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Definition

Fix a topological surface S. The moduli space 9t of Riemann
surfaces (of type S) is the space of complex structures (on S).

What is the homology of this space?
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The Question
ocooe

By uniformization, the sphere S* admits a unique complex
structure. Therefore, the moduli space of two-spheres is a
single point.

By uniformization, every torus is the quotient of C by a
lattice. Thus, it is determined by a point in the upper half
plane H. The moduli space of tori is M = H/SL(2,Z) = D?.

There are several constructions for arbitrary surface types.
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We consider surfaces (in our setting often called cobordisms)
e of genus g;
e with n incoming (parametrized) boundary curves;
e with m outgoing (unparametrized) boundary curves;
We use the following shorthand 90U7", .
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Theorem (Bodigheimer 1990)

The moduli space M = M, is s finite cell complex. In

particular, its homology is computable in terms of a finite
chain complex K = K (I7",).
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The number of cells of every chain module grows factorially
O(h!) for h = 2g + m.
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Corollary (Ehrenfried 1998, Vicy 2010)

There is a discrete Morse flow on K.
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00@000

Corollary (Ehrenfried 1998, Vicy 2010)

There is a discrete Morse flow on K. The number of cells of

every chain module of the associated Morse complex grows
factorially O((h — 1)!).
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The number of cells of the bi-complex K (901 ,):

qg=>5 640 | 12425 | 74610 | 202825 | 278600 | 189000 | 50400
g=4 800 | 18500 | 122700 | 357280 | 516880 | 365400 | 100800
qg=3 240 | 7425 | 57375 | 185220 | 289380 | 217350 | 63000
qg=2 10 650 6800 | 26600 | 47740 | 39900 | 12600
g=1 0 0 35 315 910 1050 420

p=6] p=7] p=8] p=9]p=10]

[ o=tlo=>
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The number of cells of the bi-complex K (901 ,):

qg=>5 640 | 12425 | 74610 | 202825 | 278600 | 189000 | 50400
g=4 800 | 18500 | 122700 | 357280 | 516880 | 365400 | 100800
qg=3 240 | 7425 | 57375 | 185220 | 289380 | 217350 | 63000
qg=2 10 650 6800 | 26600 | 47740 | 39900 | 12600
g=1 0 0 35 315 910 1050 420

p=6] p=7] p=8] p=9]p=10]

[ o=tlo=>

The number of cells of the Morse complex Morse(fmzf’l):

| 70] 700 | 2520 | 4480 | 4270 | 2100 | 420
[p=4]p=5]p=6]p=7]p=8]p=9]p=10
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Corollary (Bodigheimer 2014)

There is a filtration of K which descends to the Morse
complex.
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Corollary (Bodigheimer 2014)

There is a filtration of K which descends to the Morse
complex. The associated spectral sequence collapses at the
second page.
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The number of cells of the Morse complex Morse(IM3 ):

| 70] 700 [ 2520 | 4480 | 4270 | 2100 | 420 |
[p=4]p=5|p=6|p=7|p=8|p=9]p=10]
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Reductions
[elelelelel ]

The number of cells of the Morse complex Morse(IM3 ):

| 70] 700 [ 2520 | 4480 | 4270 | 2100 | 420 |
[p=4]p=5|p=6|p=7|p=8|p=9]p=10]

The number of cells of the 0™ page:

| [p=4[p=5]p=6]p=7]p=8]p=9[p=10]

c=1 70 640 | 1470

c=2 60 | 1035 | 3850

c=3 15 630 | 4130

c=4 140 | 2100

c=5 420
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Theorem (Wang 2011, B., Hermann 2014)

Z, * =
ZoCold x=1
Cs & * =

Z2oC3or— x=3
ZPoCiol x=
Z2®Co®= x=5
7 D] * =
0 x> 7

H*<mil,1§ Z) =
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Theorem (Wang 2011, B., Hermann 2014)

7 x =0
C2aCs o1 * =
Z®Ciar * = 2
73 @ Cy o1 * =3

HO,Z) 220 C0 000 +=
29 CpCsdl *=5

7} Cs o * =6
Cy &L =17
0 * > 8
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Theorem (Wang 2011, B., Hermann 2014)

Z e=0
0 =1
Z® Cy x =2
Z2&6C06Cs0C,dC7r®1 *x=3
C2@ C2 o] =4
H*(Sﬁg’l;Z)’é 7@ Cy®Cy L] x=5
Z® Cy = * =6
Co L] *x =17
0L o
Z @] *x =9
d x> 10
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We want to represent homology classes = € H.(97",)
e via embedded manifolds;

e via operations applied to already known classes;

[ ]
We proceed as follows.

e guess a representation;

e let the computer verify;
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Theoretical Results
0®00

We want to represent homology classes = € H.(97",)
e via embedded manifolds;

e via operations applied to already known classes;

We proceed as follows.
e guess a representation;
e let the computer verify;

e try again;

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn Homology of Moduli Spaces



Theoretical Results
coeo

Fact (Arnold 1969, Fuks 1970)

The Fy homology of the inifite braid group is a graded
polynomial ring

H*<BTOO,F2) gFQ[bl,bQ,] with |b1| :22— 1.
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Theoretical Results
coeo

Fact (Arnold 1969, Fuks 1970)

The Fy homology of the inifite braid group is a graded
polynomial ring

H*<BTOO,F2) gFQ[bl,bQ,] with |b1| :22— 1.

Fact (Bodigheimer 1990)

Using a similar model, the homology

D H.(M5}; F2)

g,m

is a module over Fy[by, b, .. .].
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Theorem (B. 2015)

The homology
@ H*( z?ﬁ IFQ)
g?m

is torsion free over Fa[by].
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Familiar Models and Spaces
0®000

There is a so called harmonic compactification 9 of 1.
It is a cellular complex.
The cells are given by Sullivan diagrams.
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Theorem (B., Egas Santander 2

= g
The homology of 7', is
9
e Hy i H Hs Hi Hs Hs H; Hs
1 Z 0 0 0 0 0 0 0 0
2 Z Z 0 0 0 0 0 0 0
3 Z 0 0 Z 0 0 0 0 0
4 Z 0 0 Z 0 0 0 0 0
5 Z 0 0 0 0 Z 0 0 0
6 Z 0 0 0 0 Z 0 Z Z
7 z 0 0 0 0 0 0 z 0
- H Hi H Hy H, Hs H; H H H,
[ z 0 0 Z 0 0 0 0 0 0
2 z @ 0 z 0 0 0 0 0 0
3 7 0 0 Cs 0 72 Z 0 0 0
1 Z 0 0 Cs 0] ZoC, Ca 72 72 0
5 Z 0 0 0 0 0 Z zv z? Ca
o~ H, I I H, H, H|  Hy
1 z 0 Z @ 0 0 0
2 z @ 0 @ 0 @ 0
3 z 0 0 G @ 280G, z
o] ] W] B W] H | Hy|  Ho|  Hu|
z| 0] A 0] A z| 0] G | Cy
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Theorem (B., Egas Santander, Lutz 2015)

The harmonic compactification M, is (m — 2) connected.
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Theorem (B., Egas Santander 2015)

The stabilization map M7y — M7, | is a w.-isomorphism
forx <m+g—3.
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Theorem (B., Egas Santander 2015)

The stabilization map M7y — M7, | is a w.-isomorphism
forx <m+g—3.

Theorem (B., Egas Santander 2015)

Considering parametrized outgoing boundaries, the
stabilization map M7, — M7, | is a H.-isomorphism for
* < g—1.
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