from [20] and [11]. Note that we slightly modified the argument to allow for general 6,

and /. Similar inequalities already appeared in [52].

Proof. The starting point is the inequality

1 2
K lcv Py + dy|

S(wh) -SRI _ 1
o, > u Pap > - -
v > u(, Py, P,) lew Py + dy ] ]2

B QQ(VVPV)%(PV) 2

for real as well as complex places v. This implies (4.5.6). To show the second inequality
we observe that u(v,P,,P,) = u(y, ip,, P,) and apply the inequality above with ~, L
This yields (4.5.7). Inequalities (4.5.8)-(4.5.10) follow directly from (4.5.6) and (4.5.7) by

observing
| = [S(e Py +dy)| < ey Py +dy,
lay, +dy| = |R(c, P, + dy) + R(e, Py — a,)| < ||ev Py +dy|| + ||cv Py — ay ]|, and
12¢,xy, —a, +dy| = [R(c, P, +dy) —R(co Py — a)| < ||ev Py + dul| + e Py — au]l.
To prove the remaining inequalities we consider real and complex places separately.

If v is real, we observe that

”aV—PL/ + by - CVP3 — dVPVH2
5, > u(y Py P,) = 2LIS(R)? |
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Equations (4.5.11) and (4.5.13) follow by taking real part and imaginary part in the
inequality above. Finally, (4.5.12) follows from (4.5.8) together with (4.5.11). Furthermore,
in the real case (4.5.14) is trivial.

If v is complex, we observe that

5 s lavP +by = PoeyBy — Pydy|?
V= 21,3(P,)? '

The numerator on the right hand side is a quaternion and considering its complex part
yields (4.5.11). Similarly looking at its j- and k-part yields (4.5.13) and (4.5.14). As before
(4.5.12) follows from (4.5.8) and (4.5.11). O

Lemma 4.5.9 ([20], Lemma 12). We have
A 1 1
4076, 1,8) <e (8] 1loo) (1 + 113 [yl 10]3)-

Proof. Since ad = [, the ideal version of the divisor bound gives up to N (1) possibilities
for the ideals (a) and (d). However, fixing a choice of ideals we observe that (4.5.6),

(4.5.7) and Lemma 4.5.4 give

Hla,d)} < (18], l1lo0)

choices for a,d. We conclude the proof by counting the number possible b, once a, d are

fixed, using (4.5.11) and Lemma 4.5.4. O

Lemma 4.5.10 ([20], Lemma 13). If P is in the fundamental domain F(ns) and |§| <
N(1) = |y| .2, then P (i,1,8) = 0.

Since the proof carries over without modifications, we will not reproduce it here.

Lemma 4.5.11 ([20], Lemma 14). We have

3 1 1
€ by 7 8|5 T€
N (D 0]g |91¢ 19|

par -
ﬁ]'_‘] (2)176) <<€ N(n2)1+€

Proof. Observe that (a + d)? = 4(ad — be) implies that [ = ad — bc = A\? is a square. At
real places (4.5.13) implies that

v dy v dy
Ty +d, = (Cuxu - % + ?> + (& + 7) = )\V(l + O(\/ 61/))

In combination with (4.5.6) this gives

(cyyl,)2 =|e,P, + dl,]2 —(cyzy + d,,)2 < )\12,\/61,.
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At complex places (4.5.8) yields
oy < |17 .

VI

Because (a — d)? + 4bc = 0, there is a | (a — d) such that N(a) > N((c))2. Thus,

according to (4.5.9), (4.5.13) and Lemma 4.5.4 we have
N (D)% 16]2
tla—d} <1+ M
N((e))2

for fixed c¢. Summing over all admissible choices for ¢ yields

ﬁ{<c,a_d)}<<W+N<z)é|a|§ > N((e))~=

N
|y’oo (112 0#069;1112
cy<<l,,%6§y;1 real ,
1
< Yy 1 complex
1 5
N ol VDTSR N0l 019l
1 1+ :
[Yloo N (n2) Y| N (ng) 1+ N (ng)+e

<Le

In the last step we used Lemma 4.5.10.
We conclude by observing that v is determined by its trace 2\ = a + d, the numbers c,
a — d, and the condition (a — d)? + 4bc = 0. O

Remark 4.5.12. In the notation of [20] we have

o e . 1

Mo(L,j,8) = > tT9(i,a?3,8) LT+ Iyl 161%) (4.5.15)
a,B€P(L)

as well as
o L3+ |64 1614 18]
My(L,j,6) = > 45" (i,0787,6) < R CH : (4.5.16)
N(nz)

a,B8eP(L)

This shows that by summing up the individual bounds given here we recover the exact statements
from [20, Lemma 12, Lemma 14]. However, in order to bound the number of generic matrices
one uses a ingenious lattice point counting trick which is more effective when bundling matrices

with comparable determinant together.

We define
MIT(L,6) = > 4T%"(i,e,0) and
L<N(a)<2L
MIE(L) = Y T a,d).
L<N(a)<2L,
« square
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In the notation of [20] this corresponds to

M3(L,1,6) < M{$"(L?,6) + M{S"(2L?,6) and

M5(L,2,8) < M{"2(L4,8) + M{SD(2L*, 6) + M{"D (4L, 8) + M{SD (8L, 6).
We have the following adaption of [20, Lemma 15] to our setting.

Lemma 4.5.13. We have

1 3
Li|8&  L?|8|g |6|&
e (r,8) < 8] [ o+ ZA0  LRRIOIE )
’ N(ng)d N(n2)

1 3 1
LIl |, LE10]x |82

MITI(L,8) < |82 Lo | L + ;
7 > N(ny)? N (n2)

In particular, we obtain the bounds

Ms(L,1,6) < 8] [L*+
N (n2)

1 1
Ms3(L,2,8) < ‘3’%+6L6 L2+ L*|0]% i L°|0|g |0]¢ ‘
= N (ng) N (n2)

3
r LYol 16]¢
]I; €| and

N (n2)

N

Proof. The number of possible values for ¢ that can contribute to M?7" (L, d) is bounded
by
l
ey < B
[yl N (1)

Let M/"(L,d,c) denote the sub-count of M?"(L,d) which counts only matrices with

given c as lower left entry. We further split
MY (L, 8, c) Z M*(n

Here « is an abbreviation for the fixed quintuple (j,%,L,d,¢) and n = (n,),es. such

that 0 <n, < \%L and M*(n) is counting only those matrices v satisfying

n,,\/g < arg(det(v,)) < (n, + 1)\/57

for all complex places v. Without loss of generality we can assume that M*(n) # 0

a
and fix an element v, = [ contributing to this count. Every other matrix v =

¢ dn

, which is counted this way, is uniquely determined by the differences

d=a—an, V=b—byandd =d—d,.
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By construction the determinants | = det(y) and I, = det(yn) satisfy

2

Ly

ln,u

L, I Vo, ifve S, 4 Vi,

< an

L] sl N

0 ifVGSR

+0(/d,)

at all places v | oo for a suitably chosen branch of the square root. Vanishing at the real
places follows from the fact that the determinant is totally positive. Furthermore, since

l,ln and y are assumed to be balanced, we can apply (4.5.8) and (4.5.11) to find
1
(a}, — d}), + ), < L2 |y|% /5,

According to (4.5.13) and (4.5.14) we have

r / /
%<al, dy>’%<ay+dy><< w

ln,u ln,l/

On a smaller note (4.5.9) and (4.5.10) imply

I / / ~
%<CLV dz/)’%(azy—i_dl/)«\/g'

ln,u ln,u

Next, we decompose

M*(n) =) M*(n,p,q).

Here M*(n, p,q) is the sub-count of M*(n) counting only elements satisfying

r
pymg%@ dv) < (pu + 1)V5,

ln,u

n,v

/ /
qu\/@ <R (W) < (qu+ 1)\/5»

for all complex places v. In particular, the bounds above imply that

M*= ) M‘(np.aq) (4.5.17)
n,p,qeZ"2,
nuypV7QV<<\/$

Without loss of generality we fix any element v, p ¢ contributing to A/*(n, p,q). Any

other matrix v counted by M*(n, p, q) is determined by the numbers

a=s(a—anpq), b=s(b— bnpq), and d=s(d— dnpq) (4.5.18)
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L
where s is a unit satisfying s,6, =< 6|35 . By constructions and the same arguments used

for estimating expressions involving a’, ', d’ we obtain

1

~ -~ 1 1 1
(@, — d)as + b, < L3 [yl% 812,
~ 7 L = - ~ 1
Gy —d, < L2 |5|§3 and a, +d, <« L2ns, -

These two bounds combined yield the following key inequality:
(G —d)P +b|| < Lew !yli yayg% .
From the lattice counting result given in [20, Lemma 6, Part (d)] we deduce that
${(a—d,B)} < 1+ LF [yl 181 N(n2)? + LIyl 18] -
Furthermore, we observe that
H{(a+d)} < 1+ L2 \Jyé \3\%.
We conclude that
M, p ) < (14 L3 1812 [8[2 ) (1+ L7yl 1812 A ()% + Lyl I8l ).

In order to finish part one of the proof we consider two cases. First, if |§|c > L™!|d |11_21 N(ng),

then
1 101
L2 [§]¢ |o|gp > 1
We obtain
Lt Lh8): 1
M (L0 <8 ‘ C (14 L2yl 1612 N (n2)? + L |yl 10]
D) < Bl T g (14 L ylo 1615 N (1) + LIyl 161, )
L L3183 1818 L2 |6] lold
< 6], -+ R 19IC N]R C
Y| N (n) [8]g N(n2)2 (n2)

s 1 3
R Li|d|t  L?|8|k |0]|&
<3| H]I}Jr Olr191¢ |
Nyt N(na)

Second, if |d|c < L' |d|x' N(n2), we define § = (§,), by assuming ‘5’]1{ = |d|g and
6|c = min(1672, L~ 18|g" M(n2)) as well as 6, < §,. Arguing as before with § in place
of 6 we find

3 = 1
- . L? 16|k |02 A 104

M{S"(L,8) < MY (L,8) < |8] Loy A’/’R‘ < < 18], 4 20
’ ’ 18] ¢ (n2) N(ng)1
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This completes the first part of the proof.
We now turn to estimating M jgjn’D(L, d). To this end we recall that every v, which

contributes to the counting satisfies det(y) = A\? for some A € Op. This reveals
0# (a—d)? +4bc= (a+d)*> —4\* = (a+d —2)\)(a+d+2)\).

Thus each tuple (a — d,b) gives rise to < (|é |, L) possibilities for a + d. Therefore
we can drop the extra sub-count coming from q in the argument above. Making the

necessary modifications yields

en,] *
n?p
L3
Yloo N (n2)

19l

1 3 1
arlie Lz L2|6|g |62
82 L RTC.

< ’ ‘oo ( 5 T + Nna)
101¢

alide o _1 1 1 1
<8z 8IE - (14 L2 |y|, |62 N (n2)2 + Lyl 16]..)

To conclude the proof from here one argues as before. O

Remark 4.5.14. Adding all the corresponding contributions given above together establishes the

useful bound
A 1
#T5(i,1,8) < 4T9(i, , 8) + T2 (i, 00, &) + MITZ(1,8) < 8] (1+ |yl 16]%).
This is a good reality check. In particular, we recover
A 1
M(L,0,8) < |8, (1+ Iyl 10]%),

which is the content of [20, Lemma 11]. Following the proof of [20, Lemma 11] directly yields the

useful preliminary estimate
A 1
50,0, 8) < N0 [8] (14l N ()2 1015
Finally, we recall two more counting results without repeating a proof.

Lemma 4.5.15 ([20], Lemma 16 and Lemma 17). Let Fyy be the maximal totally real subfield

of F. Suppose 6, < 1 for all v, and that m = [F: Fy| > 2. Then we have

3
1 1 L2m+1’6| |5|Z
Ms(L,1,8) < L? + L*™ |82 6|4 + RC

3( ) ’ ‘]R‘ ‘C N(ng)

Furthermore, M3(L,2,8) = 0 unless

1< L8V 5.
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

In this section we consider the Whittaker expansion of cusp forms as in [2, Section 3].
This will provide us with the first upper bounds for the newform ¢.. The main result is
Proposition 4.6.12 below.

Throughout this section let (7, V;) be a cuspidal automorphic representation with
new vector v° € V; and associated newform ¢, = o(v°). Without loss of generality we

assume that ¢, is L2-normalised. Further, we fix g € J, and n(x)a(y) € Fn,.

4.6.1  The Whittaker expansion of cusp forms

Let ¢ be the standard additive character of A as defined in (1.3.2). Recall the factorisa-
tion (1.3.3). In particular, the conductor of 9 is 0~ 1.
Having fixed the additive character we define the corresponding global Whittaker

function
272

- Vdr F\AF

We want to factor this global function into a product of local functions each of which

W, (9) po(n(z)g)Y(—z)dpn, (7).

matches the ones studied in Part ii. To achieve this we have to deal with several techni-
calities. First, if wy p(wp) = |wp|é“”, we define 7, = H;%p mp. The purpose of this twist is
that the central character wy, of 7 is trivial on the uniformiser. Second, we have to keep
in mind that the local constitutes of ) do not always coincide with the fixed unramified
additive characters 1), and 1),

Let W), be the Whittaker new vector associated to the representation 7, with respect
to the character ¢, normalised by W,(1) = 1. At infinity we take the local Whittaker
function W, to be the Whittaker vector associated to v; normalised by (W,,W,) = 1.
This matches the situation in [20] as well as the set-up in Part ii. Having defined these

local functions we achieve the factorisation

We, (9) = co. [T Wola) [T 1det(gp)ly* Wi(a(w®)gp).
v p

—_———
:WOO(QOO)

The translation in the finite part comes from the shift in the local additive characters, see

(1.3.3). The constant c, arises through the re-normalisation of the local functions.
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For 1 <i < hp and g € J, we have the well known Whittaker expansion

Po(a(8;)gn(z)a(y))
— o 3 T gt det(gp)ly " * Wylale ®0i9)gp) Woo (a(g)n(x)aly)).

qEFX P
For convenience we split the local terms in the archimedean part Wy, the unramified

part

HWp zq))

ptn
and the ramified part

= [T We(a( V6:q)gp)-
pln

We also collect all the unramified twists together and write 1(¢) = [], |46 det(gy)[, "7,
Since |n| = 1 this factor does not influence any of the upcoming estimates.
Let us continue by gathering some properties of A\, and A, First, we recall the follow-

ing standard result.

Lemma 4.6.1 ([2], Lemma 3.1). If p { n, then there are unramified characters x1, and xa2

such that 77{3 = Xx1,p B x2,p. In this case we have

0 if vp(0iq) + v, () <0,

W, (a(wsp(a)QiQ)) = —(vp (0i9)+0p () /2 X1, (p) P iV OITL g (aprp) 0 (i) Top (2
9 X1,p (@@p) —X2,p (@p)

if vp(0iq) + vy (2) > 0.

Proof. This follows from [25, Theorem 4.6.4] and [25, Theorem 4.6.5]. O
In particular we find the following support properties of the unramified coefficients.
Corollary 4.6.2 ([2], Corollary 3.1). If Ayr(q) # 0, then vy(q) > —vp(d) — vp(6;) for all p { n.

We can go even further and describe the unramified coefficients in terms the Hecke

eigenvalues. To this end we define
X = {m € Maty(0p): vy(det(m)) = k},

for p t nand & € IN. The local new vector vy is an eigenvector of the operator 7,(1x, )
and we denote its eigenvalue by A(p*). For any ideal a co-prime to n we define the global

Hecke operator by T'(a) = [[,jamp(1x,,, ) )- It is clear that the global new vector v° and
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therefore also the newform ¢., is an eigenvector of this operator with eigenvalue \(a) =
Hp|u A(p? (). We can now make a connection between \,, and the Hecke eigenvalues
A(+). It is important to notice that we follow the normalisation of [25, Section 4.6] which

differs from the one used in [70] and [20].

Lemma 4.6.3 ([2], Lemma 3.2). We have

Nurlq) = D00
(q)0:0
N ([((1)91-0]-1>
Proof. The proof proceeds locally by showing
Ap*) = gyWp(a(=")) for p fn.

This can be done by induction using [25, Proposition 4.6.4, Proposition 4.6.6] and Lemma 4.6.1.

O
Next we turn towards the ramified components ;.

Lemma 4.6.4 ([2], Lemma 3.3). If \u(q) # O, then vy (q) > —vp(6;) — vp(9) —nop —m1p(9p)
forall p | n.

Although notation differs this is essentially [70, Lemma 3.11].

Proof. Since g € J, we have g, € Kpa(w, ) and n1,(gy) = no,p. But Wp(a(w;)p(a)ﬁiq)gp) #

0 so that [0, Proposition 2.11,(1)] implies’

Up(05q) +vp(0) = —n1p(gp) — M1 p(gp)-

Note that we used Corollary 4.4.4 to include a(v') into g, for o' € oy where ;¢ =
(0:9)
O

7 Up
v Wy .

Later on it will make sense to view )\, as a locally constant function on the adéles
in an obvious way. It will then be crucial to determine sets on which this function is

constant.

p(9p)

Lemma 4.6.5 ([2], Lemma 3.4). Let p|nand uy,us € opX such that u; —ug € wgo" 0p. Then

Wa, (a(@fur)gp)| = [Wa, (a(huz)gp)]|

This is essentially [70, Lemma 3.12].

1 Note that in the notation of [70] we have q(gp) = no,p +m1,5(gp).
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Proof. The proof of this little lemma goes back to the decomposition (1.3.4) and the fact
that ‘Wﬂp‘ is well defined by its values on g ; ,.

First, let us write

9p = ant,l,vk~

One observes that
k _ / /
a,(wp ul)gp = 2N gt+k7l7w;1k )

By doing the same for us we observe, that the claimed equality follows when
[ou™] = [ouy] € 0 /(1 + " ®op).
O(g”)ap. 0O

The last condition leads to u; — us € wg

Combining the support properties from Lemma 4.6.4 and Corollary 4.6.2 we derive

|60 (a(0i)gn(z)a(y))] < leg,| D 1hur(@)An(g) Wos(alay))] - (4.6.1)
qErl
Here
1 =mnomi(g)0 Hp”*’(ei) and my(g) = Hpmlv*’(gp). (4.6.2)
p p

It is easy to deal with the constant cy, .

Lemma 4.6.6 ([2], Lemma 3.5). We have
Coo <re V()] )"
Proof. As in [69] we observe
c5, <p L7N(1L,m Ad) " [ W0, W) ™! = L(1,m, Ad) ™.
It is a well known fact that L(1,7, Ad) > (N(n) |T|_)¢. Thus

Co < (N(n)|T0)"

Before continuing we fix a parameter R = (R, ), and define the box

B(R) =][{& € Fu: |8 < R}
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

This box will be used to truncate the Whittaker expansion. Mostly we will work with
fixed parameters R depending on y and the spectral parameters of ¢,. However, if not
otherwise stated we allow for more flexibility.

Applying the Holder inequality together with 1 = [q[ . = [q|;,, |9l yields

=

|60 (a(0i)gn(z)a(y))| < 0¢o( > qofWoo(a(qy))4) (4.63)

g€~ NB(R)

=S1(R)

( > N(q)gAur(q)An(q)g) +lego | €.
ger~1NB(R)

=52(R)

with

1
1

Si(R) = ( > qooQWoo(a(qy))4> :

g€~ 1NB(R)

g€~ 1NB(R)

S2(R) = ( > N(Q>§)‘ur(Q))\n(Q)g> , and
E = Z ‘)\ur(Q))‘n(Q)Woo<qy)|
g1~ 1,q¢B(R)

We will estimate each one of these three quantities in the upcoming subsections.

4.6.2  The sum Si(R)

In this section we will treat the sum S;(R). Before we start let us record some explicit
expressions for the functions W, . The following is taken from Section 2.2, in particular
Lemma 2.2.2 and Lemma 2.3.4.

If v € Sgpp, N SR and k, = 0, then we have

V2 |€V|1/ K“TV (27T |§1/|)
e

Wy (a(8)| =

If v € Sgpp and k, = 1, then we obtain

‘K% (271' |€y|) + Sgn(éu>K%(2ﬂ- |£I/|)‘

|WV(CL(£V))| :2|£V|y ’r(l_{_@)‘
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

If v € Sy, then

um’T 5 3
L= g2e ™ if €, >0,
Wy (a(&))| = § VTR (4.6.4)

0 else.

Finally, if v € S¢, then

_ B, K, (47 |6, )|

W, (a(&))| = IT(1+it,)]|

(4.6.5)

Note that up to an absolute constant, which arises through different measure normal-
isations, our expressions agree with those given in [20, p. 19]. For the cases when &, # 0
one compares our results to the un-normalised expressions given in [69].

Due to the transition region of the archimedean Whittaker function this argument

requires
%+5
T”;r‘j;”yl = % ifve Ssph,
R, = (4.6.6)
kv—1 _ ku :
iy, = if v € Sy

Note that in view of Corollary 4.5.7 the sum S is empty if |R| . < N (2)"!. Therefore

we assume
T s, |11 _
< 2% > N(nomy(g)
Yo

throughout this section. Let us fix a € 2 as in (4.5.1). Further recall that

R

o0

- 27r|yz/‘

{fu €eF):¢ <lalRy, -1, < ’|£V| la|T,

<-l,+1 if v e Sy,
I,(1,) = } P

{& e F): } if v e Sho.

for [, <O0.
In course of the following estimate we need good estimates on the Whittaker func-

tions.

Lemma 4.6.7. For v € Sy, and |€,| < R, we have

& |2

W, (a() < |3

1 1
min <TV6,TV4 27 |&,| —Ty\—i> .

v

In particular, if §, € I,,(1,)) we have

v
aR,

W, (ala~"6m)) < \ )
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

where
1
min <T6 lagy 4) ’ ZfV S Ssphv
QV(ZV) = .
E_4 k-1 _ -1 .
2 o ) T iy S

Whenever k, = 0 this agrees with the bounds given in [20].

Proof. The proof for the cases v € Sy, is straight forward. In the remaining cases we
combine explicit formulae for W, given above with the estimates for the K-Bessel func-

tions given in Corollary 2.1.7. O

We are now ready to prove the following estimate.

1\ l+e

4 1
) 11 (Ikyl;‘ -

v vEShol

Lemma 4.6.8 ([2], Lemma 3.11). We have

1
a |z 3
k|5 ] -
14

v v

_1 1
Si<r R ] (\T 5+ Jald |2 ;

VESSph

where R is fixed as specified above.

Proof. First, we shift the sum by a. This gives
4
St=lalk Y I [Woo(a(ga™"y))|"
anzflﬂBﬂa\R)

Then we partition B(|a| R) using the boxes defined in (4.5.2). In each box we exploit
Lemma 4.6.7 to get
St < \a|io Z )Nar™ Hla_1’ |R, ]7 (1)
lezHv}

—laR, <1, <0

Inserting the result from Lemma 4.5.3 yields

LlalRy )
SE<IRIZTT D g(=0)* ful=1).
v 1,=0

To estimate the remaining sums we use ideas of [20]. We treat each place separately,

starting with v € S, real. One obtains

|_|a‘R’/J 2 HCL|RUJ
S a-k)(k) = T+ Z
kp—0 ‘yV’k
T 1+e
< (yTyV e ) .
Y|
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

Similarly one treats the complex places:

Llal ] Lla| Ry |
T, la| T,
9u —k, 4f1/ —k, < 1/< >+ < >
2 9ok (k) o 2 Mg+
<

Tz/ T 1+e€ T 2+e€
('a'm+1>(T3+"| r> <T3+'“'| |>
1+€
T
< (T3+ al’ ) .
yu

Finally, we deal with v € Sy, following [87]. We note that g, (I,,) is monotone increasing.

Furthermore, it reaches its maximum at [, = aR,. Thus we can estimate

Llal Ry ]
Z gu(_ku)4fu(_ku)
k., =0
22k—4 a 00 E—1 2(k—1)
2(k—1) ,~4z —2(k—1)
<<F(k—1)2(27ryyy/0 d+( > ) ‘

<

3
Lk lZ (R, -

v

In the final step we eliminated the I'-factors using Stirling’s formula.

Putting everything together gives

1\ l+e 1
_1 1 T 1 a 1 3 1
S1 <F |R|o H <|T 1S+ lald |- > H ( k]S + \k:y|{,‘> :
Z/ESSph Viv VEShol Yv v
O
Corollary 4.6.9 ([2], Corollary 3.3). If we assume
108 (1l og)
‘a?’Tu Iljog(las‘oo‘T‘Sph|k3/2|hol> Z'fl/ S Ssph
|yll‘y = log(lyl o) (467)
|a®k3/? ,l,og(|a3|°°'T‘SPh"“mhoz) if v € Shor
for all v, then we obtain
: AR
(e i1 TS 1R
s 1 i+ N (g))
T 3n [l ot [yl

Furthermore, this can be always achieved after multiplying with a suitable unit.

3
Proof. We consider two cases. First, assume |y| < (’aﬂoo T, Kl ,?bol)%. Then the bal-

1 1
ancing assumption implies |y, |, < |a|, |T,|} for all v € Sy, and |y, |, < |a|, |k.|; for

all v € Sj,,;. Therefore we have

199
=

aT,
Yv

1 ak;
> |T,|5 and |—2

1
> k|2
1 yl/
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

respectively.

3
Secondly, if |y|,, > (‘aﬂoo aps ]k\iol)%, one argues analogously to obtain

=

al, |4 1
”' <|T[8
Yv |y
for v € S and
k2 ' 1
a 1
“ < kS
Yv
otherwise.
Recalling that |a| , < N (ngm;(g)) completes the proof. O

4.6.3 The sum Ss(R)

In this section we will estimate the sum Sz (R) by reducing it to well known averages of

Hecke eigenvalues and local Whittaker functions.

Lemma 4.6.10 ([2], Lemma 3.12). We have

€ ite j\/‘(no)% 3 1
S2(R) < (T N (n)" | Rl (N(ml(g))i + |R|% N (nomi(g)) > :

Proof. We start by defining
I(m) ={q€:"||gl, <|Rul,(a) = m}.
Using Lemma 4.5.4 we observe that
tI(m) < [R|S, N (m) ™. (4.6.8)

In particular, if A'(m) > |R|_, then I(m) must be empty.

By Lemma 4.6.3 we have

A me § 4
SR = S Nm)IN ()i AL ST (g3
merd, N(m)s S0,
N(m)<K|R
4
2 2 Almg)|3 4
EVOR B DR SR U2 S SR WA
my[n®°, (m,,n)=1, N(m2)3 g€l tmim,)
N(m1)<<N(Z)‘R|OO N(m2)<<N./(\7’)(‘rrﬁls>o
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At this stage we apply the Holder inequality to the mo-sum. This yields

= N(@)3 S N(m)3Su (%) ’

my [n®°,

N(m) <N ()| Rl

ol

Sa(R)

win

(SIS

1~ lmim,)

3 ( 3 Mq)i)
qel(

Here

It is well known that
Sur(X) <pe (IT) o N(n)) X

This was proved in [42] over Q but to proof generalises without complications.

Using Jensen’s inequality and exploiting (4.6.8) shows that

$(R) < (||, | Bl N(n)"N ()% [RI

Wi

ST N(my)ste S w@P | - (46.9)

my [n®°, (m,,n)=1, gel(v~1mim,)
N (my) <N (2)|R] N(mz)<<N(z)|R\oo

We will continue to analyse the my-sum. For notational sake we define

Sram = Z Z ‘)‘ﬂ(q>|2 :

(m,,n)=1, g€I(v=1mim,)

In order to use the notation from Section 4.5.1 we set

k(m) = (vp(m))pn-
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46 ESTIMATES VIA THE WHITTAKER EXPANSION

By the local definition of A, we can view it as a function on A%, . Lemma 4.6.5 implies
that this function is constant on the sets C"(k, [u]). Therefore we have

Stam = Z |)\n(Q)|2

4€—1NB(R)C (k(my1—1))

= > alg)[?
[u] €T, 05 / (142, P op) 4€2~ 1NB(R)C* (k(mye 1), [u])
(1ﬂB(R)Cl(k(mlzl),[u]))/ ,
N )\n d in .
Z Vol(C*(k(my2~1), [u]), du) 1(k(mlr1),[u])‘ ()" dpgin(q)

[u]EHp|n0;< (lerp op)

Lemma 4.5.6 and (4.5.5) reveal

N(m1)N (no(g)) -1 2
S < = SO B (e(ma ) / o P@F drin(a). (@60)

The integral appearing here can be estimated using the local result [70, Proposi-

tion 2.11]. This is done as follows:

L, PP drinta 11 / oy 1] / it o] o

N (3 1 —FRp vp (0)+vp (0;)+kp %
:Nu(zﬁ)““)_ qu / )WM%” @ kq)gn! 4 (q)

N(2) 1 1 (0p(2) +vp (0:) +no+ma (gp) +3kp)
<K N(n) N([Z]n) Cn g[ b

NGy e
NN ,,r,{q

Note that here we crucially rely on g, € J, in order to apply the upper bounds for the

local integrals. Inserting this estimate in our expression for Sram we get
Sram < Ga(1) I (no () )N (m1) 72 Fp (k(my2 1)),

The result from Lemma 4.5.6 yields

Sram < Ca(1)7! (

From (4.6.9) we deduce

S2() < (71 RN ) T (N na(0) + RN

ol

S N

my |n°,

N (my)<N(2)|R] o,
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Using the Rankin-trick we have

> N(mp)e < N(n)|R|S, .
my|n>°,

N(ma) <N ()[Rl

4.6.4 Theerror £

For R as in (4.6.6) we will roughly prove that the error can be absorbed in the main-

contribution. More precisely we have the following lemma.

Lemma 4.6.11 ([2], Lemma 3.13). Under the balancing assumption (4.6.7) we have

=

1 1 1 11 1
&< (\RIOON(H))G(\T!;"M [Elpor N (10)2 + T8 [k [R50 N (nomi (g))

D=

1 1
+ [kl oy | RIS N (noma (g))

)

Proof. For S C {v} we define

(I, +1)R, ifves,

R(1) =
R, else,
Is) = [[onw),
veS
Bgs(R) = H{§V € F1&] < R}
vES

For [, > 1 and v € S,,;, we use the exponential decay of the K-Bessel function, made

precise in Corollary 2.1.7, to bound
1 -2 _ 4 _ _
ja 1q‘y (W, (a(a™ qu))|" <a AR (4.6.11)

for g € I,(I,) and any A > 2. It can be checked by explicit computations that the same
bound holds for v € Sj,;.

We now decompose € as follows
1
4

£< > Z( > IalqofWoo(alqy)4) Sy(R/(1)).

0#ASCc{r}1eN#S \g€ar~1NIg(l)xBs(|a|R)
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Again we included the shift by a only in the archimedean part. Note that by Corol-
lary 4.5.7 below the sum Sy(R'(1)) vanishes if [], ¢ |ln + 1|, |R| < N (2)~!. We can add
the condition [, ¢ |, +1], > |R| ' NV(2)~! to the sum over L.

First, note that Lemma 4.6.10 is general enough to deal with the non-archimedean
part of the sum. To deal with the archimedean part we use the same approach as in
Section 4.6.2. In particular taking (4.6.11) into account we have

> (g0 [Wao(a(qa™y))|"

gear—'NIg(1)xBs(|a|R)

= > So el [Weo(a(ga™y))|!

1, g€ar—1NI(1x1°)
—lla|Ry] <1, <0 Vvgs

< RIZTT Il £ k) T > (1) £ (1)

ves vgS ke,
—lla|Ry | <1, <0 YvgS

2 1+e 1
<RI A0) ] (|Tu|s+|aRu|y) 11 (|ku|u+raRy|V|ky|3).

ves VvES, V¢S,

VESSph VEShol

We obtain

PN

e (iRonm) > % (Al (o)

0£5C{v} 1N, N(m1(g))
HVGS‘ZV—FI‘V
>|R| N ()7
1 1 1 1 1 _A-2
11 <|Ty|3—|—|aRy|i/‘) 11 <|k,,|{§—i—\aRl,|f} |1<:,,,§>H|zy|y 1, (1)1
V%S, V€57 VES
vESsph VEShol

Inserting the definition of f, from (4.5.4) and using the balancing assumption as in the

proof of Corollary 4.6.9 yields

p#£SC{v} 1EN®S,
[esllo 1], > [RIN (@)~

E< > 2 [ (R”N” + Réo/v<nom1<g>>i)

& i 3 i3 1 FyR]-AL6 1
-(|T|sph|k|;ol+|R|éo|klso,/v<noml<g>>4)Hli | 4;&44

TS R N ()Y .
< (RN Y % [(mw o Mot YA00)T s A (ng)

1
P£SC{r}  1cNtS, N(mi(g))4
HVES'IV+1|1/
>|RIJN ()
1 1 1 1 1 1 1 F,R]_ A=6
+IT12 Kl | RIS A (ngmy (9)) F + rk\,iol|RsoN<noml(g>>z> I ]
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1
Finally, we use the condition in the l-sum to remove the factor |R|™%. We drop any

unnecessary condition on 1 and end up with

=

1 1 1 1 1 1
£ < (IR N (n))" ( (TS k1 N (0)E + [T15, K [RI A (nom (9))

11 f PR _ A6
+|k|sol|R|goN<noml<g>>z)- Y

p£SC{v} 1IeNES

By taking A > 2 big enough it is no problem to estimate the remaining /,-sums. O

4.6.5 The final Whittaker bound

It remains to put all the pieces together to prove an upper bound for ¢..

Proposition 4.6.12 ([2], Proposition 3.1). Let ¢, = o(v°) for some cuspidal automorphic

representation (m, V) with new vector v°. For g € J, we have

0o (a(0i)gn(z)a(y))]
Tl |kl N(n)\° 1 1 1 Tsl% kéo 1
<r. <| |spn ||y||hol ( )) <|T]§ph\kl;§ol/\/(no)2+|phl‘|hN(“Oml(g))“
o [IES

1 5
+ ’T‘gph |k’}8wl

1
2
|y’oo

[V

N (nomi(g))

Proof. As in [20, (8.7)] we can assume that y is balanced in the sense of (4.6.7). Further,

o ‘Tlsph|k|hcl

note that if ||, = —; < N(2)7}, it follows from Corollary 4.5.7 and (4.6.3) that

[¢(a(bi)gn(z)a(y))] < cg,| €.

In this case we get the desired bound from Lemma 4.6.11 and 4.6.6.
If |R|,, > N(2)7!, the main contribution will obviously come from $;S2(R). From

Corollary 4.6.9 and Lemma 4.6.10 we get
IR 1 1 ;11\ e
152(7) < (Rl AT IR (1T 1L+ A s () 1R 81, )

S N(mo)i RIE A (ngmy i)
<N(m1(g))}1 +IE] (nomi(g))

1 1 1 1 1 1 1
+ | T g |kl [Rlso N (nomi(g)) * + [Kl5;,, IRléoN(noml(g))2>~
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1
We can use |R| > N(2)71 > N(ngmy(g))~! get rid of the factor |R|«'. According to

Lemma 4.6.11 the error is under control. This concludes the proof. O

4.7 AMPLIFICATION

The central result of this section is the so called amplified pre-trace inequality. From this
we will derive suitable bounds for ¢, in the bulk.

More precisely we will define an integral operator which approximates a spectral
projector on the subspace of L?(G(F)\ G(Ar)) generated by ¢.. A geometric estimation
of the kernel will yield the desired estimate.

Let (m, V;) be a cuspidal automorphic representation with new vector v° and associ-
ated newform ¢, = o(v°). Throughout this section we fix a square-free ideal q such that
all the units that are quadratic residues modulo q are indeed contained in (O} ). We

will further assume that (q,2n6; - - - 05,,) = 1. Let us construct this ideal once and for all.

Lemma 4.7.1 ([2], Lemma 5.1). There is an absolute constant A > 0 depending only on F

such that for any n there is an ideal q satisfying the following two properties.
e We have C' < N(q) < log(N (n))4, where C is the absolute constant to be chosen later.
o If x is a quadratic residue modulo q, then x € (O})™
o Ifa? = («), then we can choose the generator o such that it is a square mod q.

Proof. We will construct q by putting

a= I

ueO 5/ (0F)3,
[u]#[1]

For suitably small prime ideals q,, which are inert in F'(y/u) : F' and split completely in
F(y/v) : F for all [u] # [v]. It is clear that if this construction is possible q will have the
desired properties.

For u € O} /(0})? non-trivial, we look at the quadratic extension F(y/u) : F. The
Galois group is abelian and consists of two elements, say Gal(F(y/u)|F) = {1,0,}.
Since we are dealing with a quadratic extension we know that a prime p of F' is inert in
F(y/u) if and only if the Artin-symbol satisfies
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On the other hand, p splits completely if

()

We thus consider the tower K = [], F(y/v) — F(y/u) — F. There is an integer [ such
that Gal(K|F) = (Z/2Z)" and without loss of generality we can assume that for all
o € Gal(K|F) we have
ol Gai(r(ya)F) = Pr1(o).
We define 6, = (o4, 1,---,1).
The Chebotarev set

Pgip(Gu) = {p unramified in K : (KPF> = 6u}

contains exactly all the primes of F that are inert in F(y/u) and split completely in
F(y/v) for the remaining v. The rest of the proof is concerned with the problem of
choosing g, as small as possible.

To do so we make several definitions. First, we define

[n]u = H p.
pln,
pEPK|F(5u)

Furtherr we number PK\F(&U) = {pu717 Pu,2, } such that N(pml) < N(pu,Q) < -
Consider two cases. First, if p,, 1 { [n],, then we take q,, = p,,1. By a version of Linnik’s

theorem for Chebotarev sets [go] we have
N(qu) <F 1.

Second, we consider the worst case

[n]“ = Pu,l - Puk—1-

Here we define q,, = p, . It is clear that we only need to show N (gq,) < log(N ([n].))4.

But this follows from elementary calculations using Chebotarev’s density theorem [63,
Theorem (13.4), Chapter VII].

It is obvious that we can assume C < A (q). O
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4.7 AMPLIFICATION
4.7.1  Amplification and the spectral expansion

Let ¢ = ¢5 = 0*(v2). By Corollary 4.4.7 it is enough to consider ¢(g) for
g9 = a(0;)g'n(x)aly), for n(x)a(y) € Fuy, g = khn € Jn.

We further define ¢’ = ¢(-hy,). This function is K} (n) = hyK;(n)gah, ! invariant and can

be considered as an element of the Hilbert space
L*(X) = L*(G(F)\ G(Ap)/EcK{(n),wr) C L(G(F)\ G(AF),wr).

Furthermore, we put w® = 7%(hy)vg. Then ¢' = o*(w®). We will bound ¢ on elements
g = a(6;)g'n(z)a(y) with ¢’ € Kyhyt and n(z)a(y) € Fa,. For notational simplicity we
interchange the roles of 7 and 7. In other words, without loss of generality, we can
work with 7 in all what follows now.

Next we define the kernel function which will be used to construct the approximate
spectral projector mentioned earlier. We do this place by place and immediately give
some basic properties.

Let v € Sc or v € Sg N Seph such that k, = 0. Define

fzx(zugu) = Ww,u(zu)_lku (uu(gu-iw iu))a

for k, as in [20, Lemma 10]. Let us recall the bound

1

11
ky(u) < min(|T,|, ,|Ty|2 |un|s *), for u > 0.
Furthermore, supp(k,) C [0, 1]. By uniqueness of the spherical vector we have
R(fy)wy = cy(m)wy.

The number ¢, (m,) depends only on the equivalence class of 7, and is given by the
spherical transform of f, at m,. By a suitable parametrisation of spherical representa-
tions of G(F, ) one relates this to the classical Selberg/Harish-Chandra transform of k.

Therefore we have?
ty
e)(m) = hy (2) > 1 (47.1)

by [20, Lemma 10].

2 The factor & appears due to our different normalisation of the spectral parameter compared to [20].
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4.7 AMPLIFICATION

For v € Sy, we define
(m, (g)wp, wp)
(wg, wy)

f v (g ) = d’ﬂ'u
Since we are assuming k, > 3 this function is integrable. We observe that

T (fu)w;, = ¢ (m))w;, = wy. (4.7.2)

Even more, acting on V,, it is exactly the orthogonal projection on Cw;,. On the other
hand, 7, (f,)|Vz = 0 whenever 7’ 2 7. In particular, 7, ( f, ) defines an positive operator.

Ultimately, by [56, Theorem 14.5] we have

(

ko a b
k—1 _det(g)2(20)" I
In (—bici(aer)i)k ifg = €G),
fu(g) = c d
0 else.
In particular, for det(g) > 0 we have
k=1 & . i — g.4||>
v = 14 9 f 1 — B N -
[fo(9)l = = —t(9)"2, for () 50)3(g0)

The remaining archimedean places are those v € Sr N Ssph where k, = 1.3 Here we

define the function f, by

0 .

£l =00k | k(0) | = we(A)elO+02), (1(932 —24 33_2)) ,

1 2
0 =z

for t > 0, z(\) € Z(R)and kg, , k(62) € O(2). First of all note that by construction and

[65, Proposition 7.5.1] we have

=c(m, )>1
Furthermore, 7(f,) always projects projects on the weight 1 subspace of V; and is a
positive operator by construction of h,. Finally note that | f,(¢g)| = kv (uy(g.%,,%,))|. This

is because

X 0 . . ;1;2 3;72
Uy Ay, ty :?—1+T
0 7!

Note that a similar test function would work to project on a weight k,, vector in principal series represen-
tations. Thus we could also deal with more general Maafs forms. However, we will not do so and stick to

newforms, which in our context includes the condition of being lowest weight at infinity.
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4.7 AMPLIFICATION

For p|n we define
Folgp) = |det(gy)|" qD;r{] (99)-

Where @', is the truncated matrix coefficient defined in [70, Section 2.4]. By construction
p

(see [70, Proposition 2.13]) there is d,y > ¢, "R such that
Ry (fo)wy :/ Fo(9)mp(9)wpdpp(g) = Oy 0.
Z(Fy)\G(Fy)

Let us remark that

Ifp(g)] < 1lforall g e G(Fp),

Z(Fy)K, if n, is even,
supp(fy) =
Z(Fp)KQ)(1)  else.
For p|q define
- a b
c d

and put

vol(Z(op) \KO,p(l))_lwa,,l(z) if gp = 2k € Z(F,)Koyp(1),
folgp) =

0 else.

Since wy, is Ky-fixed, we see:

Ry(fp)wy = fo(9@)mp(9)wydiny(g)

/Z(Fp)\G(Fp)

Z(0p)\Ko,p(1)
We also have the estimate

[fol < [Kp : Kop(1)] < Q,?*E-

The remaining places will be treated at once. Set Sy = {p: (p,qn) = 1} and define the

unramified Hecke algebra
Hur = ({Fur = @pesuhip: kp € Co°(G(Fy),wnr,) such that sy (Kp9K,) = kp(9) -

Due to [25, Theorem 4.6.1] this is a commutative algebra. To an integral ideal ¢ we

associate the special element

Ke = OpeSulipuy(c) € Hur
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4.7 AMPLIFICATION

where

wr,(2)71 forg=z € Z(F,)Xpk,
rp(9) =

0 else.

This is well defined since the central character is unramified at the places under con-
sideration. The function #y  is constructed such that 7(1x,,) = R(kpx). Therefore we

have for wy, = ®pes,, wy that
R(re)wiy = Ar(c)wy,-

Fix a large parameter L such that A'(q) < (log L)# for some constant A. We define

the sets
Py = {ata=(a)forac FN(1+q)}and
P(L) = {a€Op: (o) € Pysuchthat N(a) € [L,2L] and ((a),n) =1}/ ~.
In the last definition we wrote o ~ 3 for the equivalence relation («) = (3). We identify
P(L) with a suitable fundamental domain for ~. We can arrange that a,, = LIFQ for all

v and all @ € P(L). This is the set on which our amplifier will be supported.

We are choosing two sequences of amplifiers

1= (xa)aEP(L) and zy = (xoz2)a€73(L)'
Define the quantities

xa)\ﬂ((oz))
Z N(a)

[2)l1x =

and ||zfls = > [#2].
«

Here = can be any sequence defined for all o € O but z, = 0 for all but finitely many

«

a. In particular, if x = z;, for j = 1,2, we are only summing over ol with o € P(L).

The unramified test function will be

Fur = TaRa Taka

5, ) (3, #%)
n T2 Ka2 To2Ka2 .
3, ) (3, )

This defines an operator R( fyr) such that

2 o __ o
1,7r} Wyy = CurWyy-

R(fur)wie = [llnlff « + [l2

=Cur
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Note that since x; and x5 have disjoint support we find that
1 2
Cur = 5”.%‘1 + x2||1,7r'

On the other hand, we can linearise fy; to obtain

_ § : Kb
fur - . (yl(b)+y2(b)) N(b)
(b,ng)=1,
N(b)<16L*

To do so we use the Hecke-relation and obtain

n) = > wel ((B)a")zaTs and ya(b)
a,6€P(L),
al(a,f5)
= > Wrpaen ((B)?07)T0aTe.
a,BeP(L),
al(a,8)?

In particular, we have

y1(1) +y2(1) = [lz1 + 222

4.7 AMPLIFICATION

(4.7.3)

(4.7.4)

Suppose z, and z,2 are supported on («) prime. These coefficients are very similar

in spirit to the coefficients wy, in [20, (9.16)]. Indeed, in this case we

yi(a) +y2(a)

have

Y wep(r) 1Tl + |Taml” ifa=1

_ Ty Tay T 6a1=a2w7?(1a1) (w(al))xa%@ ifa= (al)(a2) for ay, Qo € P(L)v (475)
xa%xa% ifa= (a1)2<a2)2 for o1, € P(L)
0 else.

One compares this to [69, p. 28] and [20, (9.16)] and notes the similarity.

Combining everything we define

f=®ufy ®p|qn fp ® fur-

Associated to this function there is the integral operator

R(f): L*(G(F)\G(AF),wr) — L*(G(F)\G(Ar),wr)

6 = oo / £(9)é(gz)dg |
Z(Ar)\G(AF)

201



4.7 AMPLIFICATION

We have

' =" £ °d = Cur v Tv 67r’ !
R(f)¢ =0 (/Z(AF)\G(AF)f(g)7T (9)w g) c 1:[0 (7)) [ [ 60

pln
The corresponding automorphic kernel is given by

Ki(gg2) = >, [flgr'v92)-
VEZ(F)\G(F)

The spectral expansion of Ky will enable us to bound the sup-norm of ¢’ in terms of
the geometric definition of K. Let us work out the spectral expansion in detail. The con-
struction of f ensures that the spectral expansion of Ky will only feature automorphic
forms which are sufficiently similar to ¢’. In order to make this more precise we say that

Y € L3(X) is compatible with T if it satisfies the following:

* V¥ is contained in an irreducible subspace V,, C LZ(X) and corresponds to a pure

tensor in the decomposition 7y = (®pmy ) ® (Dp7y ).
* ¥ is spherical at all places p { qn and the conductor of 7y, contains n.

¢ For all v € Sc the representation 7y, is spherical. If v € Sy, then 7y, = 7, and
Y, is the lowest weight vector. Furthermore, if v € Ssph N SR, then ¥, is of weight

ky.

* For each p | n we have 7y, (fp) ¥y = 0 ¥p.

We choose an orthonormal basis Ag(7) spanning the space of all functions compat-
ible with 7. Obviously we can arrange that ¢/ € Ag(7). Similarly we can choose the
orthonormal basis By such that it contains a subset By (7) which spans the subspace of
functions satisfying the points above.

Finally, we define, for any tuple t = (%, ).es,,,, the function

o =TT wit) TI w2
veSc VESRNSsph
The tuple ty is the tuple of spectral parameters of ¥ at places v € Sqpp.

With this at hand we prove the following spectral expansion.

Proposition 4.7.2. For any g € G(AFr) we have

1 > Hxl—{_@”i%(iy) , . 2
tar 2 / N (o N (my) "+ ) [Be (i, 9)["dy + D < Ky (g,9).
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4.7 AMPLIFICATION

Here D > 0 is the contribution of the residual spectrum, which vanishes if n is not square-free.

Note that Sy, # 0 implies Bgg(7) = 0 and D = 0.4

Proof. We decompose
Kf - Kcusp + Ksp + KCOHt

and deal with each piece separately.

We begin with the cuspidal part. By fixing a basis Beusp containing Ag(7) for L(X)
consisting of R(F') eigenfunctions. This is possible by a standard multiplicity one argu-
ment. For ¥ € Beysp let c(¥) be the associated R(f)-eigenvalue. Then we obtain

Kcusp(hyg): Z <Kcusp('79)7T>L2(X)T(h): Z c(Y)¥(9)¥ (h).
Y eBeusp YeBeusp

By construction of f and [70, Corollary 2.16] it is clear that ¢(¥) = 0 for ¥ € Beusp \
Ao (). On the other hand, if ¥ € Ay(), then

C(\P) = 571"6‘1",ur H Cy (7T‘I’,V)-

In particular, ¢(¥) > 0 and cy yr > |21 + m”%ﬂw. Furthermore, according to [70, Propo-
sition 2.13] we have 0, > N (n;) "'V (my) L. This concludes the analysis of the cuspidal
part.

The argument for the continuous part is quite similar. Using the theory of Eisenstein

series we have the expansion

1 o0 , , o
chnt(h7g) = E Z / <R(f)T2(Zy)7T1(Zy)>I:I(1y) E‘Y1 (Zy7h)E‘Y2 (Zy7g)dy7
Y1,Y2€By —o0
(4.7.6)
see [35, (5.21)]. We can argue as before by choosing By carefully. To complete the analysis
of the continuous part one again investigates the R( f)-eigenvalues of ¥ € By.

Finally, we treat the residual part of the spectrum. We start from the spectral expansion

of Ksp. This reads

Ko(h9) = G AT G GlA) o Mdet )X (det(s))

xX2=wr

- / £(2)x(det(x)))dar.
Z(Ap)\G(AF)

4 Similarly one can see that there is no contribution of the residual or continuous part if 7, is supercuspidal

for some p. However, we will not use this fact.
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4.7 AMPLIFICATION

Since the character x factors and also f is almost a pure tensor the last integral factors

in the local integrals

Iy(xp) = / fo(9)xp(det(g))dg if png
Z(Fy)\G(Fp)

and the unramified part Iy (xur). By Lemma 3.5.1 it is clear that Iy;r(xur) > 0. The lemma

follows from the evaluation of the integrals I, () given in Lemma 3.5.2 and 3.5.3. [

By dropping all the unnecessary terms in the previous result and combining it with

the definition of Ky one concludes

\qﬁ’(g)\2<<M > |flg)l- (4-7:7)

2
b+ ezlin o ieram
This gives an upper bound for ¢’ in terms of the geometry of G(F') and the test function

[ as long as the amplifier is chosen properly. We will estimate this further in the next

section.

4.7.2 Estimating the geometric expansion

In this subsection we estimate the right hand side of (4.7.7). This will ultimately lead to

good control on ¢, in the bulk. Define

v = [Iee) = T (%2822 7 T wtu o)

VE Shol UGSSph

IMES

with P, = n(z,)a(yy).i,. We prove the following preliminary result which is an adaption

of [29, Lemma 1].
Lemma 4.7.3. For v € Sy C Sgr and k > 2r + 2 we have

ISP

Cre =" ifu(yP,, P,) > e.
Proof. From the definition of || - || we compute
Iy Py — Pv”2 = |vPy — PUHQ +4AS (7 ) S (Py).-
We conclude that

k—1 u(yP,, Py)

ko (7)] = . ( 9

+1)75,
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4.7 AMPLIFICATION

The general bound follows by dropping the u-term due to positivity. The second bound

follows from:

k—1/e\—T ¢ _k k-1 _,. 4
< _ _ T < A .
ko ()] = 4r (2) (2+1) = ok —2r
In the last step we applied Bernoulli’s inequality. O

With this at hand we can return to the estimation of the geometric expansion of K.
Proposition 4.7.4. Take (q,n) = 1 and
g =a(0;)g'n(z)ay) with ¢ € Kyhy' and n(z)a(y) € Fo,.

Further, assume that the sequence x is supported on o for o € P (L) which are principal prime

ideals. We have

1 1 1ie 1te
Kf(g,9) < L°N(q)*** [Ilwllio(L T | Vel + L2 |12, 1Kl 2y [yl
1ie 1 S I
s 1Tl 5pn | TIE Kl 5| T 5n [l
+ L2 : + L
N (n2)1 N(nz)

1 1 gFe 3te
+ Nzl (L T i IRli + L2 17125 k120 o

1ie L1l lie ) ite
L2 ’T|52ph ‘T|(2: ‘k|/’2wl L4 |T|52ph |k|;iol ):|
N(ng)2 N (n2)
In particular, after dividing by L?, putting || 21|00 = ||21||0c = 1 and ignoring the k-contribution,

we recover the formula on the bottom of [20, page 37].

Proof. We begin by inserting the linearisation of f,, given in (4.7.4) into (4.7.7). This
yields

Kigg) < 3 O Ee®b s~ T e a0 a(0)g') 1K)

0#bCOF \/E ~EZ(F)\G(F) plgn

Let us analyse the support of f, and «; place by place. At this point we will exploit the
special structure of g.

First, if p 1 n, we have g,’J = 1. This case consists of two sub cases. Namely,

Z(Fp)Kop(1) ifp|a,

Z(Fy) Kpa(w? VK, else.
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4.7 AMPLIFICATION

If p | n, then we use Lemma 4.4.3 to see that g, € wK,?(l) if p | ng and g, K, otherwise.

Using the support property of f, we conclude that

Z(Fp) K, if p 1 ny,

a 01-_1 ~va(b;) €
(6 )a() Z(Fy) wK)(Dw ™ if p | no.
N —

=Ko,p(1)

a b
We can choose a representative fory =€ Z(F)\ G(F) such thata,b,c,d € Op
c d

and (a,b, c,d) = 0; for some 1 < j < hp. We arrive at the following conditions:
a,d,0;7'b € 0;0p, c€0;'9nq, a—deb;qand (ad—bc) = 67b.

In particular, we note that «9]2»[3 must be a principal ideal, say (a) = 0J2-b. Whenever
y1(b) 4 y2(b) contributes to the sum we must have (o) = (y8)07a~2 for some ideal
al (v,58) and v, 8 € P(L). Thus, by construction of g, we can choose « such that it is a
quadratic residue mod q. Further let us note that ad — bc € a? + q. Thus, again referring
to the construction of q, we get the identity ad — bc = w?a. However, multiplying a, b, ¢, d
by a unit w € O does not change the first conditions, so that we can assume w = 1.

Arranging the sums accordingly we obtain

hr y1((2)0;?) +12(()0?)
Kf(g,9) < N(@)T > N(O) D ‘ 7 ‘ > k()
j=1 0#a€h? /~ () Y€ (3,a)
with
) a b -1 —1
T(i,a) = € GLy(F): a,d, 0, €0j,a—d e b;q,c€b; 0ing,ad —bc = «
c d

Following the strategy in [20] we associate to each v a dyadic vector § = (4,), = (2?¥),

by choosing p, in Z minimal such that

max (T, 2 u,(yP,, P, if v € Sgph,
5# _ opv > ( (7 )) sph
max(k, 1, u,(yP,, P,)) if v € Spol-

At the places v € Sqpp, we argue as in [20] and at the remaining places we use Lemma 4.7.3.

This leads us to the estimate

1 -2 —1 48— 1-r
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4.7 AMPLIFICATION
for ;2 <6, <4 for v € Sepp and k

< 0, for v € Sy, which are exactly those 6 which
will contribute to the y-sum. This will be our replacement for [20, (9.22)]. Sorting the

matrices v € T'j(4, ) according to § we get the bound

hp

K¢(g,9) < N(q)*+e ZN(Q ) Z |T|Sph wsph

>

é
()67

07%) + y2((0)02)]

H{veT;(i,a): uy(y.P,, P)) <6, forall v}. (4.7.9)
L N(a)
750469]- /~
We continue the estimation term by term. Starting from the sum
Lr n((2)0;?)
ST =D N Y ’N‘ (8T (i, 0, 6)° + T (i, @, )"
j=1 0£act?/~ (o)

we use Lemma 4.5.9 and 4.5.11 to estimate the matrix count. This yields
$1(0)

» L /NG
<L S el 3 ( + oo 012 +
n,meP(L) al(n,m) \/7)

N(a) N(n2) )
<<|5‘ L* Z Z |Tn T | ———=—= _N(a)

n,meP(L) a|(n,m) \ ( )

1. 3 1
o BRIl
+ o7 ( 0| 1015 [y[oo L+ WLH : (4.7.10)

To estimate the remaining sum we view z as a function on ideals by setting x, = 0 for
non-principal ideals a. The following estimate is standard

2

N

|xn$m‘ Z Z Z Z|x[ux[b|

n,meP (L) al(n,m) V nm I N(a)N <L/N( ), ¢t ) (ab)
(0l b)=1
2

<Ly > J:;[(“[L) < L)1 |2

I N(a)N(b)<L/N(I)

This yields

P 3 1
509(8) < |3|°. Leanla + a2 [ [31°, 1612 Iy, ¢ + 2R ORI pric)
oo oo ./\/(112)
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4.7 AMPLIFICATION

The contribution of the generic matrices can be handled as follows.> We estimate

en N(a) - af
S7 ((s) <K ‘xaxﬁ‘ 71:11—‘56”(17 ) 6)
1 a,ﬁ%;(m al(zo;ﬁ) VAN (af) o

_ |TapTac en(
=y > T\Wﬁrg (i, bc, &)

a (b,t):L
ab,aceP (L)
N(a) ( en, L* en, 2L2
< ——~  sup |TqpZac| | MY ,8) + MY %)
Za: L (oo=1, e ’ (N(C‘Q) ) ’ (N(c@) )
ab,aceP (L)
3 1 3
5 L L2 dlg L? |0k |9]¢
< 8 Iz, . 1
N(§2L Na) N(C‘)%N(l‘m)Z N (a)3N (n2)

3 eid 3 H
L2 ’5|]R L ’6|R|5|C
1
4

< [8] Ll 1% | L+ N (no)

Finally, we deal with the contribution of the y2(«)’s. To this end we observe that, due

to our assumption

;

z2llz  ifa= (1),

[2()] < § |lza)|2, if a = (2)2(8)% or a = ()2 for a, B € P(L),

0 else.
\

In particular, the only contribution comes from principal ideals. We arrive at

Mo(L,1,8) + Ma(L, 1,8) + M7 (L2, 6) + MISP (212, 5)
L

+ ||:L'2H2ﬁr* (7’7 13 5)

$2(8) < [lz2%

M(L,2,6
+ a2, M2

1 3
L2[olg Lol

ol +e 2 1
< laall3 [6]27° L | L+ L2 [yl 16]% +
9l N(ng)z  N(n2)

A 1
+llz2ll2 [0] (1 + [yl 915%)-
All together we obtain

5

€ % -1 — —1-r e en
Ky (g,9) <N (@) IT12, 1814 181t [l (S17(8) + 577 (6) + $:(6))
[

5 Here we exploit the ‘averaged counting’. This leads to the appearance of an L norm of z; instead of L!
and L? averages. However, the counting in this setup proves to be much more efficient and de-compensates

for this caveat.
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4.7 AMPLIFICATION

Performing the d-sum yields

T2 G T2 [kl
K(g, < LN 24€ | |1 112 <L T 1+e k 1+6+L§ sp o 73 lsp o)
f(g g) (q) H 1”00 ’ ‘sph‘ ’hol N(‘ﬂQ)i N(n2)
1 1
5+e 7 Te
1 1 lie, , t4e 7|2 h ‘k|hl
el I RIS 3 (17150 el Il + 27075 )

1 1 ste , 5te
o ol (L I i+ L2 1712 k125 1y
l+€ 1 l+6 l+e l+5
L e\ Tl TR | ITIS0 el )}
N (ny)2 N (n2)

The claimed result follows after transforming all the z; »-dependence in L°°-norms and

dropping some redundant terms. O

We will end this section by proving another estimate for the geometric side in a more

specific situation.

Proposition 4.7.5. Let F'R be the maximal totally real subfield of F and suppose that [F: FR] =
m > 2. Take (q,n) = 1 and

g =a(0;)g'n(z)ay) with ¢ € Kyhy ' and n(x)a(y) € Fu,.

Further assume that the sequence x1 and x5 is supported on o for o € P(L) which are principal

prime ideals. If Spo = 0, we have

1
T§ L2m
+ML1

1 1
Ky(g,9) < w1+ 22] 2% LN (a)*7 | LIT| + L |T|% ylo + T3 L2
N(n)2
Proof. Since Sjo = () we have ]3‘00 < 1. Further we can exploit the special shape of y
given in (4.7.5). With this at hand we follow the proof of Proposition 4.7.4 until (4.7.9).

Here we estimate everything trivially arriving at

1
T2, M(L,1,6) M(L.2,6
Krlang) < o ol fo (@ 2 U (100(0,0.0)  HUER2 4 HERET),
5 4

We use Remark 4.5.14 to estimate
1
By Remark 4.5.12 and Lemma 4.5.15 we obtain

3 1
L3 |0]g d]¢

1 1
L2m+e ) 2 ) 4
N('ﬂQ) + ‘ ‘]R | |C

1
M(L,1,8) < L*T + L*T¢|y| _16|% +

3
L2m+1+6 |5|]R |6‘é

T N )
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Finally, we use Remark 4.5.12 and Lemma 4.5.13 to obtain

1 3 1
L4+€|5|]I2{ L6+6|6‘H4{|5|é
N(ny)2 N (n2)

11 3 1
[ 2m2+e ‘JIIIQQ |5|é [6+¢ ‘6|114{ |5|é
N(ng)2 N (n2)

In the last step we artificially inserted the factor |§|- by using Lemma 4.5.15. These

1
M(L,2,6) < LT+ LYyl 10|12 +

1
< LPe 4 L4yl 1613 +

counting results allow us to execute the §-sum and obtain the desired result. ]

48 THE TWO MAIN SUP-NORM THEOREMS

We are finally ready to prove our main theorems. We start by a general upper bound

with no assumptions on the base field F'.

Theorem 4.8.1 ([2], Theorem 1.1). Let (m, V;) be a cuspidal automorphic representation with
conductor wand spectral parameter (t,),cs,,, and weight (k,),cs,,,. And let v° be a new vector

of m. Then

[l <re (|T|s,,h\k|holN(n>>W<no>%N<m>%(mw KI5, A (n2)

sph
1 1 1 1
Tl T rkr;tolmw).

Proof. By Corollary 4.4.7 it is enough to consider ¢(g) = ¢5(g) for some £ | n. Further,
we fix 1 < i < hp and restrict ourselves to g = a(6;)g’ han(z)a(y) with n(x)a(y) € Fn,
and ¢'h, € Ja.

We start by deriving a bound via amplification which will be strong in the bulk. We

choose the following amplifier:

% if « € (P(L)) is a principal prime ideal,

a —

0 else.

Similarly, we chose

% if « € (P(L)) is a principal prime ideal,

To2 =

0 else.

Note that we have ||z} ||cc = ||72]lcc = 1 and

|21 + 22|[1. > t{a € P(L): (a) is a prime ideal} > L' .
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Where we used the fact that®

A(p)] | [Aa(p?)]

SN | N(p)

With this at hand we use (4.7.7) together with Proposition 4.7.4 to obtain

> 1.

1 1 1 1
|T|52ph ‘kmol L |T|§ph ‘k|l§ol

16(9)] < |L;N<n>W<u1m1>%<

L2 N (ng)?
1 | 1| 1
T4, |T|A k| 1 1 1
’ ‘SIXL/_( ‘(;1 ’hol + |T|§ph |k|]iol |y|§o>
N9 )4

1 1 13
Taking L = |T[S,, [k, N (nz)3 and inquiring [y|,, < [T13,, \k|}§ol/\/(n2)*% produces the
stated bound.

1 3
I [yloo > T2, [kl ./\/’(112)_%, then Proposition 4.6.12 yields

1 1 1 1 T 1 1
10(9)| <re (IT]5pn |k’holN(n))e< T\ gpn Kl poy N (n0)2 41T, ‘k|ﬁg1N(“2)6N(“0ml)2>'
This concludes the proof. ]

The previous theorem features a contribution containing |T\é which is the local bound.
Thus, we do not achieve subconvexity in full generality. To deal with this caveat the
author’s of [20] came up with a very sophisticated counting argument specifically for
non-totally real fields. The second theorem, generalising [20, Theorem 2], relies on this
counting and achieves subconvexity in every setting. However, the exponents are not as
good in general. Unfortunately we also have to assume that Sj,; = 0. This is due to our

inability to adjust the modified counting results accordingly.

Theorem 4.8.2 ([2], Theorem 1.2). Let F' be number field with maximal totally real subfield F®
such that [F : FR] = m > 2. Assume that Sy, = (. For a cuspidal automorphic representation

(m,0) with conductor n and spectral parameter (t,),es,,, we have

11 1 1 1
[0°]loe <Fe (IT] o N (n))IT|% "7 N(n2) 2™ 5m=3N (ng) 2N (m)>
where v° 1s a new vector.

Proof. We start by using Corollary 4.4.7 to reduce the problem as far as possible. Ob-

1
serve that for |y| > |T|& the estimate in Proposition 4.6.12 gives the upper bound

6 The same trick is used in [20, (9.17)]. But recall that our Hecke-eigenvalues are normalised differently.
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E 1
N(n)EN(noml)% |T\§;r . Therefore we assume that |y| < |T|%. Using Proposition 4.7.5
with amplifier as in the proof above and with

L = min ((%N(m))ml—l, c |Trss"14)
yields uniform bound
16,(9)] < e (N(ng) A (momy) [T ) 3+ (rT\;sm-s ; (\Troomngnsm%) 16 -

1
If |T|o"® > N (ny) "1, we can use Theorem 4.8.1 to get a better bound. This leads to

M e (N (n2)N (ngmy) [T1,) ¢

(715 ) (7] A ()5 ).

One concludes by interpolation as in [20]. O
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