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Moduli spaces and mapping class groups

Introduction A motivating question would be the following: How can one classify the complex structures
on a two dimensional manifold F? The first huge step towards a satisfactory answer, is the construction
of the moduli space M. Its underlying points are in one-to-one correspondence with the set of equivalence
classes of complex structures. The study of these moduli spaces relates topology, geometry, algebra and
mathematical physics.

The moduli space Mm
g,n Fix g ≥ 0, m ≥ 0 and n ≥ 1. Our data for a surface consists of

(1) a Riemann surface F of genus g;

(2) a set P = {P1, . . . , Pm} ⊂ F of m distinct points;

(3) non-vanishing tangential directions X = (X1, . . . , Xn) at points Q = (Q1, . . . , Qn) disjoint from P .

Two surfaces [F,P ,Q,X ] and [F ′,P ′,Q′,X ′] are equivalent if and only if there is a bihomolorphic map
ϕ : F −→ F ′ respecting the structure. The set of equivalence classes embody the moduli space of Riemann
surfaces Mm

g,n. The condition n ≥ 1 ensures that it is both a manifold of dimension 6g − 6 + 2m+ 4n and a
classifying space BΓm

g,n for the mapping class group (because the action of Γm
g,n on the Teichmüller space is

well behaved).

The mapping class group Γm
g,n Let F be smooth, oriented, of genus g with P , X and Q as above. Let

Diff + = Diff +(F,P ,Q,X ) = {ϕ : F
∼=−−→ F | smooth, orientation preserving, respecting P , X and Q} .

with the C∞-Whitney topology and let Diff +
0 ⊂ Diff + be the subspace of diffeomorphisms isotopic to the

identity. The usual composition of maps turns Diff + into a topological group with Diff +
0 a contractible

subgroup. The mapping class group is

Γm
g,n = Diff +(F,P ;Q,X ) / Diff +

0 (F,P ;Q,X ) = π0Diff +(F,P ;Q,X ) .

Instead of fixing directions X at Q, we remove an open small disc around every Qi and obtain a compact
surface F̂ with n boundary circles which are required to be fixed in a small ε-neighbourhood. This gives
isomorphic groups; both are finitely presented by Dehn twists.

Γm
g,n = Diff +(F̂ ,P ; ∂F̂ ) / Diff +

0 (F̂ ,P ; ∂F̂ ) = π0Diff +(F̂ ,P ; ∂F̂ ) .

Hilbert uniformization A method providing a comfortable model for Mm
g,n is introduced in [Böd1]. In

order to ease the discussion of the uniformization process, we provide a pictorial example on the next page,
where g = 1, m = 0 and n = 1. Given a complex surface [F ] ∈Mm

g,n we choose a map u : F −→ R̂ ⊂ Ĉ which
is harmonic away from P and Q. Moreover, we assert a dipole at every Qi ∈ Q in direction Xi and with a
logarithmic sink at every Pj ∈ P . The flow of steepest descent has finitely many critical points S1, . . . , Sk.
The union of Q, P , all the Sl and the flow lines leaving the Sl constitute the critical graph K drawn in red.

Observe that F−K consist of exactly n contractible components because every flow line starts near exactly
one Qi. The process of “straightening the remaining flow lines” defines a bihomolorphic map u + iv from
F −K into the complex plane. The image is C minus a finite number of horizontal half-rays running to the
left; this we call a slit configuration.

Additive structures and the harmonic compactification
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The space of such maps u + iv is denoted by Hm
g,n. It is a bundle Hm

g,n
'−−→ Mm

g,n and the choices we
made constitute the fibre which is contractible. The space Hm

g,n is homeomorphic to the space of admissible
slit configurations denoted by Parmg,n. We remark that a similar procedure results in another model for Γm

g,n,
namely in the space Radmg,n of admissible slit configurations on n annuli.

The E2-space structure The data of a slit picture L ∈ Parmg,1 consists of the endpoints of the half-rays
and certain glueing information. Thus, L is inscribed in a square of finite area. Placing two slit pictures
into disjoint squares in C defines an H-space structure on Par =

∐m
g,1Parmg,1. On M =

∐
g,mMm

g,1, the
corresponding operation is induced by joining the surfaces by a pair of pants.
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More generally, the little 2-cubes operad C̃(C) =
∐

k≥0{k disjoint, paraxial squares in C} acts on Par. Con-
sequently, H∗(Par) ∼= H∗(M) is not only a commutative Pontryargin ring, but a Dyer–Lashof algebra. We
discuss its structure in a moment.

The harmonic compactification The space of radial slit configurations Radmg,1 is a model for the mod-
uli space of Riemann surfaces Mm

g,1. It is not compact; but allowing certain degenerations of handles and

boundary curves, we obtain the harmonic compactification Mm
g,1 ⊂ Mm

g,1. In [EK], it is identified with a
space of Sullivan diagrams which is used used in [Wah] to classify all natural operations on the Hochschild
complex of symmetric Frobenius algebras. Besides computations for small g and m, we have the following
result.

Theorem (B.–Egas 2016+). Given parameters g ≥ 0 and m ≥ 1, the space of Sullivan diagrams S Dm
g,1 is

highly connected i.e.
π∗(S Dm

g,1) = 0 for ∗ ≤ m− 2 .

The (un)stable situation

Results in the so called stable range The Harer stabilization theorem states, that the multiplication

with the generator in H0(Γ
0
1,1) induces an isomorphism H∗(Γ

0
g,1)

∼=−−→ H∗(Γ
0
g+1,1) if ∗ ≤ 2

3
g − 1. Thus

Γ∞,1 = ∪gΓg,1 is an approximation of every Γg,1 in this so called stable range. In [MW] Madsen and Weiss
construct a Thom spectrum MT (d)+ detecting the homotopy type of a cobordism category. As a special
case, a group completion theorem yields a homology isomorphism Z× BΓ∞,1 −→ Ω∞MT (2)+ . This proves
a conjecture by Mumford.

Theorem (Madsen–Weiss 2002). The rational cohomology of Γ∞,1 is

H∗(Γ∞,1;Q) ∼= Q[κ1, κ2, . . .]

with κi the Mumford–Morita–Miller characteristic classes for surface bundles. In particular, H∗(Γ
0
g,1;Q) is

known in the stable range ∗ ≤ 2
3
g − 1.

Using a different technique, the stabilization results carry over to the harmonic compactification.

Theorem (B.–Egas 2016+). Let g ≥ 0 and m 6= 2. The stabilization map S Dm
g,1 −→ S Dm

g+1,1 is highly
connected i.e.

π∗(S Dm
g,1)

∼=−−→ π∗(S Dm
g+1,1) for ∗ ≤ g +m− 2 .

Moreover, we construct infinite families of non-trivial homology classes. However, indentifying the stable
compactification S Dm

∞,1 or its (rational) homology is a difficult task.

Computations in the unstable range The space of parallel slit domains Parmg,n is a combinatorial,
relative manifold, i.e. Parmg,n

∼= P−P′ with (P,P′) a pair of compact cell complexes. The homology of Mm
g,n is

therefore Poincaré dual to the cohomology of P/P′. Computations for 2g +m < 6 were done by Ehrenfried,
Mehner and Wang using this model; and Godin using another model. Bödigheimer introduces an elegant
filtration on P in [Böd2]. We state some of our results for 2g +m = 6 using this filtration.

Theorem (Bödigheimer, B., Hermann 2014). The rational betti numbers of the moduli spaces are as follows.

∗ = 0 ∗ = 1 ∗ = 2 ∗ = 3 ∗ = 4 ∗ = 5 ∗ = 6 ∗ = 7 ∗ = 8 ∗ = 9

dimQH∗( M
4
1,1 ) 1 1 0 2 3 2 1 0 0 0

dimQH∗( M
2
2,1 ) 1 0 1 3 0 2 2 0 0 0

dimQH∗( M
0
3,1 ) 1 0 1 1 0 1 1 0 0 1

Unstable homology via homology operations The unit tangent bundle of the universal surface bun-
dle is the fibre of the forgetful map Mm

g,1 −→ Mm
g,0. Using this fibration, we detect an infinite family of

non-vanishing, rational homology classes for varying g. These classes perish in the stabilization process.
Moreover, Bödigheimer and the author provide some relations between generators via operadic homology
operations.

Unstable homology via braid groups I The moduli space Mm
0,1 is the space of m undistinguishable

particles in the plane. Thus, Brm = π1(M
m
0,1) = Γm

0,1 is the braid group on m stands. Using the theory of it-
erated loop spaces, Cohen provides the p-torsion of the integral homology and its description as Dyer–Lashof
algebra. The classical result by Arnold and Fuks is then obtained as a corollary.

Forgetting the marked points defines a fibration Mm
g,1 −→ M0

g,1 with fibre Cm(Fg,1), the unordered
configuration space on the closed surface. Adding a marked point near the boundary curve, defines
a map Mm

g,1 −→ Mm+1
g,1 that is compatible with projektion to M0

g,1. The induced map in homology

H0(M
1
0,1;Z) ⊗ H∗(M

m
g,1;Z) −→ H∗(M

m+1
g,1 ;Z) is the multiplication with the generator in H0(M

1
0,1). It is

split-injective by [BT1].

On the unstable homology

Using the braid group on two strands, we obtain infinite families of non-trivial (unstable) homology classes.

Theorem (B. 2015+). The generator b ∈ H1(Br2;F2) = H1(M
2
0,1;F2) spans a polynomial ring F2[b] inside

H∗(M;F2). Regarding H∗(M;F2) as a module over F2[b], it is torsion free.

Unstable classes via braid groups II In the last paragraph, we identified the kth braid group Brk with
Γk
0,1. Sending the braid generators σi to certain Dehn twists, [BT2] construct more families of maps from
Brk to Γm

g,1. Let us review one of these. The map φg : Br2g −→ Γ0
g,1 sends the generators σ1, . . . , σ2g−1 to the

Dehn twists along the simple closed curves a1, b1, . . . , ag, bg drawn red and blue in picture below.

a1 a2 a3
b1 b2 b3

The stable version φ∞ : Br∞ −→ Γ0
∞,1 comes from a map of double-loop spaces that is null-homotopic [BT2].

Therefore, φg is the trivial map in homology in the stable range. The same is true for most maps constructed
in [BT2]. However, it turns out that some of these are non-trivial in the unstable range.

Proposition (B. 2016+). For g ≤ 2, the map φg induces a split injection in homology outside the stable range.
Moreover, we have a canonical map ψ2 : Br6 −→ Γ0

2,1, inducing a split injection Z/3Z ∼= H4(Br6;Z) −→
H4(Γ

0
2,1;Z) .
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