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1. Introduction

In this thesis, we study two families of moduli spaces:
(1) the moduli spaces Mm

g,n of Riemann surfaces of genus g ≥ 0 with m ≥ 0 (permutable)
punctures and n ≥ 1 boundary curves and
(2) the moduli spaces M•g(m,n) of Riemann surfaces of genus g ≥ 0 with n ≥ 1 incoming
and m ≥ 1 outgoing boundary curves (the moduli space of cobordisms) and with an extra
marked point on each of the boundary incoming curves.
The latter are important for string topology or conformal field theories; the former (but

for n = m = 0) are the classical moduli space from algebraic geometry or complex analysis.
For our techniques to work, we always need n ≥ 1 in case (1) and n,m ≥ 1 in case (2).
Under these assumptions of non-empty boundary, the moduli spaces Mm

g,n and M•g(m,n)
are manifolds of dimension 6g − 6 + 2m + 4n respectively 6g − 6 + 3m + 3n. They are
orientable for m < 2. Moreover, they are homotopy equivalent to the classifying spaces
BΓmg,n respectively BΓ•g(m,n) of the mapping class groups Γmg,n respectively Γ•g(m,n).
In this introduction, we review the stable and unstable (co-)homology of the moduli

spaces and present our results. At the end, we explain the organization of our thesis.

1.1. A Survey on the Stable and Unstable (Co-)Homology
First of all, we recall the definition of the mapping class group. Consider the space Diffmg,n
of orientation-preserving diffeomorphisms on a surface of genus g, leaving its n boundary
curves pointwise fixed while permuting m selected points. Paths in Diffmg,n are isotopies
and Γmg,n = π0(Diffmg,n) is the group of path components. Analogously, the mapping class
group Γ•g(m,n) is the group of path components of the space of diffeomorphisms on a
surface of genus g leaving the n incoming boundary curves pointwise fixed while permuting
the outgoing m boundary curves. The group structure is induced by the composition of
diffeomorphisms. The mapping class groups Γmg,n and Γ•g(m,n) are known to be isomorphic.

Stable (Co-)Homology We begin with a revision of the stable cohomology of Γg,n = Γ0
g,n.

Glueing a pair of pants along one or two boundary curves of a given oriented surface in-
duces a group homomorphism ϕg : Γg,n −−→ Γg,n+1, respectively ψg : Γg,n+1 −−→ Γg+1,n on
the mapping class groups, by extending the diffeomorphisms in question via the identity.
If the surface has exactly one boundary curve, glueing in a disc induces a homomorphism
ϑ : Γg,1 −−→ Γg,0. Due to [Har85], the mapping class groups Γg,n with n ≥ 1 are homo-
logically stable. Including several improvements concerning the degree of stabilization we
have

Theorem (Harer). Let g ≥ 0 and n ≥ 1. The induced map

ϕ∗ : H∗(Γg,n;Z) −−→ H∗(Γg,n+1;Z)
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is an injection for all ∗ and an isomorphism for ∗ ≤ 2
3g. The induced map

ψ∗ : H∗(Γg,n+1;Z) −−→ H∗(Γg+1,n;Z)

is a surjection for ∗ ≤ 2
3g + 1

3 and an isomorphism for ∗ ≤ 2
3g −

2
3 . The induced map

ϑ∗ : H∗(Γg,1;Z) −−→ H∗(Γg,0;Z)

is a surjection for ∗ ≤ 2
3g + 1 and an isomorphism for ∗ ≤ 2

3g.

A proof including the mentioned improvements can be found in [Wah12].
The composition ψgϕg : Γg,1 −−→ Γg+1,1 is injective and Γ∞,1 = ∪∞g=1Γg,1 is the stable

mapping class group. We obviously obtain lim−→H∗(Γg,1;Z) ∼= H∗(Γ∞,1).

Theorem (Mumford’s Conjecture (Madsen–Weiss [MW07])). The rational cohomology of
the stable mapping class group is a polynomial algebra

H∗(Γ∞,1;Q) ∼= Q[κ1, κ2, . . .]

in the Mumford–Morita–Miller classes κi living in degree 2i.

Unstable Homology In contrast to the stable picture, very little is known about the
unstable one, i.e., the homology or cohomology of single moduli spaces. Note that for a
class in degree say 2 to be stable, we have to go to g ≥ 4.
Before reviewing Mm

g,n, consider the moduli space M̃m
g,n of Riemann surfaces of genus

g where both the boundary curves and punctures are pointwise fixed. For single degrees
∗ = 1, 2, 3, there are results known for almost all g. Based on the works of Mumford
[Mum67] and Powell [Pow78] the first integral homology is known to be

H1(M̃m
g,n;Z) ∼=

{
Z/10 g = 2
0 g ≥ 3

.

A proof of this version can be found in Korkmaz–Stipsicz [KS03]. Moreover, [KS03] improves
a theorem by Harer [Har91, Theorem 0.a]:

H2(M̃m
g,n;Z) ∼= Zm+1 for g ≥ 4 .

The third rational homology vanishes due to [Har91, Theorem 0.b]:

H3(M0
g,n;Q) = 0 for g ≥ 6 .

In case of no punctures but permutable boundary, the first integral homology is known
due to Korkmaz–McCarthy [KM00, Theorem 3.12]. Denoting the corresponding moduli
space by M0

g,(n) they show

H1(M0
g,(n);Z) ∼=



Z/12 g = 1, n = 0, 1
Z/12⊕ Z/2 g = 1, n ≥ 2
Z/10 g = 2, n = 0, 1
Z/10⊕ Z/2 g = 2, n ≥ 2
0 g = 3, n = 0, 1
Z/2 g = 3, n ≥ 2

.
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In this thesis we study the moduli space Mm
g,n. For g = 0 and n = 1, the integral

homology of the moduli space Mm
0,1 coincides with the well-known group homology of the

braid group on m strings. Besides that, there are some scattered computations for low g
and n.

Slit models In [Böd90a] Bödigheimer provides the space of parallel slit domains Parmg,n,
which is homeomorphic to an affine bundle over Mm

g,n via the Hilbert uniformization. It is
a manifold and an open subspace of a finite semi-multisimplicial space P making it possible
(1) to compute the homology of the moduli spaces via Poincaré duality and (2) to define
an operad structure by the action of the little cubes operad on the family of moduli spacess
Mm

g,n; this induces an action of the Dyer-Lashof algebra on their homology. Exploiting this
model, Ehrenfried could completly compute the integral homology for g = 2 and n = 1,
compare [Ehr97]. This is, up to date and apart from g = 0 and g = 1, the only moduli
space whose integral homology is known. His result is reproduced in the following tabl.

H∗(M0
2,1;Z) ∼=



Z ∗ = 0
Z/10 ∗ = 1
Z/2 ∗ = 2
Z⊕ Z/2 ∗ = 3
Z/6 ∗ = 4
0 ∗ ≥ 5

Later, Godin obtained the same results with different methods, compare [God07]. For g = 3
and m = 1, Wang computed the p-torsion for many primes in [Wan11]. We will describe
her results in detail, see below.
We mentioned above a complex P with a subcomplex P ′ such that P − P ′ = Par. The

double complex associated with P admits an explicit combinatorial decribtion. However,
the number of cells prevents (even computer-aided) calculations exceeding h = 5 where
h = 2g − 2 + m + 2n. To demonstrate this, we list the number of cells in bidegree (p, q)
for g = 1 and m = 3 (see Figure 1.1). Due to [Vis10], the vertical homology of (P, P ′) is

q = 5 640 12425 74610 202825 278600 189000 50400
q = 4 800 18500 122700 357280 516880 365400 100800
q = 3 240 7425 57375 185220 289380 217350 63000
q = 2 10 650 6800 26600 47740 39900 12600
q = 1 0 0 35 315 910 1050 420

p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

Figure 1.1.: The number of cells of the bicomplex for M3
1,1.

always concentrated in its top row being of degree q = h. The resulting chain complex,
called Ehrenfried complex, is considerably smaller, compare Figure 1.2. These insights make
it possible to perform several computations for h ≤ 6. In [Wan11], Wang computes the
elementary divisors modulo pkp of the differentials in this Ehrenfried complex for pkp = 26,
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70 700 2520 4480 4270 2100 420
p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

Figure 1.2.: The number of cells of the Ehrenfried complex for M3
1,1.

34, 53, 72, 112, 132, 17, 19 and 23. Observe that there might be undetected p-torsion of
the form Z/pkZ in case (1) p a prime greater then 23 and k ≥ 1 or (2) p a prime at most
23 and k > kp. Besides H0(Mm

g,n;Z) = Z, we have H1(M0
3,1;Z) = 0 due to [Pow78] and

H2(M0
3,1;Z) = Z ⊕ Z/2Z due to [Sak12]. For 2g + m = 6 and n = 1, the remaining free

summands where unkown until this point in time. Using a new spectral sequene, we provide
the free parts by computing the rational homology. This, in turn, allows for g = 3 and
n = 1 to conclude, that Wang had indeed discovered all p-torsion for p ≤ 23.
Theorem (Bödigheimer, Powell, Sakasai, Wang, B., H.). Let k2 = 6, k3 = 4, k5 = 3,
k7 = k11 = k13 = 2, k17 = k19 = k23 = 1 and kp = 0 for p > 23 prime. The integral
homology of the moduli spaces M0

3,1, M2
2,1 or M6

1,1 is given by the following tables, where
. . . denotes in the first case possible p-torsion for primes p > 23, and in the other two
cases possible p-torsion of the form Z/pkZ for p any prime and k > kp.
The integral homology of the moduli space M0

3,1 is

H∗(M0
3,1;Z) ∼=



Z ∗ = 0
0 ∗ = 1
Z⊕ Z/2 ∗ = 2
Z⊕ Z/2⊕ Z/3⊕ Z/4⊕ Z/7⊕ . . . ∗ = 3
(Z/2)2 ⊕ (Z/3)2 ⊕ . . . ∗ = 4
Z⊕ Z/2⊕ Z/3⊕ . . . ∗ = 5
Z⊕ (Z/2)3 ⊕ . . . ∗ = 6
Z/2⊕ . . . ∗ = 7
0⊕ . . . ∗ = 8
Z⊕ . . . ∗ = 9
0 ∗ ≥ 10

.

The integral homology of M2
2,1 is

H∗(M2
2,1;Z) ∼=



Z ∗ = 0
(Z/2)2 ⊕ Z/5⊕ . . . ∗ = 1
Z⊕ (Z/2)2 ⊕ . . . ∗ = 2
Z3 ⊕ (Z/2)4 ⊕ . . . ∗ = 3
Z⊕ (Z/2)5 ⊕ (Z/3)3 ⊕ . . . ∗ = 4
Z2 ⊕ (Z/2)4 ⊕ Z/3⊕ . . . ∗ = 5
Z2 ⊕ (Z/2)3 ⊕ . . . ∗ = 6
Z/2⊕ . . . ∗ = 7
0 ∗ ≥ 8

.
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The integral homology of M4
1,1 is

H∗(M4
1,1;Z) ∼=



Z ∗ = 0
Z⊕ Z/2⊕ . . . ∗ = 1
(Z/2)3 ⊕ . . . ∗ = 2
Z2 ⊕ (Z/2)3 ⊕ . . . ∗ = 3
Z3 ⊕ (Z/2)2 ⊕ . . . ∗ = 4
Z2 ⊕ Z/2⊕ . . . ∗ = 5
Z⊕ . . . ∗ = 6
0 ∗ ≥ 7

.

One might conjecture that the undetermined torsion . . . is trivial in all cases.
In [Meh11], Mehner provides a computer program that computes the integral and F2

homology of single moduli spaces for n = 1, g ≤ 2. Moreover, he implements simplicial
versions of the Dyer-Lashof operations introduced in [Böd90b] and obtaines some of the
generators of the respectively homology via operations.

1.2. Our Results in the Unstable Case
In our thesis, we obtain several new results. In this section, we discuss the most important
ones.
We review Bödigheimer’s models introduced in [Böd90a] and [Böd06]. We discuss the

first model, the space of parallel slit domains Parmg,n[(r1, . . . , rn)] sitting in the semi-
multisimplicial parallel slit complex (P, P ′). As before, we dissect a given surface using
the flow lines of distinguished potential functions with exactly n poles Q = (Q1, . . . , Qn).
Here we permit poles of arbitrary order r1, . . . , rn ≥ 1 and obtain a parallel slit do-
main on r = r1 + . . . + rn planes. The second model is the space of radial slit domains
Radg(m,n) sitting in the radial slit complex (R,R′). These models are manifolds. More-
over, they are homotopy equivalent to moduli spaceParmg,n[(r1, . . . , rn)] 'Mm

g,n respectively
Radg(m,n) ' M•g(m,n). For both models, we construct the associated Ehrenfried com-
plex E and show that (1) the theorem of Bödigheimer (that the Hilbert uniformization
provides a homeomorphism) as well as the theorem of Visy (that the vertical homology of
the corresponding double complex is concentrated in degree h) hold for both the parallel
slit complex with arbitrary n and r = r1 + . . . + rn and the radial slit complex. The fol-
lowing diagram shows the schematic picture of our approach. The homology of the moduli
spaces is determined with the help of several models and the lower line represents both the
parallel and radial models.

H∗(M)

BΓ M H P
resp.

R

(P,P ′)
resp.

(R,R′)
E'

H∗

affine bundle

H∗

∼=
Hilbert uniformization

H∗

Poincaré duality

H∗

'
quasi-isomorphic

H...−∗

H...−∗
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All in all we have:

Theorem (Bödigheimer, Visy, B., H.). The parallel slit complex respectively the radial slit
complex is a relative manifold of dimension 6g−6+3m+3n+3r respectively 6g−6+3m+4n.
The Ehrenfried complex is a quasi-isomorphic direct summand1 of P/P ′ respectively R/R′.
In particular

H∗(Mm
g,n;Z) ∼= H3h−∗(P, P ′;O) ∼= H2h−∗(E;O)

where h = 2g − 2 +m+ n+ r and O are the orientation coefficients respectively

H∗(M•g(m,n);Z) ∼= H3h+n−∗(R,R′;O) ∼= H2h+n−∗(E;O)

where h = 2g − 2 +m+ n and O are the orientation coefficients.

In [Böd14], Bödigheimer introduces a filtration of the bicomplex P = P/P ′ respectively
R/R′. It is, roughly speaking, given by the number of components of the critical graph
associated with the gradient flow of the given potential function. It induces a filtration of
the Ehrenfried complex.

Proposition (Bödigheimer). There are two first quadrant spectral sequences

E0
k,c(P) =

⊕
p+q=k

[FcPp,q/Fc−1Pp,q]⇒ Hk+c(P•,•)

and
E0
p,c(E) = FcEp/Fc−1Ep ⇒ Hp+c(E•) .

Both spectral sequences collapse at the second page.

Implementing the spectral sequence for the Ehrenfried complex in a software project
we compute the rational and some Fp homology of certain moduli spaces with h ≤ 8. A
short form of the rational results can be found in Section 1.3 and the complete description is
presented in Section 6.5. In particular, we confirm the rational version of Wang’s conjecture.

Theorem (Bödigheimer, B., H.). The rational homology of the moduli space of Riemann
surfaces of genus three with one boundary component is

Hp(M0
3,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p ≥ 10
Q 0 Q Q 0 Q Q 0 0 Q 0

.

The rational homology of the moduli space of Riemann surfaces of genus two with one
boundary component and two permutable punctures is

Hp(M2
2,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p ≥ 8
Q 0 Q Q3 Q Q2 Q2 0 0

.

1To be precise, the Ehrenfried complex is, up to a shift in the homological degree, identified with a direct
summand. The inclusion induces an isomorphism in homology.
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The rational homology of the moduli space of Riemann surfaces of genus one with one
boundary component and four permutable punctures is

Hp(M4
1,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p ≥ 7
Q Q 0 Q2 Q3 Q2 Q 0

.

Most of the well-known homology operations on the moduli spaces were constructed via
the bicomplexes (see below). In order to realize them in terms of the dual Ehrenfried com-
plex, we provide an explicit formula for the coboundary operator via so-called coboundary
traces:

Proposition (B., H.). The coboundary of a cell Σ ∈ E of degree p is

∂∗E(Σ) =
p∑
i=1

(−1)i
∑

a∈Ti(Σ)
κ∗(a.Σ) .

Using this formula, we discuss some of the well-known homology operations. Moreover,
we classify the cells of a given Ehrenfried complex.

Proposition (B., H.). Every cell in the Ehrenfried complex E is uniquely obtained as an
expansion of a thin cell in E.

Bödigheimer’s models have a strong connection to configuration spaces. Roughly speak-
ing, a parallel slit domain L ∈ Parmg,n[(r1, . . . , rn)] consists of r = r1 + . . . + rn copies of
the complex plane with finitely many slits removed, each slit running from some point hor-
izontally to the left all the way to infinity. There is a pairing of the slits, subject to several
conditions. It is reasonable to think that the pairing enables us to jump through a given
slit to end up at its partner. The description of a radial slit domain L ∈ Radg(m,n) is
similar. Here we consider paired slits on an annulus each running from some point radially
to the outer boundary. There are various geometric flavoured constructions.

Proposition (Bödigheimer). For every g ≥ 0, n ≥ 1, m ≥ 1 and partition (r1, . . . , rn) of
r = r1 + . . .+ rn, there are continous maps

par : Radg(m,n) −−→ Parmg,n[(r1, . . . , rn)]

and
rad : Parmg,n[(r1, . . . , rn)] −−→ Radg(m,n) .

The maps are indicated in the following by Figures 1.3 and 1.4.

We discuss several homology operations. One family of operations is induced by the
action of little cubes operads, namely the ordered configuration spaces with respect to the
complex plane C̃k(C) or the annulus C̃k(A), compare [Böd90b] and [Böd06]. We propose a
generalization of the well-known operations on Parmg,n[(1, . . . , 1)] to Parmg,n[(r1, . . . , rn)] for
an arbitrary partition (r1, . . . , rn). There are many generalizations which are all covered
by our glueing construction. Roughly speaking, one has to decide how two surfaces, corre-
sponding to given parallel slit domains L1 and L2, are glued along parts of their boundary
and one has to declare an enumeration of the resulting boundaries.

13



Figure 1.3.: The parallelization map with n = 1 and r = 3.

Figure 1.4.: The radialization map.

Definition (B., H.). The combinatorial type G which specifies the glueing construction
depends on the parameters

P(G) = (g1, g2, n1, n2,m1,m2, (r(1)
1 , . . . , r(1)

n1 ), (r(2)
1 , . . . , r(2)

n2 ))

and consists of the following two data.

(i) A partial, non-empty matching of the planes of the parallel slit domains inParm1
g1,n1(r(1)

1 ,

. . . , r
(1)
n1 ) and Parm2

g2,n2(r(2)
1 , . . . , r

(2)
n2 ).

The size of the matching is denoted by s(G). The glueing construction defines a surface of
genus g(G) with m(G) = m1 + m2 punctures and n(G) (yet unordered) boundary curves
each consisting of several planes.

(ii) A partial enumeration of the planes such that each boundary curve belongs to exactly
one selected planes.

The corresponding ordered configuration is (r(G)
1 , . . . , r

(G)
n(G)). The set of combinatorial

types that specify a glueing construction is denoted by G.

Proposition (Bödigheimer). For every combinatorial type G ∈ G with parameters

P(G) = (g1, g2, n1, n2,m1,m2, (r(1)
1 , . . . , r(1)

n1 ), (r(2)
1 , . . . , r(2)

n2 ))
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there are homology operations induced by the action of the little cubes operad

(ϑ̃G)∗ : Hi(C̃2(C))⊕s(G) ⊗Hj(Parm1
g1,n1(r(1)

1 , . . . , r(1)
n1 ))⊗Hk(Parm2

g2,n2(r(2)
1 , . . . , r(2)

n2 )) −−→

Hi+j+k(Par
m(G)
g(G),n(G)(r

(G)
1 , . . . , r

(G)
n(G))) .

In addition to the parallelization and radialization map mentioned above, we have the
following propositions relating the space of parallel slit domains to the space of radial slit
domains.

Proposition (Bödigheimer). The action of the little cubes operad on the space of parallel
slit domains extends to an operation

C̃k(A)×Parm1
g1,1 × · · · ×Parmkgk,1 Radg̃(m̃+ 1, 1)

C̃k(C)×Parm1
g1,1 × · · · ×Parmkgk,1 Parm̃g̃,1

ϑ̃

ϑ̃

ι× id rad ,

where g̃ =
∑k
i=1 gi and m̃ =

∑k
i=1mi.

Proposition (Bödigheimer). Let n ≥ 1 and Parn =
∐
g,mParmg,n[(1, . . . , 1)] and Radn =∐

g,mRadg(m,n). There is a right module structure

H∗(Radn)⊗H∗(Parn) −−→ H∗(Radn)

induced by an action of the little cubes operad.

Proposition (Bödigheimer). There is a composition operation

� : M••g (l,m)×M••g′ (m,n) −−→M••g̃ (l, n) , (F, F ′) 7−−→ F � F ′ ,

where g̃ = g + g′ +m− 1.

Besides operations which are induced by the action of little cubes operads, we generalize
the operations discussed in [Meh11] to arbitrary n and (r1, . . . , rn), present the radial
multipliciation

: Radg(m,n)×Radg′(m′, n) −−→ Radg̃(m+m′, n) ,

with g̃ = g + g′ + n − 1 and introduce α : Mm
g,n −−→ Mm+n

g,n inducing a split injective map
in homology

α∗ : H∗(Mm
g,n) −−→ H∗(Mm+n

g,n ) .

Rotating radial slit domains simultaneously induces the operation of degree one

rot : Hi(Radg(m,n)) −−→ Hi+1(Radg(m,n))

with rot2 = 0. Eventually, we present formulas relating some of the operations.
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Furthermore, we provide an ongoing, extendable software project consisting of about
4500 lines of code. It was used to compute the homology of the moduli spaces for h ≤ 8
and the first author plans to implement the known operations in order to relate the found
generators. In addition, there are upcoming master students under the supervision of
Bödigheimer who will implement further features of both the Ehrenfried complex and its
corresponding bicomplex.
A deeper study of the cluster spectral sequence, the relations of generators via homol-

ogy operations and the interdependencies of these operations outline an ongoing research
project.

1.3. The Rational Homology of the Moduli Spaces in Short Form

In this section, we present a short form of our computations with coefficients in the rationals.
Some of the results were already known, compare the discussion above. We include them
anyways. The number of boundary components is always n = 1. All cluster spectral
sequences with coefficients in Q and F2 are found in Section 6.5.

The case g = 0: The moduli space Mm
0,1 is the classifying space of the braid group on m

strings. Its homology is understood. We have

H∗(Mm
0,1;Q) =


Q ∗ = 0
Q ∗ = 1 and m ≥ 2
0 else

The case g = 1: For m = 0, 1, 2, 3, 4, 5, the rational homology of Mm
1,1 is given by the

following tables.

Hp(M0
1,1;Q)

p = 0 p = 1 p ≥ 3
Q Q 0

Hp(M1
1,1;Q)

p = 0 p = 1 p ≥ 3
Q Q 0

Hp(M2
1,1;Q)

p = 0 p = 1 p ≥ 3
Q Q 0

Hp(M3
1,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p ≥ 6
Q Q 0 Q Q Q2 0
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Hp(M4
1,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p ≥ 7
Q Q 0 Q2 Q3 Q2 Q 0

Hp(M5
1,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p ≥ 9
Q ? ? ? ? ? ? Q4 Q2 0

The case g = 2: For m = 0, 1, 2, the rational homology of Mm
2,1 is given by the following

tables.

Hp(M0
2,1;Q)

p = 0 p = 1 p = 2 p = 3 p ≥ 4
Q 0 0 Q 0

Hp(M1
2,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p ≥ 7
Q 0 Q Q2 0 Q Q 0

Hp(M2
2,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p ≥ 7
Q 0 Q Q3 Q Q2 Q2 0

The case g = 3: The rational homology of M0
3,1 is given by the following table.

Hp(M0
3,1;Q)

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p ≥ 10
Q 0 Q Q 0 Q Q 0 0 Q 0

1.4. Organization of our Thesis
Let us sketch the organization of the content of this thesis. The first chapter is this
introduction.
The second chapter provides a detailed description of our models. Section 2.1 serves

as an overview of our approach. The details are carried out in the subsequent Sections
2.2-2.8. Having this done, one has all ingredients to make sense of the following diagram.

H∗(M)

BΓ M H P
resp.

R

(P,P ′)
resp.

(R,R′)
E'

H∗

affine bundle

H∗

∼=
Hilbert uniformization

H∗

Poincaré duality

H∗

'
quasi-isomorphic

H...−∗

H...−∗
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The rightmost model is the Ehrenfried complex. It is a finite chain complex and its differ-
entials admits an explicit description. The homology of the moduli spaces is computed via
its dual. In Section 2.9, we provide an explicit formula for its coboundary operator. Hereby,
we begin with an explanation of our geometric intuition in order to make the upcoming
definitions, statements and proofs straightforward.
The third chapter is a brief introduction to the cluster spectral sequence. We introduce

the cluster filtration of the bicomplex and the Ehrenfried complex and show that the
associated spectral sequences collapse at the second page.
The fourth chapter covers various homology operations. Sections 4.1-4.6 describe op-

erations defined either for Par or Rad. Operations and formulas relating Par and Rad
are discussed in Section 4.8. In Section 4.1, we review well-known operations on Par via
little cubes operads and propose a generalization in Section 4.2. Operations on Par which
are induced by bundle maps are discussed in Section 4.3. In Section 4.4, we present the
operations α. The radial multiplication is treated in Section 4.5 and the composition of
two radial slit domains is reviewed in Section 4.6. The rotation of radial slit domains in
introduced in Section 4.7.
The fifth chapter is a brief analysis of the computational complexity of homology

calculations via the Ehrenfried complex. We compute the number of its cells and discuss
nearby algorithms used to derive homological data.
The sixth chapter provides the documentation of our software project and lists all

cluster spectral sequences we computed.
The Appendix reviews possibly unkown notation.
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2. Cellular Models

2.1. Introduction
As mentioned above, we are interested in two families of moduli spaces. The first family
consits of the moduli spaces Mm

g,n parametrizing Riemann surfaces of genus g ≥ 0 with
n ≥ 1 boundary curves and m ≥ 0 permutable punctures. The second one is composed
of moduli spaces M•g(m,n) parametrizing Riemann surfaces of genus g ≥ 0 with m ≥ 1
permutable outgoing boundary curves and n ≥ 1 incoming boundary curves, where on each
incoming curve a point is marked. Let us review Bödigheimer’s models for these moduli
spaces. All details as well as valuable pictures are found in [Böd90a], [Böd90b] and [Böd06].
In order to obtain a good semi-multisimplicial model Parmg,n[(r1, . . . , rn)] for Mm

g,n, we
replace every boundary curve by a point with a non-zero tangent vector attached. Thus
Mm

g,n is the moduli space of conformal equivalence classes [F,P,Q,X ], where F is a Riemann
surface of genus g with a set of punctures P = {P1, . . . , Pm} and with (enumerated) points
Q = (Q1, . . . , Qn) at which (non-vanishing) tangent vectors X = (X1, . . . , Xn) are attached.
The moduli space Mm

g,n is the quotient of the contractible Teichmüller space by the action
of the corresponding mapping class group Γmg,n. Under the assumption n ≥ 1, the action of
Γmg,n is free so thatMm

g,n is a manifold of dimension 6g−6+2m+4n. In this section, we do not
elaborate on the advantages of the above mentioned model Parmg,n[(r1, . . . , rn)], but state
that it is primarily used to translate the Dyer-Lashof operations defined on configuration
spaces into those defined on the moduli spaces, see Chapter 4. In what follows, we fix a
moduli space Mm

g,n and an ordered partition (r1, . . . , rn) of r = r1 + . . . + rn with rj ≥ 1
for every j.
In Section 2.2, we introduce the bundle Hmg,n[(r1, . . . , rn)] over Mm

g,n. The fibre over a
point [F,P,Q,X ] consists of certain meromorphic 1-forms and a fixed number of integration
constants. It is an open half-space of a real affine space. Thus the bundle map is a homotopy
equivalence. Note that for each partition (r1, . . . , rn) we have such a bundle with fibre
dimension depending on (r1, . . . , rn). The fibre over [F,P,Q,X ] parametrizes all harmonic
functions u of predescribed behavior, namely with poles of order rj at the points Qj in
the direction of Xj and logarithmic sinks at the punctures Pi. Such functions are called
potential functions.
The critical gradient flow lines of a given potential function u (along decreasing values

of u) that leave the critical points of u (to either run into another critical point, into a
sink Pj or into a pole Qj) define the critical graph K0 on F . Dissecting F along its critical
graph K0, we obtain r open and contractible sub-surfaces F1, . . . , Fr which we call basins.
On each basin Fj , the harmonic function u is the real part of a holomorphic function wj ,
unique up to an integration constant.
Each function wj maps the basin Fj injectively onto an open domain in C. Its image is

obviously the entire plane C = Cj with finitely many slits removed, each slit running from
some point horizontally to the left all the way to infinity. They are commonly called parallel
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slit domains. The slits arise from the (piecewise) cuts along the critical flow lines. Observe
that right and left banks of such a flow line are now (piecewise) left respectively right banks
of possibly different slits on possibly differrent planes. Encoding this information allows
us to re-glue the surface F . We define the space Parmg,n[(r1, . . . , rn)] of these parallel slit
domains as a subspace of a finite, semi-multisimplicial space P , namely as the complement
of the (geometric realization of) the subcomplex of degenerate surfaces P ′. The reason for
P beeing not multisimplicial is a direct consequence of the fact that the occuring symmetric
groups define a semisimplicial set S∆ together with pseudo degeneracy maps satisfying all
but one simplicial identity (compare Appendix A).
Summing up, we have a homeomorphism

H : Hmg,n[(r1, . . . , rn)] −−→ Parmg,n[(r1, . . . , rn)] ,

called Hilbert uniformization. The pair (P, P ′) is a relative manifold Parmg,n[(r1, . . . , rn)] =
P −P ′, orientable for m < 2 and of dimension 3h with h = 2g+m+n+r−2. In particular,
the homology of Parmg,n[(r1, . . . , rn)] is given by Poincaré duality

H∗(Mm
g,n;Z) = H∗(Parmg,n[(r1, . . . , rn)];Z) ∼= H3h−∗(P, P ′;O)

with O the orientation coefficients. The bicomplex of (P, P ′) is called parallel slit complex
and admits a purely combinatorial description treated in Section 2.3.
Turning to the second family of moduli spaces M•g(m,n), we consider marked conformal

equivalence classes of Riemann surfaces with genus g ≥ 0 and two kinds of boundary
cuves. There are m ≥ 1 permutable outgoing boundary curves C+

1 , . . . , C
+
m and n ≥ 1

incoming boundary curves C−1 , . . . , C−n , each of which has a marked point Pi ∈ C−i . Thus,
a point in the moduli space M•g(m,n) is represented by the data [F, C+, C−,P], where
C+ = C+

1 ∪ . . .∪C+
m respectively C− = C−1 ∪ . . .∪C−n denotes the entire outer respectively

inner boundary, while P = (P1, . . . , Pn) is the (enumerated) set of marked points on the
n inner boundary curves. Thereby, a conformal homeomorphism h : F −−→ F ′ between
such surfaces is called marked if each Pi is mapped to P ′i , and the dot in the definition of
M•g(m,n) refers to this marking.
Analogously to the previous statements, the moduli space M•g(m,n) is a quotient of

the contractible Teichmüller space under the action of the corresponding mapping class
group Γ•g(m,n). Excluding the case g = 0, m = n = 1, the action of Γ•g(m,n) is free.
Consequently, M•g(m,n) is a manifold of dimension dim(M•g(m,n)) = 6g − 6 + 3m + 4n
and a classifying space BΓ•g(m,n) for the mapping class group Γ•g(m,n).
We proceed the same way as in the parallel case: In Section 2.4, we describe a homo-

topy equivalent bundle H•g(m,n) over M•g(m,n). In Section 2.5, we introduce the space
Radg(m,n) of radial slit configurations homeomorphic to H•g(m,n), which allows us to
actually perform homology calculations.
The bundle H•g(m,n) is constructed similarly as above: Over a point [F, C+, C−,P] ∈

M•g(m,n), an element of the fibre consists of the data [F, C+, C−,P, w] with w = (u, v1, . . . , vn).
By this, u : F −−→ R is a certain harmonic potential function, and vk are certain locally de-
fined harmonic conjugates of u on the components, called basins as well, of the complement
of the unstable critical gradient flow. The functions u and vk are used to map the basins
F1, . . . , Fn of F into n annuli A1, . . . ,An ⊂ C with outer radius equals 1. This process
can be reversed. Since the critical flow lines define segments on the annuli that can be
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glued together again, the surface F can be re-built from the image of F on the annuli. The
points in the space Radg(m,n) of radial slit domains consist of these annuli together with
the information neccessary to encode the glueing. We define Radg(m,n) in a simplicial
way such that Radg(m,n) = R − R′ is the geometric realization of the complement of a
subcomplex R′ of the semi-multisimplicial complex R.
The pair (R,R′) is a relative manifold of dimension 3h + n with h = 2g − 2 + m + n,

which is orientable for m < 2. Altogether, we can express the homology of M•g(m,n) via
Poincaré duality by

H∗(M•g(m,n);Z) = H∗(Radg(m,n);Z) ∼= H3h+n−∗(R,R′;O) ,

where O denotes the orientation coefficients. In both Sections 2.3 and 2.5, we give a
description of the cells of the bicomplexes P and R, followed by the explanation of the
vertical and horizontal faces, yielding the boundary operators. In Section 2.6, we define
the orientation system O for the bicomplexes P and R.
We are left to determine the (co)homology of the finite bicomplex (P, P ′) respectively

(R,R′). Both complexes have a close connection to the study of the homology of normed
groups and in particular the symmetric groups. To see this, let G be a group with a
norm N . The bar complex B•(G) can be filtered by extending the norm for an element
(gq | . . . | g1) by N(gq| . . . |g1) = N(gq) + . . . + N(g1). In [Vis10], the spectral sequence
N [G] associated with this norm fltration on B•(G) is studied for a family of groups called
factorable (c.f. Appendix B). These are normed groups with a certain normal form for its
elements in a given set of generators whose word length norm is N . The symmetric groups
with all transpositions as generators are examples of factorable groups. Other examples
are more general Coxeter groups. The main result in [Vis10] states that for a factorable
group, the first page of the above spectral sequence is concentrated in a single diagonal.
Thus the homology of G is the homology of this diagonal. It turns out that the pth column
of our bicomplex (P, P ′) respectively (R,R′) is a direct summand of the hth column of
N 0[Sp], where q is the homological degree of both sides. It follows that the columns of
our bicomplex have their homology concentrated in the degree q = h, so the first page of
the spectral sequence of the double complex is concentrated in a single row which is by
definition the Ehrenfried complex E associated with (P, P ′) respectively (R,R′).
In Section 2.8, we adapt the known methods to show that E is a quasi-isomorphic direct

summand of (P, P ′)∗ respectively (R,R′)∗, which was already formulated and proven for
the parallel case with n = 1 and r = 1 the trivial partition.
In Section 2.9, we give an explicit description of the dual Ehrenfried complex: We elab-

orate our geometric insights on the behavior of the horizontal coface operator, in order to
introduce the notion of ith coboundary traces. We then define a canonical bijection between
the set of ith coboundary traces and the set of ith cofaces. The coface of a top dimensional
cell Σ corresponding to a given coboundary trace a will be called a.Σ. In Proposition 2.9.8,
we provide the formula

∂∗E(Σ) =
p−1∑
i=1

(−1)i
∑

a∈Ti(Σ)
κ∗(a.Σ) ,

which enables us to define the homology operations described in [Böd90b] and [Böd14]
via the dual Ehrenfried complex in Chapter 4. Another benefit of this definition is the
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classification of the cells of the Ehrenfried complex (c.f. Proposition 2.9.26). Roughly
speaking, there are a few distinguished cells of low degree which we call thin. An arbitrary
cell is uniquely obtained from such a thin cell by glueing in a certain number of stripes.
The geometric meaning and the precise statements are presented in Subsection 2.9.4.

2.2. The Bundle Hm
g,n[(r1, . . . , rn)]

We start off with the construction of the bundle Hmg,n[(r1, . . . , rn)] for a fixed moduli space
Mm

g,n and an ordered partition (r1, . . . , rn) of r = r1 + . . .+rn. Consider a point [F,P,Q,X ]
in the moduli space Mm

g,n. For positive real numbers B−1 , . . . , B−m and B+
1 , . . . , B

+
n that

satisfy the residue equation
∑m
i=1B

−
i −

∑n
j=1B

+
j = 0, and complex numbers ajk where

j = 1, . . . , n while k = 1, . . . , rj − 1, there is a potential function u : F −−→ R, i.e.

(i) u|F−(P∪Q) is harmonic;

(ii) in a chart domain Vi around Pi with coordinates z = x+
√
−1 · y such that z(Pi) = 0

u(z) = B−i log |z|+ φi with φi : Vi −−→ R harmonic;

(iii) in a chart domainWj around Qj with coordinates z = x+
√
−1·y such that z(Qj) = 0

and (TQjz)(Xj) = ∂
∂x ∈ T0C

u(z) = <

 1
zrj

+
rj−1∑
k=1

ajk
zk

−B+
j log |z|+ ψj with ψj : Wj −−→ R harmonic .

Such a potential function is unique up to an additive constant D0, i.e. it is uniquely defined
by one real, n+m−1 positive and r−n complex parameters. A proof of this classical result
can be found in many sources, for example [Koc91]. The condition

∑m
i=1B

−
i −

∑n
j=1B

+
j = 0

is imposed by the Residue Theorem (the complex differential ∂u is a meromorphic 1-form,
so the sum of its residues vanishes).
Following [Böd90a, Section 3.2], we use the flow of − gradu, the gradient field of steepest

descent of a potential function u, in order to construct the (directed) critical graph K0 ⊂ F .
This may be seen as a 1-skeleton of F . Before going on, let us look at two very simple
examples. In Figure 2.1 we sketch the flow lines of the harmonic function <(z) = x
and Figure 2.2 pictures the flow lines of <(z2) = x2 − y2. Geometrically speaking, the
conditions on the potential function u are as follows. At every point Qj , the dominating
term is the pole <( 1

zrj
) whereas the terms <(ajk

zk
) for k = rj − 1, . . . , 1 and the logarithmic

term B+
j log |z| have no influence on the qualitative picture. In Figures 2.1 or 2.2, the chart

around infinity pictures the stream lines near a pole of order rj = 1 or rj = 2. At a point Pj
the gradient flow has a sink as pictured in Figure 2.3. The coefficients B−i respectively B+

j

indicate the magnitude of the logarithmic sink respectively source. Following the stream
lines, one will end up either in one of the singularities P ∪Q or in a critical point of u. At
a critical point, u has the form <(zk) for some k ≥ 2. The critical graph of u consists of all
critical flow lines that start in such critical points. A point S ∈ F at which gradu vanishes
is called stagnation point and we denote the set of stagnation points by S — they are
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0 ∞ X

Figure 2.1.: The gradient flow of <(z) on the sphere S2 and in charts around zero and
infinity.

0 ∞ X

Figure 2.2.: The gradient flow of <(z2) on the sphere S2 and in charts around zero and
infinity.

the critical points of u. The vertices of K0 are VK0 = S ∪ P ∪ Q and the edges γ ∈ EK0
are specific segments of the gradient flow of u: For two vertices S0 ∈ S and S1 ∈ VK0 with
t0 = u(S0) < u(S1) = t1 (as points in R), a smooth curve γ : [t0, t1] −−→ F starting in S0
and ending in S1 is called critical edge if it satisfies the conditions

(i) u(γ(t)) = t and

(ii) γ̇(t) = − gradu(γ(t)) 6= 0 for t0 < t < t1.

In particular, curves must not traverse through critical points.
Both potential functions in Figures 2.1 and 2.2 have exactly one singularity namely at

infinity. The harmonic function <(z) has no stagnation points and <(z2) has exactly one.
In Figure 2.4, we picture the flow of a potential function u having one dipole Q of simple
order, one puncture P and one stagnation point S.
Dissecting F along the critical graph K0 yields r open, contractible1 components F1,

. . . , Fr called basins. These basins are ordered. The poles Q are enumerated and at every
pole Qj , the tangent vector Xj points into the first since distinguished component, whereas
the others are numbered following counter-clockwise around Qj . In Figure 2.5 we illustrate
the stream lines of <(z3) on S2 around infinity. The critical flow is stressed and the basins
are denoted by F1,F2 or F3.
From the topological point of view, we obtain a cell decomposition. This means that the

homotopy type of F , which is just its genus, can be reconstructed from glueing the disc-
shaped components Fj . In order to keep track of the given complex structure, we follow

1Using the flow lines, each Fj is contracted to an equipotential line li. Observe that every potential line
li is contractible since Q and P are removed.

23



Figure 2.3.: The gradient flow of <(log(z)) = log |z| near zero.

S
PQ

Figure 2.4.: The gradient flow of a potential function which has exactly one dipole Q of
simple order, one puncture P and one stagnation point S. We have g = 0,
m = 1 and n = 1.

[Böd90a]. On every sub-surface Fj , the harmonic function u admits a harmonic conjugate
vj , unique up to an integration constant, by letting

vj(ζ) =
∫ ζ

ζo

∂u

∂x
dy − ∂u

∂y
dx for some ζ0 ∈ Fj .

The holomorphic function wj = u +
√
−1 · vj maps the basin Fj injectively onto an open

domain in C and its image is obviously the entire plane with finitely many slits removed,
each slit running from some point horizontally to the left all the way to infinity. Changing
the integration constant Dj corresponds to a translation parallel to the imaginary axis.
Let us go back to the examples pictured in Figures 2.2 and 2.4. Dissecting the sphere

along the critical flow lines of u = <(z2) yields exactly two components F1 = {z ∈ S2−∞ |
<(z) > 0} and F2 = {z ∈ S2 −∞ | <(z) < 0}. The tangent vector X points into the first
component F1. For the other example, consider Figure 2.6 where we added three dashed
lines on which u is constant — so-called equipotential lines — and sketch the relevant
clipping under the biholomorphic function. The critical graph is stressed. In Figure 2.8 on
Page 27, we picture an enlarged version of Figure 2.6 with enumerated equipotential lines
in order to provide more guidance.
Let Hmg,n[(r1, . . . , rn)] be the space of all (F,P,Q,X , w) with w = (u, v1, . . . , vr), where

u is a globally defined potential function as declared above and each vj is a harmonic
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X

F2

F3

F1

Figure 2.5.: Dissecting S2 along the critical graph of <(z3) yields three basins.

S
PQ

β

β′ α

α′

S

S
P

β

β′

α

α′

Figure 2.6.: The gradient flow of a potential function and the slit picture. We have g = 0,
m = 1 and n = 1.

conjugates of u, defined only on Fj . There is a projection

Hmg,n[(r1, . . . , rn)] '−−−→Mm
g,n

with contractible fibres, namely the space of all (ajk, B−i , B
+
j , D0, . . . , Dr) subject only to

the residue equation. More precisely, it is the open affine half-space Cr−n × Rm+n−1
>0 ×

Rr+1. This bundle would be trivial if we required both (r1, . . . , rn) = (1, . . . , 1) and non-
permutable punctures P.
Its real dimension is readily computed, as 2(r − n) + m + n − 1 + 1 real parameters

correspond to a choice of u and every harmonic conjugate vj is unique up to an additive
constant, adding r real dimensions:

dimHmg,n[(r1, . . . , rn)] = dimMm
g,n+(2(r−n)+m+n−1+1)+r = 6g−6+3m+3n+3r = 3h .

We end this section with the following remark. There are situation in which we want
to think of surfaces with boundary or, in terms of slit picutes, of the relevant clipping as
seen in Figure 2.6. This is achieved by removing the critical graph as well as specific discs
around the poles and punctures. Each disc around a puncture Pj ∈ P is bound by an
equipotential circle beeing a closed curve on which u is constant, whereas each disc around
a pole Qi ∈ Q is bounded by a circle consisting of flow lines or equipotential lines, see
Figure 2.7. Observe that this process can be reversed without loss of information as the
basins are ordered.
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X

F2

F3

F1

Figure 2.7.: The red matter is removed and the thick red lines are seen as the boundary
curves of the resulting surface.

2.3. The Parallel Slit Complex

In this section, we review the parallel slit complex (P, P ′) associated with the moduli space
Mm

g,n and a given ordered partition (r1, . . . , rn). It is a semi-multisimplicial complex and
the complement of the (realization of) the subcomplex of degenerate configurations P ′ is
the space of parallel slit domains Parmg,n[(r1, . . . , rn)]. This will serve as a good model for
the moduli space Mm

g,n in the sense of Theorem 2.3.15.
If not stated otherwise, the genus g, the number of puncturesm, the number of boundary

curves n and the ordered partition (r1, . . . , rn) of r = r1 + . . . + rn are meant to be fixed.
As before, we denote h = 2g − 2 +m+ n+ r.
The following definitions express the rigidity of the geometric insights we presented in

Section 2.2. Using a potential function u and harmonic conjugates v1, . . . , vr, we obtain
r copies of the complex plane Ck with finitely many slits removed, each slit running from
some point horizontally to the left all the way to infinity. Introducing equipotential lines
that are defined near the poles or run through the critical points of u, the relevant clipping
of every Ck looks like Figure 2.6 with possibly more slits.
Let us for a moment concentrate only on one slit picture Ck. Here the heights of the

slits are denoted by the symbols 1k, . . . , pk. Equivalently, we number the banks using the
symbols 0k, . . . , pk. The equipotential lines subdivide each bank into q + 1 pieces and we
encode the glueing information as indicated by Figure 2.9.
For ik 6= pk and q ≥ j ≥ 0, the upper edge of the jth piece of the ithk bank is glued to the

lower edge of the jth piece of the bank with the prediscribed symbol σj(ik).
The 0thk bank does not have a lower edge and the pthk bank does not have an upper edge

but if we define σj(pk) = 0k we end up with q+1 permutations σq, . . . , σ0 of the symbols 0k,
. . . , pk. These permutations are clearly not arbitrary, e.g. σ0 is fixed to be cycle σ0 = (0k 1k
. . . pk). The (q+1)-tuple (σh : . . . : σ0) defines the homogenous notation of a combinatorial
cell (see Definition 2.3.2) whereas the inhomogeneous notation (see Definition 2.3.5) encodes
the (counter-clockwise) tours around the stagnation points.
The positioning of the slits define an inner point in the multisimplex (∆p1×. . .×∆pr)×∆q.

Collapsing vertical respectively horizontal stripes defines the vertical respectively horizon-
tal face operator (see Definition 2.3.8 respectively Definition 2.3.9). Allowing degenerate
slit configurations, we end up with a semi-multisimplicial complex called the parallel slit
complex (see Definition 2.3.11).
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Figure 2.9.: The combinatorial description of the slit picture in Figure 2.6. We have g = 0,
m = 1 and n = 1.

2.3.1. Cells in Homogeneous Notation
In this subsection, the partition r = r1 + . . .+ rn is meant to be fixed. We define arbitrary
cells Σ of bidegree (p, q) in the homogenous notation. Before going into details, recall our
notation for the symmetric groups (see Appendix A).

Definition 2.3.1. Consider an ordered partition of the natural number p = p1 + . . .+ pr
with all pi positive. The set

[p] = {01, 11, . . . , p11, . . . , 0r, 1r, . . . , prr}

consisting of p + r elements is a partition of p into r levels. In what follows, we will
abuse notation by abbriviating

pk = pkk .

This should not cause any confusion. The set [p] is ordered canonically via

01 < 11 < . . . < p1 < . . . < 0r < 1r < . . . < pr .

Definition 2.3.2. Using the homogeneous notation, a combinatorial cell of bidegree
(p, q) with respect to a given partition [p] is a (q + 1)-tuple of permutations σj ∈ S[p]

Σ = (σq : . . . : σ0) .

Most of the time we refere to Σ as a cell on r levels, leaving the partition [p] unmentioned.

Definition 2.3.3. A cell Σ = (σq : . . . : σ0) of bidegree (p, q) is called (parallel) inner cell
if it is subject to the following conditions.

(i) Every σi maps pk to 0k for every k.

(ii) The zeroth permutation σ0 is fixed to be σ0 = (01 11 . . . p1) . . . (0r 1r . . . pr).

(iii) For every 0 ≤ i < q, the permutations σi and σi+1 are distinct.

(iv) There is no symbol 0k ≤ jk < pk that is mapped to its successor j + 1k by all
permutations σi.

(v) The levels of Σ are ordered ascendingly with respect to the boundary curves,
i.e. σq induces on {01, . . . , 0r} ⊆ [p] the permutation (01 . . . 0p1)(0p1+1 . . . 0p1+p2)
. . . (0pr−1+1 . . . 0pr).
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Reversing the process discussed in Section 2.2, an inner cell on one level is pictured as
follows. We start off with the unit square which is cut up into horizontal stripes of the same
size. The stripes are denoted by the symbols 0 to p. Each stripe is divided into rectangles,
denoted by the numbers 0 to q, hence we subdivided the initial square into (p+ 1)(q + 1)
pieces of the same size. Now we glue the stripes according to the permutations (σq : . . . : σ0)
as indicated by Figure 2.10. The top side of the rectangle with coordinate (j, i) is glued

p

p− 1

σi(0)

1

0

q q − 1 j 1 0

σ0(p)

σ0(0)

σ0(1)

σ0(p−2)

σ0(p−1)

σi(p)

σi(0)

σq(p)

σq(0)

p

p− 1

σq(0)

1

0

q q − 1 . . . 1 0

Figure 2.10.: Glueing a surface from a cell in homogeneous notation. The thick line in-
dicates the boundary curve (which is seen as a parametrized disc around a
pole).

to the bottom side of the rectangle with coordinate (j, σj(i)), but we omit to glue the
pth rectangle to 0th. After glueing all pieces, we receive a surface with punctures and a
boundary curve (which we understand as the boundary of a contractible neighbourhood
of the dipole) as follows. The cycle of σq containing 0 corresponds to the boundary curve
(and therefore to the dipole), which we indicate by a thick line in Figure 2.10. All the other
cycles of σq resemble the punctures of the surface.
The picture for an inner cell on r levels is similar. Here we start off with r unit squares

A1, . . . , Ar, cut each Ak in (pk+1)(q+1) pieces and glue the collection of all pieces according
to the permutations σi. Observe that the resulting surface has exactly n boundary curves
by it may be disconnected. We will treat this case in the next definition. The cell in Figure
2.11 resembles a closed disc and corresponds to the example in the previous section, where
we cut S2 into two pieces along the critical flow of the dipole function <(z2).

Figure 2.11.: The cells
(
(01 12 02 11) : (01 11)(02 12)

)
resembles a closed disc and is under-

stood as the complement of an open disc around infinity in S2.
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Definition 2.3.4. A combinatorial cell is connected if the resulting surface is connected.
Wandering on the surface by traversing through the stripes horizontally or (using the
glueing information) vertically, we conclude that a cell is connected if and only if the
equivalence relation on [p] generated by

i ∼ j ⇐⇒ ∃k : j = σk(i)

consists of exactly one element.

2.3.2. Cells in Inhomogeneous Notation
As before, the ordered partition r = r1 + . . .+ rn is meant to be fixed. It is fertile to give
an equivalent description for inner cells of bidegree (p, q). Let Σ = (σq : . . . : σ0) be a inner
cell and consider the permutations τj = σjσ

−1
j−1 for 1 ≤ j ≤ h. Every symbol 0k is fixed by

every τi. We sometimes view these as permutations on the symbols [p]− {0k | 1 ≤ k ≤ r}.
In the next definition we rephrase the conditions of Definition 2.3.3.

Definition 2.3.5. Using the inhomogeneous notation, a combinatorial cell of bidegree
(p, q) with respect to a given partition [p] is a q-tuple of permutations τj ∈ S[p] written as

Σ = (τq | . . . | τ1) .

It is a (parallel) inner cell if it is subject to the following conditions

(i) every permutation τq, . . . , τ1 is non-trivial,

(ii) the set of common fixed points of the permutations τq, . . . , τ1 is exactly {01, . . . , 0r}
and

(iii) the permutation τq · · · τ1σ0 ∈ S[p] induces on {01, . . . , 0r} ⊆ [p] the permutation (01
. . . 0p1)(0p1+1 . . . 0p1+p2) . . . (0pr−1+1 . . . 0pr).

The following is clearly a one-to-one correspondence of inner cells with respect to a given
partition [p]

(σq : . . . : σ0) 7−−→ (τq | . . . | τ1) with τi = σiσ
−1
i−1 .

In contrast to the homogeneous notation, where the combinatorial information describes
how to traverse through the geometric cell vertically, the inhomogeneous notation portrays
the tours around each (inner) corner point, which is a stagnation point in the light of
Section 2.2. In Figure 2.12 we picture this for the cell Σ =

(
(0 2) : (0 1 2)

)
(written in

homogeneous notation), which should remind the reader of the example portrayed in Figure
2.6.
Both the number of punctures and the number of boundary components of the corre-

sponding surface are encoded by the permutation σq.

Definition 2.3.6. Consider an arbitrary cell Σ = (σq : . . . : σ0) of bidegree (p, q).

(i) The number of cycles of Σ is defined to be the number of cycles of the permutation
σq

ncyc(Σ) = ncyc(σq) ,

where we view fixed points as cycle of length zero.
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σ1=(0 2)(1) σ0=(0 1 2)

2

1

1

τ1=(1 2)

Figure 2.12.: Comparison of the homogeneous and inhomogeneous notation.

(ii) Every cycle of σq that contains at least one symbol 0k is called boundary cycle of
Σ. The number of boundaries of Σ is denoted by

n(Σ) = #{boundary cycle of Σ}

and the number of punctures of Σ is

m(Σ) = ncyc(Σ)− n(Σ) .

(iii) The norm of Σ is
N(Σ) = N(σqσ−1

q−1) + . . .+N(σ1σ
−1
0 ) ,

where N measures the word length in the symmetric group S[p] with respect to the
set of all transpositions.

Remark 2.3.7. Reversing the dissection process in Section 2.2, the number of punctures
and boundary curves of a combinatorial cell Σ equals the number of punctures and boundary
curves of the surface F that is obtained by glueing. Moreover, an inner cell Σ = (τq | . . . | τ1)
defines an imbedded connected graph K0 whose complement are r basins. The poles,
punctures and stagnation points correspond to the vertices and N(τj) + s is the number of
edges that end in the s stagnations at the jth equipotential line. The Euler characteristic
of F is

2− 2g = χ(F ) = #vertices−#edges+ #faces = m+ n− h+ r ,

so the genus of F is uniquely determined by h,m and the partition.

g(Σ) = h−m− n− r + 2
2

2.3.3. Vertical and Horizontal Faces
Definition 2.3.8. Let Σ = (σq : . . . : σ0) be an arbitrary cell of bidegree (p, q). The jth
vertical face of Σ is obtained by removing the jth permutation, where 0 ≤ j ≤ q:

d′j(σq : . . . : σ0) = (σq : . . . : σ̂j : . . . : σ0)

and this translates into the inhomogeneous notation as follows.

d′j(τq | . . . | τ1) =


(τq | . . . | τ2) j = 1
(τq | . . . | τiτj−1 | . . . | τ1) 1 < j < q

(τq−1 | . . . | τ1) j = q
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Imagining an inner cell as in Figure 2.10, we collapse the jth vertical stripe of the cor-
responding parallel slit domain. Collapsing the ith horizontal stripe corresponds to a face
map in the multisimplex ∆p1 × . . . × ∆pr . For our techniques, it is convenient to group
these face maps using the corresponding partition [p]. Consequently, we will speak of the
ith horizontal face where i ∈ [p]. Before going into the details, one might take a look at
Figure 2.13.

p

0

q j 0

p

i

0

q 0

Figure 2.13.: The vertical and horizontal face operators.

Definition 2.3.9. Let i ∈ [p]. The ith horizontal face of Σ is

d′′i (Σ) = (Di(σq), . . . , Di(σ0)) ,

where Di : S[p] −−→ S[p−1] removes the symbol i from its cycle in σ (recall Definition A.3).

We usually omit the simplicial degeneracy and face maps since they only rename the
symbols used. Hence we write

Di(σ) = (i σ(i)) · σ or Di(σ) = σ · (σ−1(i) i) .

From this observation, we can easily derive a formula for the inverse of Di(σ), since

Di(σ)−1 = ((i σ(i)) · σ)−1 = σ−1 · (i σ(i)) = Di(σ−1).

The next proposition reformulates the definition of the horizontal faces for the inhomo-
geneous notation. Using Figure 2.12 it is not hard to come up with the right idea.

Proposition 2.3.10. Let Σ = (τq | . . . | τ1) be an inner cell with homogeneous representa-
tion (σq : . . . : σ0) and let 0k < i < pk for some k. Then the ith horizontal face is

d′′i (Σ) = (τ ′′q | . . . | τ ′′1 ) ,

where
τ ′′k = Di( τk · (i σk−1(i)) ) for 1 ≤ k ≤ q .

In particular
τ ′′k = Di(τk) if i /∈ supp(τk) .
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Proof. For readibility, write ρk = τk · (i σk−1(i)). First note that

d′′i (Σ) = (Di(σq) : . . . : Di(σ0)) = (Di(σq) ·Di(σq−1)−1 | . . . | Di(σ1) ·Di(σ0)−1) .

Hence it suffices to show that

Di(σk) ·Di(σk−1)−1 = Di(ρk)

holds for each k = 1, . . . , q. We have

Di(ρk) = (i ρk(i)) · ρk

and using τk = σk · σ−1
k−1 its clear that ρk(i) = σk(i), so we are left with

= (i σk(i)) · σk · σ−1
k−1 · (i σk−1(i))

= Di(σk) ·Di(σk−1)−1 .

2.3.4. The Parallel Slit Complex
Fixing the genus g, the number of punctures m, the number of boundary curves n and
the ordered partition r = r1 + . . . + rn, we are ready to define the parallel slit complex
P = P (h,m; r1, . . . , rn).

Definition 2.3.11. Let Pp,q be freely generated by all cells Σ on r levels of bidegree (p, q)
such that the conditions

(i) N(Σ) ≤ h,

(ii) m(Σ) ≤ m,

(iii) n(Σ) ≤ n,

(iv) Σ is connected and

(v) the levels of Σ are ordered ascendingly with respect to (r1, . . . , rn).

are fulfilled. A cell Σ ∈ P is said to be non-degenerate with respect to the moduli
space Mm

g,n and the partition (r1, . . . , rn) if it is a connected inner cell and has exactly n
boundary cycles, m punctures and norm h. All other cells in P are called degenerate.
Observe that cells Σ /∈ P are neither degenerate nor non-degenerate with respect to Mm

g,n

and (r1, . . . , rn).
The vertical boundary operator is the alternating sum of the vertical faces

∂′ =
q∑
i=0

(−1)id′i

and the horizontal boundary operator is the alternating sum of the horizontal faces

∂′′ =
p∑
j=0

(−1)jd′′j .

The double complex (P (h,m; r1, . . . , rn), ∂′, ∂′′) is the parallel slit complex with respect
to the moduli space Mm

g,n and the partition r = r1 + . . .+ rn.
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Remark 2.3.12. Recall that the horizontal boundary operator is the alternating sum over
all face maps in ∆p1× . . .×∆pr . Hence P is indeed a semi-multisimplicial complex although
we are mostly concerned with the associated bicomplex, which we denote by P as well.

Remark 2.3.13. Observe that every face d′0(Σ), d′q(Σ), d′′0k(Σ) and d′′pk(Σ) of a non-
degenerate cell Σ ∈ Pp,q is degenerate. Observe further that all faces of a degenerate
cell remain degenerate.

Summing up the construction, we obtain the following theorem.

Theorem 2.3.14. The parallel slit complex P is a semi-multisimplicial complex and the
degenerate cells consitute a subcomplex P ′. The space of parallel slit domains Parmg,n[(r1,
. . . , rn)] is the complement of |P ′| inside |P |.

Recall the construction of the Hilber uniformization in Section 2.1

H : Hmg,n[(r1, . . . , rn)] ↪−−→ |P | .

Its corestriction to Parmg,n[(r1, . . . , rn)] = |P | − |P ′| is a homeomorphism due to [Böd90a].
Therfore, Parmg,n[(r1, . . . , rn)] 'Mm

g,n serves as a good model for the corresponding mapping
class group Γmg,n:

Theorem 2.3.15. The space of parallel slit domains Parmg,n[(r1, . . . , rn)] = |P | − |P ′| is
a manifold of dimension 3h in the finite, semi-bisimplical complex (P, P ′). By Poincaré
duality

H∗(Mm
g,n;Z) = H∗(Parmg,n[(r1, . . . , rn)];Z) ∼= H3h−∗(P, P ′;O)

where O are the orientation coefficients.

2.4. The Bundle H•g(m,n)

In this section, we want to outline the construction of the bundle H•g(m,n) over the moduli
space M•g(m,n). For further details, see [Böd06].
Let [F, C+, C−,P] ∈ M•g(m,n) be a point of the moduli space, using the same notation

as in the introduction (Section 2.1). In order to describe the fiber over this point, we
proceed as follows. By classical potential theory, e.g. [Tsu59, Theorem I.25], there exists a
harmonic potential u : F −−→ R without any singularities and with all critical points in
the interior of F . The potential u is uniquely determined by the complex structure and by
the conditions that

(i) on each boundary curve C+
k and C−k , u is constant and non-negative, and

(ii) for each outer boundary curve C+
k , the constant value is 0.

Thereby, we can only choose the constant value of u on one kind of boundary curves.
Here, it will be on the outgoing ones. On the incoming boundaries, the potential u yields
constants ck > 0 such that u(C−k ) = ck.
Similar as in the parallel case, we construct the unstable critical graph K0 of the negative

gradient flow −gradu. Again calling the zeroes S of the gradient flow stagnation points,

34



note that each flow line leaving a stagnation point S either goes to another stagnation point
or to a point Q+ ∈ C+ in the outer boundary. These points shall be called cut points, and
the set of all cut points is denoted by Q+. In Figure 2.14, we see an example for a surface
with n = 2 incoming boundaries, m = 1 outgoing boundaries and g = 0. Some lines of the
gradient flow are indicated in blue, whereas the unstable flow lines, which are used to build
up the critical graph, are drawn bold. For reasons of clarity, only the critical flow line is
drawn on the backside of the surface.

S

P−2

P−1

Figure 2.14.: The gradient flow of a potential function on a surface with n = 2, m = 1 and
g = 0.

Since u is locally the real part of a holomorphic function, the stagnation points S ∈ S are
saddle points of some index −2h ≤ ind(S) ≤ −1. The sum of these indices has to equal the
Euler characteristic χ(F ) = −h, thus we can conclude that there are at most h stagnation
points.
The vertices of the unstable critical graph are the points in V K0 = S∪Q+. The (directed)

edges of the unstable critical graph correspond to the (directed) unstable flow lines only.
It is possible that K0 is empty, namely when F is an annulus. Note that every component
of the complement of the critical graph in F contains exactly one boundary curve. Hence,
we can write F1, . . . , Fn for the components of F\K0, which we also call basins. Since the
gradient vector field does not have any singularities, we obtain a deformation retraction of
Fk onto C−k by running the flow lines backwards.
In Figure 2.15, our surface from Figure 2.14 is looked at from above and dissected along

the unstable critical graph, yielding one basin for each of the two incoming boundary curves.
On each basin Fk, the harmonic function uk = u |Fk : Fk −−→ R is the real part of a

holomorphic function
wk = uk + ivk : Fk −−→ C ,
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2

P1
P2

Figure 2.15.: The surface with n = 2, m = 1 and g = 0 of Figure 2.14 looked at from
above, dissected along the unstable critical graph.

where vk is a harmonic conjugate of uk. The function vk is only defined up to integer
multiples of 2πi, but after this it is unique up to an additive constant dk. This we fix soon.
Thus, the function

Wk(z) = exp(−wk(z)) = exp(−uk(z)) exp(−ivk(z)) : Fk −−→⊂ C

is well defined and maps Fk injectively into an annulus Ak. By this, the modulus is
determined by uk and the angle by vk. Since exp(−u(z)) equals 1 when restricted to any
outer boundary curve C+

l incident to Fk and ρk := exp(−ck) < 1 when restricted to C−k ,
the image of Fk under Wk is contained in an annulus Ak with outer radius 1 and inner
radius ρk < 1. The additive constant dk in the definition of the harmonic conjugate vk
of uk can be chosen such that the marked point Pk on the incoming boundary curve Q−k
is mapped to the real point (ρk, 0) of the annulus. The image of Fk ⊂ Ak consists of the
entire annulus, where finitely many slits from the outer boundary towards the center of the
annulus are missing. Remembering that the surface originally was glued together along
these missing slits, we can reconstruct the surface F from the image of the basins Fk on
the annuli Ak. A more detailed description of these so-called radial slit domains follows in
Section 2.5.
We are now ready to finish the description of the bundle H•g(m,n). Let H•g(m,n) be the

space of all
[F, C+, C−,P, w] .

As above, [F, C+, C−,P] ∈M•g(m,n) is a point in the moduli space and w = (u, (vk)k=1,...,n)
with u : F −−→ R being the harmonic potential defined on the whole surface F , and the
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functions vk : Fk −−→ R being locally defined harmonic conjugates of u on the basins Fk,
for k = 1, . . . , n. There is a projection

H•g(m,n)
∼=−−−→M•g(m,n) , [F, C+, C−,P, w] 7−−→ [F, C+, C−,P] ,

with trivial fibres since there are no free parameters in the choice of u and vk. Thus, the
dimension of H•g(m,n) equals

dim(H•g(m,n)) = dim(M•g(m,n)) = 3h+ n = 6g − 6 + 3m+ 4n .

2.5. The Radial Slit Complex
We will now construct the radial slit complex (R,R′) associated with the moduli space
M•g(m,n). Recall that we have defined a homeomorphism H•g(m,n)

∼=−−−→M•g(m,n) (com-
pare Section 2.4). There is a space Radg(m,n) of radial slit configurations, which is home-
omorphic to H•g(m,n) and can be defined as the geometric realization of the difference
R − R′ of the multicomplex R and its subcomplex R′. The latter are described in this
section. Like the parallel slit complex (P, P ′), (R,R′) is only a semi-multisimplicial com-
plex. In contrast to H•g(m,n), it has a purely combinatorical description. Hence, it is very
suitable for determining the homology of

H∗(M•g(m,n);Z) = H∗(H•g(m,n);Z)
∼= H3h+n−∗(H•g(m,n);O) = H3h+n−∗(Radg(m,n);O) = H3h+n−∗(R,R′;O)

via a computer program. Here, the isomorphism is given by Poincaré duality and O is the
orientation system, for which a simplicial definition is provided in Section 2.6.
If not stated otherwise, the genus g, the number of outgoing boundaries m and the

number of incoming boundary curves n are fixed throughout this section. Be aware that
these letters mean different things in the radial case than in the parallel case. Moreover,
the partition R = (r1, . . . , rn) is always of the form R = (1, . . . , 1) here. Consequently, we
have r = n and can omit r as well as the paritition R. Hence, [p] always denotes the set

[p] = {01, 11, . . . , p1, . . . , 0n, 1n, . . . , pn} ,

in the radial case, where p = p1 + . . .+pn is a partition of p into n levels with all pi positive
(compare Definition 2.3.1 for the meaning of [p] in the parallel case). As before, we write
h = 2g +m+ n− 2 in contrast to the formula for h in the parallel case.
Recall the definition of the fibre over a point [F, C+, C−,P] ∈M•g(m,n) in the homotopy

equivalent bundle H•g(m,n) over M•g(m,n) in Section 2.4. We ended up with a function

Wk = exp(−uk) exp(−ivk) : Fk −−→ Ak ⊂ C

for each k = 1, . . . , n. This maps the basin Fk into an annulus Ak with inner radius ρk < 1
and outer radius 1, filling the annulus up to some missing slits. We shall now give a more
detailled discription of the image of the maps Wk for k = 1, . . . , n, which we call a radial
slit picture (see Figure 2.16).
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P1 P2

α′β′

β
α

Figure 2.16.: The surface of Figures 2.14 and 2.15 with n = 2, m = 1 and g = 0 mapped
into two annuli via W1 and W2.

The n annuli A1, . . . ,An are called the annuli or level upon which the radial slit picture
resides. The kth incoming boundary curve of the surface F is mapped to the inner boundary
cycle of the kth annulus, and the marked point Pk on the incoming boundary curve C−k is
mapped to the point (ρk, 0) on this cycle. Thus we use to refer to the inner boundary cycle
of the kth annulus as its kth inner boundary.
When we delete an edge of the unstable critical graph from F , we obtain, on either side,

a bank still belonging to F . Each of these banks may belong to a different basin. After all
maps Wk are applied to the basins Fk, the deleted edges of the critical graph yield missing
slits on the annuli. Thereby, the banks belonging to the same edge may be seperated from
each other. Since there are at most h stagnation points (compare 2.4) and each of them
results in at most two missing slits, there are at most 2h missing slits on the annuli in total.
Note that the endpoints of the slits lie anywhere on the annuli apart from their inner and
outer boundary cycles.
An outer boundary curve C+

l of F is mapped to the outer boundary cycles of the an-
nuli A1, . . . ,An, however not necessarily consecutive or even on one annulus only. While
traversing C+

l in the surface F , one occasionally meets a cut point Q+. In particular, this
cut point is one endpoint of an edge of the unstable critical graph, so the two banks of this
edge may be seperated as described above. But if we start at an arbitrary point of the
image of C+

l under some map Wk, we can run through the entire image of C+
l under any

map Wk in the annuli A1, . . . ,An. Thereby, we have to jump across paired slits whenever
they are met. We thus refer to these parts of the outer boundary of all annuli A1, . . . ,An as
the outer boundary curve of our radial slit picture. In Figure 2.16, we can run through the
single outer boundary curve along the outer boundary of the annuli clockwise if we jump
from α to α′ and from β′ to β on our way.
By adding equipotential lines through the stagnation points, we obtain 0 ≤ q ≤ h

concentrical lines on each annulus Ak. Extending the lines of the slits towards the inner
and outer boundary of Ak, we obtain a subdivision of each annulus into regions.
This completes our description of a radial slit picture. Vice versa, the surface F can be

obtained from the radial slit picture. We can re-glue previously connected basins along the
missing slits in order to re-construct the surface F . Note that the resulting surface is the
same if slits move in the annuli, or even if smaller slits jump across larger slits. Thus, such
radial slit pictures are considered as equal.
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In order to obtain a multisimplicial description of these radial slit pictures, we will
normalize them in the following subsection, resulting in a new structure called cell. Note
that two regions are only glued together if they lie in the same concentrical stripe of
any annulus (maybe on two different annuli). Hence, we can express the glueing via one
permutation σj ∈ S[p] per concentrical stripe 0 ≤ j ≤ q, where [p] is the set

[p] = {01, 11, . . . , p1, . . . , 0n, 1n, . . . , pn} ,

which denotes the radial segments of the kth annulus by 0k, . . . , pk. In the Subsections
2.5.1 and 2.5.2, we will see how exactly this defines the cells Σ = homogq of the relative
multicomplex (R,R′), using two different perspectives.
The positions of the slits define an inner point of the multisimplex ∆p ×∆q. Collapsing

concentrical stripes and radial segments defines vertical and horizontal faces of the cells, see
Subsection 2.5.3. After this preparation, we can introduce the radial slit complex (R,R′)
in Subsection 2.5.4.

2.5.1. Radial Cells in Homogeneous Notation
Recall Definition 2.3.2.

Definition 2.5.1. (Definition 2.3.2) Using the homogeneous notation, a combinatorial
cell of bidegree (p, q) with respect to the partition [p] is a (q + 1)-tuple of permutations
σj ∈ S[p]

Σ = (σq : . . . : σ0) .

Most of the time we refer to Σ as a cell on n levels, leaving the partition [p] unmentioned.

Note that this definition of a cell still makes sense in the radial case. An inner cell,
however, is defined differently now.

Definition 2.5.2. A cell Σ = (σq : . . . : σ0) of bidegree (p, q) is called radial inner cell if
it satisfies the following conditions:

(i) The zeroth permutation σ0 is fixed to be the levelwise cyclic permutation

σ0 = (01 11 . . . p1) . . . (0n 1n . . . pn) .

(ii) For every 0 ≤ i < q, the permutations σi and σi+1 are distinct.

(iii) There is no symbol 0k ≤ jk < pk that is mapped to its successor j + 1k by all
permutations σi.

Note that the difference of a radial inner cell to a parallel inner cell is that the symbols
pk do not necessarily have to be mapped to 0k by each permutation σj . Therefore, every
parallel inner cell can be viewed as a radial inner cell, and every radial inner cell, which is
not a parallel cell, is the 0thk face of a parallel inner cell of bidegree (p+ 1, q).
A radial cell of bidegree (p, q) on n levels with respect to the partition [p] is represented

geometrically by a radial slit annulus in the following way.
Let A1, . . . ,An ⊂ C be annuli in distinct complex planes. Each annulus Ak shall be

centered at 0, having outer radius 1 and inner radius rk for fixed 0 < rk < 1. Introduce
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pk+1 equally sized radial segments on the annulus Ak, numbered clockwise by the symbols
0k, . . . , pk. To normalize the numeration, we require that the line preceding the 0th segment
0k in clockwise ordering lies on the positive real line. Furthermore, we introduce q + 1
concentrical, equidistant stripes on each annulus. The 0th stripe is incident to the inner
boundary of the annulus, and all other stripes are numbered with the symbols 1, . . . , q
towards the outer boundary.
This way we obtain a subdivision of each annulus Ak into (q + 1)(pk + 1) regions with

coordinates (j, i), where i ∈ {0k, . . . , pk} and j ∈ {0, . . . , q}. As in the parallel case, we
obtain a surface by performing identifications within the set of the jth stripes on each
annuli, for each j = 0, . . . , q. By this, the line segment preceding a region (j, i) is glued
with the line segment succeeding the region (j, σj(i)), see Figure 2.17. It is possible that
the two regions lie on two different annuli.

0
j

q

0

i

p

σ0(p)

σ0(0)

σj(p)

Figure 2.17.: The homogeneous representation of a radial cell.

Note that we have reversed the process described in 2.4 and at the beginning of this
Subsection. The surface resulting from glueing has n incoming boundary curves arising
from the n inner circles of the annuli. On each inner boundary, there is a marked point
corresponding to the point (Rk, 0) on the kth annulus. The cycles of σq yield the outgoing
boundary curves of the surface, which do not have a specific order. If we require the cell Σ
to be connected as in Definition 2.3.4, the resulting surfaces will also be connected.
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2.5.2. Radial Cells in Inhomogeneous Notation
Like a parallel inner cell, a radial inner cell can be expressed in inhomogeneous notation
by writing

Σ = (τq | . . . | τ1) ,

where τj = σj · σ−1
j−1 for j = 1, . . . , q. One should be cautious about the permutations τj .

Whereas, in the parallel case, we could assume the τj to act on the symbols [p]− {0k : 1 ≤
k ≤ n} only, we cannot do this here since we do not require that pk is mapped to 0k
by each permutation σj . Therefore, the symbols 0k might be permuted non-trivially by
some σj · σ−1

j−1, but they might be fixpoints of each transposition τj as well. We receive
permutations τq, . . . , τ1 on the whole set of symbols [p]. Using this notation, we obtain an
equivalent way to state Definition 2.5.2.

Definition 2.5.3. A combinatorial cell of bidegree (p, q) with respect to the partition [p]
written in inhomogeneous notation is a q-tuple of permutations

Σ = (τq | . . . | τ1) ,

where each τj acts on the set of symbols [p]. It is a radial inner cell if satisfies the
following conditions:

(i) Every permutation τq, . . . , τ1 is non-trivial.

(ii) The set of common fixed points of the permutations τq, . . . , τ1 is a subset of {01,
. . . , 0r}.

(iii) The permutations τq, . . . , τ1 do not have any fixed point in common.

Similar as in the parallel case, we draw inhomogeneous radial cells like in Picture 2.18.
There could also be a slit on the positive real line, and there could be more than one slit
per symbol. Again, the inhomogeneous picture of a radial cell reveals how tours around
the stagnation points look like.
In order to finish a full combinatorial description for a point in the bundle H•g(m,n),

we need to encode the numbers of incoming and outgoing boundaries, rewriting Definition
2.3.6 for the radial case.

Definition 2.5.4. Consider an arbitrary radial cell Σ = (σq : . . . : σ0) of bidegree (p, q).

(i) The number of incoming cycles of Σ is defined to be the number n(Σ) of annuli,
on which Σ is defined, and thus equals the number of cycles of σ0.

(ii) The number of outgoing cycles of Σ is defined to be the number

m(Σ) = ncyc(σq)

of cycles of the permutation σq, including fixpoints.

(iii) The norm of Σ is
N(Σ) = N(σqσ−1

q−1) + . . .+N(σ1σ
−1
0 ) ,

where N measures the word length in the symmetric group S[p] with respect to the
set of all transpositions.
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Figure 2.18.: The inhomogeneous representation of the radial cell Σ = ((4, 2) | (3, 1)) with
N(Σ) = 2, n(Σ) = 1, m(Σ) = 1.

With this definition, the number of inner and outer boundary curves of a radial cell Σ
coincides with the number of the surface resulting from the glueing process described in
Subsection 2.5.1.

Remark 2.5.5. Recall that, for a parallel inner cell Σ = (σq : . . . : σ0), the permutation σq
is supposed to have m+ n cycles instead of m, see Definition 2.3.3. This occures because,
in the parallel case, only m of these m + n cycles of σq correspond to the m punctures
of the resulting surface and the remaining cycles, which contain at least one symbol 0k,
correspond to the n boundary curves of the surfaces. But in the radial case, all the cycles
of σq correspond to the m outgoing boundary curves of the surface resulting from glueing
Σ.

Note that we can read off the Euler characteristic and the genus of the surface from the
cell.

Proposition 2.5.6. Let Σ = (σq : . . . : σ0) be a radial inner cell with m(Σ) = m, n(Σ) = n
and N(Σ) = h. Then the Euler characteristic of the surface F resulting from glueing Σ
according to the permutations σj equals

χ(F ) = −h = −2g + 2−m− n .

Proof. Note that the slits and the concentrical lines of Σ yield an embedded graph K0 ⊂ F ,
the unstable critical graph. The vertices correspond to the cut points Q+ on the outgoing
boundaries and to the stagnation points S. On the jth equipotential line, all stagnation
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points are connected by a cycle and there are N(τj) edges connecting stagnation points to
the outgoing boundaries. The number of faces of K0 equals n.
Since we want to use this embedded graph for determining the Euler characteristic, we

would like it to be connected with contractible faces. In order to obtain a connected graph,
we add edges around the outgoing boundary curves. After having done so, there is one
additional edge for each cut point Q+. If we additionally introduce one vertex per incoming
boundary C−k , together with one loop around C−k and one edge connecting it to some vertex
of the critical graph (without introducing any crossings), each face of the resulting graph
is contractible and the number of faces remains n. Hence, the Euler characteristic of F is
given by

χ(F ) = #vertices−#edges+ #faces
= |Q+|+ |S|+ n− (|S|+ h+ |Q+|+ 2n) + n

= −h .

Corollary 2.5.7. Let Σ = (σq : . . . : σ0) be a radial inner cell with m(Σ) = m, n(Σ) = n,
N(Σ) = h. Then, the genus of the surface F resulting from glueing Σ according to the
permutations σj equals

g(Σ) = h−m− n+ 2
2 .

2.5.3. Faces
Using the same formulas as in parallel case (see Definitions 2.3.8 and 2.3.9), we define
vertical and horizontal faces for radial cells Σ of bidegree (p, q). In particular, note that
Proposition 2.3.10 also holds for radial inner cells. Geometrically, the jth vertical face of Σ
arises from Σ by deleting its jth concentrical stripe, for j ∈ {0, . . . , q}. The ith horizontal
face arises by deleting the ith radial segment for i ∈ [p] (see Figure 2.19).

0
j

q

0

p

0

i

p

0

q

Figure 2.19.: The vertical and horizontal face operators.

2.5.4. The Radial Slit Complex
Write h = 2g − 2 + m + n. We are finally able to introduce the radial slit complex, a
relative finite multisimplicial complex (R,R′), whose homology is just the homology of the
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moduli space M•g(m,n). As a first step, define a complex R = R(g,m, n) with possibly
non-zero modules Rp,q in bidegree (p, q) for each 1 ≤ p ≤ 2h and 1 ≤ q ≤ h. Similar
to the parallel case, the module Rp,q is freely generated over Z by all those radial cells
Σ = (σq, . . . , σ0) of bidegree (p, q) with

(i) N(Σ) ≤ h,

(ii) m(Σ) ≤ m,

(iii) n(Σ) ≤ n.

A cell Σ ∈ Rp,q is called non-degenerate with respect to M•g(m,n) if it is a connected
inner radial cell that fulfills each of the above conditions with equality. All other cells in
Rp,q are called degenerate.
As in the parallel case, the vertical respectively horizontal boundary operator of a radial

cell in R is given by the alternating sum of its horizontal respectively vertical faces. Again,
faces of degenerate radial cells and the 0th vertical face of a non-degenerate radial cell
are always degenerate. But now the 0thk and pthk horizontal face of a radial cell Σ is not
necessarily degenerate since the condition that all pk have to be mapped to 0k by each σq
is dropped for radial cells.
By construction, we have

Theorem 2.5.8. The radial slit complex R is a semi-multisimplicial complex and the de-
generate cells consitute a subcomplex R′. The space of radial slit domains Radg(m,n) is
the complement of |R′| inside |R|.

As in the parallel case, we have reviewed the Hilbert uniformization

H : H•g(m,n) ↪−−→ |R| ,

for which the restriction to Radg(m,n) = |R| − |R′| is a homoeomorphism due to [Böd06].
Summarizing, we obtain

Theorem 2.5.9. The space of radial slit domains Radg(m,n) = |R|− |R′| is a manifold of
dimension 3h+n in the finite, semi-multisimplical complex (P, P ′). So by Poincaré duality

H∗(M•g(m,n);Z) = H∗(Radg(m,n);Z) ∼= H3h+n−∗(R,R′;O) ,

where O are the orientation coefficients.

2.6. The Orientation System
Let M denote the moduli space Mm

g,r or M•g(m,n) with fixed g, m, n, and possibly r, Let H
denote the corresponding bundle over M. For simplicity, we always use the letter P for the
associated relative multisimplicial complex (P, P ′) instead of writing (R,R′) in the radial
case.
Since H is non-orientable when m > 1, we need to use a local orientation system O to

compute its homology via generalized Poincaré duality

H∗(M;Z) = H∗(H;Z) ∼= Hd−∗(H;O) = Hd−∗(P, P ′;O) ,

44



where O are the orientation coefficients and d denotes the dimension of H. We follow
Mehner’s approach to define the orientation system (see [Meh11, Chapter 3.7]) because it
can be applied to the parallel case as well as to the radial case and because its implementa-
tion is a simple calculation (compare Subsubsection 6.3.2.5). In the following, we describe
the idea of our orientation system, starting with the notion of orientation in the manifold
H and continuing with the bisemisimplicial orientation system for (P, P ′).
By H̃, we denote the orientable covering space of H that arises from H by numbering the

m punctures in the parallel case, respectively the m outgoing boundary curves in the radial
case. The symmetric groupSm acts on H̃ by permuting the punctures respectively outgoing
boundaries, with H = H̃/S. The elements of the alternating group Am ⊂ Sm are exactly
those elements that act orientation-preserving, compare [Meh11, Chapter 3.4]. Hence, it
is a simple exercise to see that the quotient H = H̃/Am arising from H̃ is orientable. As
an orientable twofold covering of H with orientation reversing deck transformations, H is
isomorphic to the orientation covering of H and thus can be used to define an orientation
system for H.
In order to perform explicit calculations, we need to see how this notion of orientation

transfers to the bicomplex P . By (P̃ , P̃ ′), we denote the relative bicomplex corresponding to
H̃. Recall that, in the radial case, the m outgoing boundary curves of a surface correspond
to the m cycles of the permutation σq belonging to a cell Σ ∈ R; while in the parallel case,
the m punctures correspond to those m cycles of σq belonging to Σ ∈ P that do not contain
any symbol 0k. Thus, a permutation of the punctures corresponds to a permutation of the
cycles of σq, apart from the cycles containing some 0k in the parallel case. Hence, a cell
Σ̃ ∈ P̃ can be written as a pair Σ̃ = (Σ, ν), where the function ν : [p] −−→ {0, . . . ,m} defines
a numeration of the cycles, i.e.

(i) ν is invariant under σq,

(ii) ν induces a bijection
• [p]/σq −−→ {0, . . . ,m} in the parallel case,
• [p]/σq −−→ {1, . . . ,m} in the radial case, and

(iii) in the parallel case, we have ν(0k) = 0 for all k = 1, . . . , r.

Note that the application of the vertical face operator d′j to Σ leaves σq and hence ν
invariant, for j = 1, . . . , q − 1. Thus, the vertical boundary of P̃ is simply given by

∂̃′j = (∂′j(Σ), ν) .

When the horizontal face operator d′′i is applied to Σ, i ∈ [p], the symbol i is erased from
its cycle in σq. We obtain a numeration of the cycles of d′′i (Σ) by keeping the cycle numbers
for all remaining symbols. This yields the formula

∂̃′′i (Σ) = (∂′′i (Σ), ν ◦ d∆
i )

after to renormalization. A cell (Σ, ν) ∈ P̃ is degenerate if and only if Σ ∈ P is degenerate,
and P̃ ′ ⊂ P̃ is the subset of degenerate cells.
Defining an orientation system for the bicomplex (P, P ′) means that we may need to

alter the definition of the vertical and horizontal differentials by additional signs in order
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to correct the change of orientation induced by permutations of the punctures or outgoing
boundaries. To be precise, we choose a distinguished lift to P̃ for all cells of P . Considering
some Σ ∈ P , we obtain a cell Σ̃ = (Σ, ν) with a distinguished numeration ν of the cycles of
σq. Then we apply any face operator d to Σ and, correspondingly, d̃ to Σ̃. As d̃Σ and d̃(Σ̃)
lie in the same orbit under Sm, there is a permutation π ∈ Sm that transforms the two
different numerations of the cycles of σq into each other. Projecting everything down to the
orientation covering P , the projections of the two lifts d̃Σ and d̃(Σ̃) give two orientations
of the cell d(Σ). Therefore, the differential d is orientation preserving if and only if π is
a permutation in the alternating group Am. If d is orientation reversing, we correct this
by using an additional sign in the differential for (P, P ′) depending on Σ. Thus we aim at
defining differentials

∂̂′ =
q∑
j=0

(−1)jε′j(Σ)d′j(Σ)

and

∂̂′′ =
∑
i∈[p]

(−1)iε′′i (Σ)d′′i (Σ)

on the cells of P, P ′ with signs ε′j , ε′′i ∈ {±1} such that each face operator ε′j(Σ)d′j(Σ) and
ε′′i (Σ)d′′i (Σ) preserves orientations.
Let us now see how the minimum symbols of the cycles of σq determine the distinguished

lift.

Definition 2.6.1. Let Σ = (σq : . . . : σ0) ∈ P be a cell in homogeneous notation. The
distinguished lifting for Σ to P̃ is given by the cell Σ̃ = (Σ, ν), where ν is defined by the
following procedure:

(i) Decompose σq into disjoint cycles, yielding a decomposition
• σq = α0 . . . αm in the parallel case,
• σq = α1 . . . αm in the radial case.

(ii) Denote the minimum symbol of each cycle αk by ak.

(iii) • In the parallel case, choose the indices 0, . . . ,m such that a0 < . . . < am,
• In the radial case, choose the indices 1, . . . ,m such that a1 < . . . < am.

(iv) For a symbol i ∈ [p] belonging to cycle αk, set ν(i) = k.

Note that for m = 1, H and H̃ coincide, and we can keep the differentials unchanged.
For the jth vertical face operator, recall that d̃′j(Σ̃) preserves the numeration ν, hence we

can always set ε′j(Σ) = 1. But already for m = 2, there are situations when the horizontal
differential changes the orientation of a cell.

Example 2.6.2. Let Σ ∈ P be a parallel cell on one level with σq = (0 4)(1 3)(2). Then
Σ̃ is given by Σ together with the distinguished numeration ν of the cycles

i 0 1 2 3 4
ν(i) 0 1 2 1 0

.
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The application of the horizontal face operator d̃′′1 erases the symbol 1 from σq and renor-
malizes the permutation. The new numeration of the cycles of d′′1(Σ) is given by

i 0 1 2 3
ν(i) 0 2 1 0

.

On the other hand, first applying d′′1 to Σ and then lifting it to P̃ yields the distinguished
numeration

i 0 1 2 3
ν(i) 0 1 2 0

.

Hence the difference of the two permutations is the transposition (1 2), yielding ε′′1(Σ) = −1
because this means that d′′1 reverses orientations.

More generally, let Σ ∈ Pp,q be an oriented parallel or radial cell together with the
distinguished numeration ν of the cycles of σq. Consider i ∈ [p]. In the parallel case, we
can assume that i 6= 0k, pk since then the ith faces are always degenerate. Examine the sign
difference ε′′i (Σ) of the numeration of the cycles of σq given by d̃′′i (Σ̃) and the distinguished
numeration of d′′i Σ. Assume that the decomposition σq = (α0)α1 . . . , αm and the minimum
symbols (a0 <)a1 < . . . < am are chosen as above, and that the symbol i is contained in
the cycle αk.

(i) The symbol i is a fixed point of σq. Then the number of cycles of ∂i(Σ) is m instead
of m+ 1, thus ∂′′i (Σ) is degenerate and this case is not of interest.

(ii) The symbol i is not the minimum symbol of the cycle αk. Then ν is not affected by
the application of d′′i , meaning that ε′′i (Σ) = 1.

(iii) We have ak = i. When d′′i is applied, the symbol i is removed from its cycle, leaving
another element i′ > i as the smallest element of the cycle αk. Now the numeration
νi = ν ◦ di∆ is not necessarily the distinguished numeration of d′′i (Σ) since we do not
know whether i′ < ak+1. But we can transform νi into the distinguished numeration
by swapping i′ with all al such that i < al < i′. This means that the sign difference
ε′′i (Σ) is exactly (−1)l−k, where l is the maximum symbol with i < al < i′.

Hence, setting d̂′′i (Σ) = ε′′i (Σ)d′′i (Σ) corrects all the changes in orientations. We obtain

Proposition 2.6.3. The homology of the moduli spaces M = Mm
g,n respectively M•g(m,n)

can be determined via

H∗(M;Z) = Hd−∗(P, P ′;O) = Hd−∗(P̂ , P̂ ′) .

Here, (P, P ′) is the relative parallel respectively radial bicomplex. The relative bicomplex
(P̂ , P̂ ′) consists of the same cells as (P, P ′) together with the vertical differential ∂̂′ = ∂′

and, for Σ ∈ P̂ , the horizontal differential

∂̂′′ =
∑
i∈[p]

(−1)iε′′i (Σ)d′′i (Σ)

with ε′′i (Σ) as above.
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2.7. Comparison of the Parallel and Radial Models
We now want to relate the moduli spaces Mm

g,n and M•g(m,n). The most important, well-
known fact about their correlation is

Proposition 2.7.1. The moduli spaces Mm
g,n and M•g(m,n) are homotopy equivalent.

In particular, the homology of the two spaces coincides. In the remaining part of this
section, we will construct maps from one kind of these moduli spaces into the other or,
equivalently, maps between the corresponding bundles Hmg,n[(r1, . . . , rn)] and H•g(m,n) or
between the spaces Parmg,n[(r1, . . . , rn)] and Radg(m,n) of parallel and radial slit domains.

2.7.1. Parallelization
Consider a surface F withm permutable outgoing boundary curves and n marked incoming
boundary curves with a potential function u. For each outgoing boundary component C+

j ,
we glue in a disc D+

j and declare its origin as a logarithmic sink of u. For each incoming
boundary component C−i , we glue in a disc D−i and declare at its origin

(i) a tangent vector Xi pointing towards the marked point on C−i and

(ii) a pole of order ri respecting the tangent vector Xi.

We sketch this in Figure 2.20. Note that the number of stagnation points in D−i is exactly
ri. We obtain a surface F ′ with m permutable punctures and n poles with tangent vectors
attached. Thus, we have constructed a map

par : H•g(m,n) −−→ Hmg,n[(r1, . . . , rn)] .

On moduli spaces, this construction can be viewed as in Figure 2.21. We simply declare
the incoming boundary curves of a surface F ∈M•g(m,n) as boundary curves of a resulting
surface F ′. Outgoing boundary curves are transformed into punctures by glueing half-open
cylinders onto them. Thus we also have described the parallelization map

par : M•g(m,n) −−→Mm
g,n

on moduli spaces.
From Figure 2.20, we can also read off how to realize the parallelization map on the spaces

of slit domains. Consider a radial slit domain A corresponding to a surface F ∈ H•g(m,n),
where the slits reside on n annuli A1, . . . ,An. Let an ordered partition r = r1 + · · ·+ rn be
given, with ri ≥ 1 for all i. We want to transform A into a parallel slit domain on r levels.
Concentrate on a single annulus Ai. Since the inner boundary of Ai corresponds to an

inner boundary curve C−i , we have to imitate the process of glueing a pole of order ri to
C−i . Similar to what is happening to the critical graph on the surface, we split up the
annulus Ai into ri segments, ordered cyclically, starting at the marked point of A on the
real horizontal line. Each of the segments is mapped onto one level of the arising parallel
slit domain as in Figure 2.22. Here, we choose to map all endpoints of slits into the unit
square, and scale all distances between slits the same way they were scaled in the segment
of the annulus before. The levels are ordered at first by the number of the boundary curve,
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D−

D+

D−

Figure 2.20.: Three examples of extending the potential u. The tangent vector is colored
black, the marked point is green and the flow lines of u are light blue.

and among those levels corresponding to the same boundary curve by the cyclic ordering
of the segments on the annulus Ai.
Now it remains to preserve the information that the segments on the ith annulus have

to be glued together cyclically. Thus, we insert a new pair of slits between the levels
corresponding to each two neighboring segments, and these slits have to be longer than any
of the other slits. Compare again Figure 2.22, and note that the insertion of the new slits
corresponds to the insertion of stagnation points in Figure 2.20.
Remark 2.7.2. It does not matter where exactly the segments of one annulus are seperated
from each other since on the resulting parallel slit domain, the slits of neighboring segments
can jump over the newly inserted pairs of slits.
This completes the description of the parallelization map

par : Radg(m,n) −−→ Parmg,n[(r1, . . . , rn)]

in terms of radial slit pictures. Altogether, we obtain
Definition 2.7.3. There is a map

par : M•g(m,n) −−→Mm
g,n
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−

Figure 2.21.: The parallelization map applied to a surface.

Figure 2.22.: The parallelization map applied to a radial slit domain on one level, with
r = 3.

called the parallelization map, which is described by the above process. The paralleliza-
tion map can also be expressed on the corresponding bundles and slit domains.

In the special cases when n = 1 or m = 1, the parallelization map factors through the
space Parm,1g,n [1, . . . , 1] of parallel slit domains with one distinguished puncture. On parallel
slit pictures, these punctures that are touched by the new slits are distinguished. When
n = 1, this defines a single puncture; when m = 1, there is only one puncture anyway.
Note that, when n > 1 and m > 1, it is possible that this description defines an arbitrary
number t of 1 ≤ t ≤ min(n,m) puncture. In general, we can therefore not determine a
number of distinguished punctures for parallelized radial slit domain which is independent
of the slits.

Proposition 2.7.4. Let n = 1 or m = 1. Then the parallelization map factors through the
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space Parm,1g,n [(1, . . . , 1)] as in the following diagram:

Radg(m,n) Parmg,n[(1, . . . , 1)]

Parm,1g,n [(1, . . . , 1)]

par

par1

Here, the map par1 : Radg(m,n) −−→ Parm,1g,n [(1, . . . , 1)] is defined as the factorization of
the parallelization map through Parm,1g,n [(1, . . . , 1)], and the unnamed map forgets that one
of the punctures is distinguished.

2.7.2. Radialization

The resembling descriptions of the parallel and radial multicomplex suggest a simple map
from Mm

g,n to M•g(m + n, n). To see this, remember that a non-degenerate parallel cell
Σ = (σq : . . . : σ0) of bidegree (p, q) can also be viewed as a non-degenerate radial cell Σ of
bidegree (p, q) (see Definition 2.5.1). Recall that, in the parallel case, the parameter m(Σ)
equals the number of cycles of σq subtracted by the number n of boundaries of Σ, and in
the radial case, it equals the number of cycles of σq. Hence, the parameter m(Σ) increases
by n during the transformation of Σ from a parallel to a radial cell. Note that if r is the
number of levels of Σ, the number of levels of the radial version of Σ also is r.
Unfortunately, this map P (g,m, n; r) −−→ R(g,m + n, r) , Σ 7−−→ Σ, is not cellular.

Considering for example the cell

Σ = (((2 0)(1)) : (0 1 2)) ∈ P (1, 1; 1) ,

we see that the 2nd horizontal boundary of Σ is

Σ′ = ((1)(0) : (0 1)) .

This cell is not an inner cell of the parallel slit complex since σ′1 = (1)(0) does not map the
symbol 1 to 0. But in the radial slit complex, Σ′ is even non-degenerate.
We still can realize the desired map in terms of slit pictures as in Figure 2.23. Let

Figure 2.23.: The radialization map applied to a parallel slit domain on one level
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L ∈ Parmg,n[(r1, . . . , rn)] be a parallel slit domain on r levels. For the ith such level, we
embed the ith copy of the complex plane belonging to the parallel slit picture into an
annulus Ai ⊂ C with inner radius ci and outer radius 1. Thereby, the ends of the slits are
put into the interior of the annulus. In the picture, the slits all lie in the shaded region. In
the parallel slit picture, the slits run infinitely to the left, and in the resulting radial slit
picture, they run towards the outer boundary of the annulus. Note that no slit is put onto
the real horizontal line of the annulus.
Tracing the relevant clipping of the levels of the parallel slit picture (e.g. in Figure 2.23)

indicates how to describe the radialization map in terms of moduli spaces. So let F ∈Mm
g,n

be a surface with permutable punctures and numbered boundary curves. The punctures
of F can be read off from the left border of the relevant clipping. Thus, the punctures of
F are adopted as outgoing boundary curves during radialization. In the pictures, there
is a bold line indicating what happens to the part of a boundary curve belonging to the
relevant clipping of A on one level. When A is transformed into a radial slit domain, the
boundary curve is spit up into to pieces; the inner boundary of the annulus and portions of
the outer boundary. Note that, when the boundary curve belongs to more than one level,
we obtain inner boundary curves for each of the levels, but only one outcoming boundary
curve for the whole boundary curve.
Thus, we obtain

Definition 2.7.5. There is a map

rad: Mm
g,n −−→M•g(m+ n, n) ,

which shall be called radialization map. There are realizations of the radialization on
slit pictures and on bundles.

On moduli spaces, the radialization map can be described like in Figure 2.24. The

+
+

− +

Figure 2.24.: The radialization map applied to a surface.

punctures are transformed into outgoing boundary curves by cutting out small disks around
them. Onto each boundary curve, we glue a pair of pants with one outgoing and one
incoming boundary.
We have already seen how to construct the radialization map

rad: Parmg,n[(r1, . . . , rn)] −−→ Radg(m+ n, r)

on the niveau of slit domains. Thus, it remains to express it via bundles. So let F ∈ Hmg,n
be a surface with punctures, poles, tangent vectors and a gradient flow. We describe the
radialization as a map

rad: Hmg,n −−→ H•g(m+ n, r) .
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Here, we also cut out small disks around the punctures and immediately obtain outgoing
boundary curves instead. This reverses the process displayed in Figure 2.20, but only for
the punctures, not for the poles. We have already understood how we have to alter the
gradient flow around each pole. We want to glue in an outgoing boundary curve around
the pole and, for each basin of the pole, an incoming boundary curve such that the gradient
flow remains the same outside an excerpt around the pole. Figure 2.25 shows how this is
achieved for the pole of order 3 visible in Figure 2.20.

−

−

−+

Figure 2.25.: Transforming a pole of order 3 into one outgoing and three incoming boundary
curves.

In the special cases when n = 1 or m = 1, Proposition 2.7.4 yields the following

Proposition 2.7.6. If n = 1 or m = 1, the radialization map is split injective and hence
induces a split injective map

rad∗ : H∗(Mm
g,n) −−→ H∗(M•g(m+ n, n))

on homology.

Proof. Choose r = n = 1 + · · ·+ 1 the trivial partition. Consider the composition

Parmg,n[(1, . . . , 1)] rad−−−−→ Rad(g,m+n, n) par1
−−−−→ Parm+n

g,n 1[(1, . . . , 1)] forget−−−−−→ Parmg,n[(1, . . . , 1)]

of the radialization map with the parallelization map from Proposition 2.7.4 and the forget-
ful map that forgets the distinguished puncture. In Figure 2.26, we see that this composition
is the identity. This proves the claim.
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Figure 2.26.: The parallel slit picture A and its radialization rad(A).

Figure 2.27.: The parallel slit pictures par(rad(A)) and forget(par(rad(A))) = A.

Note that we have to set r = n in the preceding proof since the radialization map always
yields a radial slit picture with r annuli. In Corollary 4.4.3, we will be able to show the
statement for arbitrary m and n.

2.8. The Ehrenfried Complex

In this section, we treat the radial slit complex and parallel slit complex at once. In order
to reduce notation, we only mention the parallel model most of the time.
The homology of the moduli spaces as well as homology operations are derived via

the relative cohomology of the dual of P/P ′. Due to Ehrenfried, there is a considerably
smaller, quasi-isomorphic subcomplex E of the total complex Tot(P/P ′) for n = 1. The
subcomplex E has a distinguished basis and is called the Ehrenfried complex associated
with Mm

g,1. Using Visy’s techniques, we construct the Ehrenfried complex for arbitrary
P (h, g; r1, . . . , rn) and R(g, n,m) as follows.

2.8.1. Construction of the Ehrenfried Complex

We proceed as indicated in Section 2.1. A brief review on factorable groups can be found in
Appendix B. Here, we use some basic tools from group homology which are introduced in
[Bro82]. Further, we assume that the reader is used to work with spectral sequences. There
are several introductions to the theory of spectral sequences and we recommend working
through [Wei95, Chapter 5] or [Spa94, Chapter 9].
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Denote by E the spectral sequence associated with the vertical homology of the double
complex P/P ′. Observe that P/P ′ vanishes if the vertical degree is larger then h.

Definition/Theorem 2.8.1. The first page of the spectral sequence E is concentrated in
the hth row

K• = E1
•,h = ker(∂′•,h) .

Proof. Consider the bar resolution B•(S×p ) of the symmertric group S×p = Aut({1, . . . , p})
and let N denote the word length norm with respect to the generating set of all transposi-
tions. This norm induces a filtration

FtBq = 〈(gq | . . . | g1) | N(gq) + . . .+N(g1) ≤ t〉

on the bar resolution. The spectral sequence associated with this filtration is by definition
the norm complex N [S×p ] with zeroth term N 0[S×p ]t,q = FtBq/Ft−1Bq. We refere to the
following theorem.

Theorem 2.8.2 ([Vis10] Theorem 4.1.1 and Theorem 5.2.1). The symmetric group with
the above norm is factorable. The homology of N 0[S×p ]•,h is therefore concentrated in the
top degree • = h.

It remains to show that for fixed p, E• = E0
p,• is a direct summand of N [S×p ]0•,h. As a

module, N [S×p ]q,h is freely generated by all (gq | . . . | g1) with

(i) 1 6= gj ∈ S×p for all j and

(ii) N(gq) + . . .+N(g1) = h.

The module Eq is freely generated by all non-degenerate cells. Using the inhomogenous
notation, Eq is hence freely generated by all Σ = (gq | . . . | g1) with

(i) 1 6= gj ∈ S×p for all j,

(ii) N(gq) + . . .+N(g1) = h,

(iii) the gq, . . . , g1 do not have a common fixed point,

(iv) m = m(Σ) and n = n(Σ),

(v) the levels of Σ are ordered ascendingly with respect to the partition (r1, . . . , rn) and

(vi) Σ is connected.

A direct computation shows that the canonical inclusion E• ↪−−→ N [S×p ]•,h of modules
induces a chain monomorphism that splits as the latter four conditions are invariant under
∂N [S×p ].

Corollary 2.8.3. The canonical inclusion of the chain complex K• into the top row of
P/P ′ defines a quasi-isomorphism

K•
'

↪−−−→ Tot(P/P ′)•+h .

55



Proof. The canonical inclusion Kp −−→ Tot(P/P ′)p,h defines a chain map since K =
ker(∂′•,h). From the preceding Theorem 2.8.1, we obtain H∗(K) = E2

∗,h = H∗+h(P, P ′).

Let us construct an distinguished basis for K•. In order to do so, recall the definition
of the factorization map η (discussed in Appendix B.2). It splits a permutation α into
α = αα′ with α = (c α−1(c)) where c = ht(α).

Definition 2.8.4. For an arbitrary cell Σ = (τq | . . . | τ1) of bidegree (p, q) and q > j ≥ 1,
let

j(Σ) = (τq | . . . | τj+1τj | (τj+1τj)′ | . . . | τ1) .
In other words, the map j considers the jth vertical face of Σ by multiplying τj with τj+1,
and then factors this product via the factorization map from above. Consequently, the
symbol = ηµ should remind us of this process and is therefore called mueta.

Definition 2.8.5. We define the homomorphism κ by extending

κ = κh = Kh ◦ . . . ◦K1

linearly, where

Kq =
q∑
j=1

(−1)q−jΦq
j

and
Φq
j = j ◦ . . . q−1 .

Definition 2.8.6. As a module, let Ep be freely generated by all top dimensional, non-
degenerate cells Σ = (τh | . . . | τ1) that are monotonous, i.e.

ht(τh) ≥ . . . ≥ ht(τ1) .

Lemma 2.8.7. The map κ : Ep −−→ Kp is an isomorphism of modules.

Proof. In order to prove this, we use the notation introduced in the proof of Theorem 2.8.1.
Due to Visy’s work on factorable groups [Vis10, Theorem 5.4.1] – which was generalized
to factorable monoids due to [Hes12, Proposition 3.3.6] –, there is a homomorphism of
modules

Vp
κ−−−→ N 1[S×p ]h,h is inverse to N 1[S×p ]h,h

π−−−→ Vp ,
where Vp is freely generated by all top dimensional, monotonous cells and π is the projection
onto the monotonous ones. By construction, E0

p,• ⊆ N 0[S×p ]•,h has a direct complement
C• that is freely generated by all cells that satisfy conditions (i) and (ii) but violate at least
one of the other conditions (c.f. 2.8.1). In particular, we have

Kp ⊕Hh(C•) = Hh(E1
p,•)⊕Hh(C•) ∼= N 1[S×p ]h,h

since Kp = Hh(E1
p,•) by Definition 2.8.1. The module Ep ⊂ Vp has a direct complement Dp

which is freely generated by all top dimensional that satisfy the first three conditions in
Definition 2.3.11 but are not non-degenerate — which is not equivalent to being degenerate.
Now the claim follows from

π(Kp) ⊆ Ep and π(Hh(C)) ⊆ Dp

as all modules are finite dimensional.
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Definition 2.8.8. The chain modules Ep of the Ehrenfried complex (E, ∂E) are freely
generated by all top-dimensional non-degenerate cells. The boundary maps ∂E = π ◦ ∂′′ ◦κ
make the diagram

Ep Ep−1

Kp Kp−1

∂E

κ∼=

∂′′

∼= π

commutative. If we want to distinguish the parallel case from the radial case, we write
E(h,m; r1, . . . , rn) respectively E(h,m, n).

Theorem 2.8.9. The dual Ehrenfried complex is a quasi-isomorphic direct summand of
(the total complex of) (P/P ′)∗, respectively (R,R′)∗. In particular the homology of the
moduli space is by Poincaré duality

H∗(Mm
g,n;Z) ∼= H2h−∗(E(h,m; r1, . . . , rn);O) with h = 2g − 2 +m+ n+ r ,

respectively

H∗(M•g(m,n);Z) ∼= H2h+n−∗(E(h,m);O) with h = 2g − 2 +m+ n .

Proof. The Ehrenfried complex is a quasi-isomorphic direct subcomplex of Tot(P/P ′) as
it is isomorphic to K (compare Corollary 2.8.3). The projection onto the monotonous cells
π : Tot(P/P ′) −−→ E is a retraction to κ, so E ↪−−→ Tot(P/P ′) is a quasi-isomorphism. After
dualizing, π∗ : E∗ ↪−−→ Tot(P/P ′)∗ is the canonical inclusion with retraction κ∗. By natural-
ity of the universal coefficient theorem, E∗ ↪−−→ Tot(P/P ′)∗ is also a quasi-isomorphism.

2.8.2. Some Useful Properties

In this subsection, we present some properties and formulas that will become handy in later
parts of this thesis or in our computer program.
The following definition is inspired by [Hes12, Lemma 2.3.33] but uses a different indexing

convention.

Definition 2.8.10. Let a and b be positive integers. Denote Iba = (a, a + 1, . . . , b − 1, b)
for a ≤ b and let Iba = () be the empty sequence for a > b. The set of κ-sequences is

Λ1{()} and by concatenation Λn+1 = {In1 , . . . , Inn , Inn+1}.Λn .

For a κ-sequence I = (i1, . . . , ik) we set

κI = i1 ◦ . . . ◦ ik .

Lemma 2.8.11. The map κ is the alternating sum of all κ-sequences:

κh =
∑

(i1,...,ik)∈Λh

(−1)kκ(i1,...,ik) .

57



Proof. By Definition 2.8.5

κh =
h∏
q=1

 q∑
j=1

(−1)q−j( j ◦ . . . ◦ q−1)

 .

We proof the equality by induction on h. For h = 1, it is readily verified.
To proof the induction step h 7−−→ h+ 1 let I = {Ih1 , . . . , Ihh , Ihh+1}. Then

κh+1 =

h+1∑
j=1

(−1)h+1−j( j ◦ . . . ◦ h)

 ◦ h∏
q=1

 q∑
j=1

(−1)q−j( j ◦ . . . ◦ q−1)

 (2.1)

=

 ∑
(i1,...,ij)∈I

(−1)jκ(i1,...,ij)

 ◦
 ∑

(i1,...,ik)∈Λh

(−1)kκ(i1,...,ik)

 (2.2)

and composing maps yields

=
∑

(i1,...,ik)∈I.Λh

(−1)kκ(i1,...,ik) (2.3)

which is the desired result.

To avoid unneccessary computations in later discussions, we need simple way to detect
the cases when d′′i (Σ) is degenerate for cells Σ ∈ E of the Ehrenfried complex. The next
proposition will aid us many times.

Proposition 2.8.12. Let Σ ∈ P (h,m; r1, . . . , rn)p,h be a non-degenerate top dimensional
cell and 1k ≤ i < pk. The ith horizontal face of Σ is degenerate if and only if there exists
1 ≤ j ≤ h with

τj = (i σj−1(i)) or σj(i) = i .

Proof. Denote the ith face of Σ = (τh | . . . | τ1) by Σ̃ = (τ̃h | . . . | τ̃1). By Proposition 2.3.10,
we have τ̃j = Di(τj · (i σj−1(i)) for all j.
If there exists 1 ≤ j ≤ h with (1) τj = (i σj−1(i)), then τ̃j = 1 and Σ̃ is degenerate. If

(2) σj(i) = i, then let us assume that j is maximal with this property, i.e. either j = h or
j < h. Therefore, we either collapse a puncture of Σ which makes Σ̃ degenerate or we have
τj+1(i) 6= i thus τ̃j+1 = Di(τ) = 1 which shows that Σ̃ is again degenerate.
Conversely, if there is no such j we conclude that all τ̃j are non-trivial and Σ̃ has the

same number of punctures as Σ. The result follows from the non-degeneracy of Σ.

2.9. The Dual Ehrenfried Complex
In this section, we introduce the notion of coboundary traces to provide explicit formulas
for both the horizontal coface operator (∂′′)∗ and the coboundary operator ∂∗E. Moreover,
we study some usefull properties of κ∗ and classify the cells of a given Ehrenfried complex.
Let us sketch the process of constructing horizontal cofaces of a given top dimensional

cell Σ = (τh | . . . | τ1). Every transposition defines a slit of pairs where shorter slits sit
atop of longer slits if they are of the same height. In some pictures (e.g. Lemma 2.9.15),
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Figure 2.28.: The cell ((3 1)|(2 1)). Here g = 1, n = 1 and m = 0.

we indicate this pairing by an arc joining the two slits. In Figure 2.28 we picture the cell
Σ = ((3 1)|(2 1)).
We obtain a coboundary by glueing a stripe inbetween the two slits of height 1. More

sophisticated, we let the shorter slit jump through the longer slit, in order to end up below
the long slit of height 2, and glue in the stripe afterwards. The two coboundaries are
sketched in Figure 2.29 where we shade the stripe which was glued in.

Figure 2.29.: Two coboundaries of ((3 1)|(2 1)). Still g = 1, n = 1 and m = 0.

For a cell with more slits we might have more choices for jumps as seen in the next
example. The cell Σ =

(
(4 1)|(3 1)|(3 1)|(2 1)

)
is skeched in Figure 2.30 and we construct

Figure 2.30.: The cell
(
(4 1)|(3 1)|(3 1)|(2 1)

)
. Here g = 2, n = 1 and m = 0.

the three coboundaries seen in Figure 2.31. To obtain coboundary (1), we let slits 2, 3 and
4 of height 1 jump through slit 1. For coboundary (2), we let slits 3 and 4 of height 1 jump
through slit 2, and for coboundary (3), we slits 2 and 3 of height 1 jump through slit 1.
The key insight is that an ith coboundary Σ̃ is determined by its sequence σ̃j(i). By this,

we see that constructing a coboundary should be the same as constructing such a sequence
by choosing which slits are going to jump. We encode our geometric intuition in the notion
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(1) (2) (3)

Figure 2.31.: Three coboundaries of
(
(4 1)|(3 1)|(3 1)|(2 1)

)
that arise from different jumps.

of ith coboundary trace (see Definition 2.9.2) and show that the canonical map from the set
of ith coboundary traces Ti(Σ) to the set of ith cofaces cfi(Σ) is bijective (see Proposition
2.9.7). The coface corresponding to a given coboundary trace a is denoted by a.Σ. Using
our notation, the coboundary operator of the Ehrenfried complex is

∂∗E(Σ) =
p∑
i=1

(−1)i
∑

a∈Ti(Σ)
κ∗(a.Σ) .

Most importantly the explicit formula and a better understanding of κ∗ (developed in Sub-
section 2.9.2) allows us to define homology operations on the moduli space via coboundary
maps defined on the dual Ehrenfried complex, see Chapter 4.
Moreover, we classify the cells of a fixed Ehrenfried complex. Cofaces Σ̃ are said to arise

as basic expansions of Σ if the construction involves no jumps, in the sense of the above
paragraphs. Cells that do not arise this way are called thin. Applying basic expansions is
commutative (this is made precise by Proposition 2.9.23) and every cell in E arises uniquely
from a thin cell by applying a set of basic expansions:

Proposition (2.9.26). Denote the set of thin cells by Thinmg,n[(r1, . . . , rn)], the set of basic
expansions of a cell Σ by Bsupp(Σ) and the power set operator by Pow. There is a bijection

ex :
∐

Σ∈Thinmg,n[(r1,...,rn)]
Pow(Bsupp(Σ)) −−→ Cells(E) with Bsupp(Σ) ⊇ J 7−−→ J.Σ .

In particular, the number of cells of a given degree is the sum of certain binomial coeffi-
cients and the dimension of E is

dimE =
2h∑
p=2

2(2h−p) · |{Σ ∈ Ep thin}| .

2.9.1. The Coface Operator via Coboundary Traces

In this subsection, we proceed as described above. We encode our geometric intuition in
the notion of ith coboundary trace and show that the canonical map from the set of ith
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coboundary traces Ti(Σ) to the set of ith cofaces cfi(Σ) is bijective. Hereby, we focus on
the parallel Ehrenfried complex as our proofs become more compact and the radial case is
treated analogously.
Recall that the horizontal boundary operator is defined as the alternating sum of the

faces of ∆p1 × . . . × ∆pr . It is therefore computed “levelwise” and it might be helpful to
think of parallel slit domains with exactly one level.

Definition 2.9.1. Let Σ = (τh | . . . | τ1) be a non-degenerate cell in the double complex
P/P ′ of bidegree (p, h). The set of its ith cofaces is denoted by

cfi(Σ) = {Σ̃ ∈ Pp+1,h | d′′i (Σ̃) = Σ} .

Definition 2.9.2. Let Σ = (τh | . . . | τ1) be a parallel non-degenerate top dimensional
cell with respect to [p] and let 0k < i ≤ pk. A sequence (ah : . . . : a0) in [p] is called ith

coboundary trace of Σ if it satisfies the following conditions:

(i) a0 = i+ 1.

(ii) If aj 6= aj−1, then aj = (Siτj)(aj−1) (or equivalently: if aj 6= (Siτj)(aj−1), then
aj = aj−1).

(iii) aj 6= (Siτj)(aj−1) at least once.

(iv) aj 6= aj−1 at least once.

The set of all ith coboundary traces of Σ is denoted by

Ti(Σ) = {(ah : . . . : a0) is an ith coboundary trace of Σ} .

Let us elaborate on the above definition. Condition (i) is the normalization corresponding
to σ0(i) = i+ 1. The second condition encodes jumping slits and glueing in stripes. In this
sense, condition (iii) forbids glueing in a stripe below all stripes of height i and condition
(iv) forbids glueing in a stripe above all stripes of height i. Recalling that the 0thk slit of a
radial cells might be empty the next definition is the obvious analogue to Definition 2.9.2.

Definition 2.9.3. Let Σ = (τh | . . . | τ1) be a radial non-degenerate top dimensional cell
with respect to [p] and let 0 < i ≤ p+ 1k. A sequence (ah : . . . : a0) in [p] is called ith

coboundary trace of Σ if it satisfies the following conditions:

(i) a0 =
{
i+ 1 i 6= p+ 1k
0k i = p+ 1k

.

(ii) If aj 6= aj−1, then aj = (Siτj)(aj−1) (or equivalently: if aj 6= (Siτj)(aj−1), then
aj = aj−1).

(iii) If i 6= 0k we have aj 6= (Siτj)(aj−1) at least once.

(iv) If i 6= p+ 1k we have aj 6= aj−1 at least once.

The set of all ith coboundary traces of Σ is denoted by

Ti(Σ) = {(ah : . . . : a0) is an ith coboundary trace of Σ} .
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Remark 2.9.4. Observe that the symbol i does not occur in an ith coboundary trace.

Definition 2.9.5. Let Σ = (τh | . . . | τ1) be a non-degenerate top dimensional cell with
respect to [p] and let i = ik ∈ [p] and a ∈ Ti(Σ). Then we define

a.Σ = (τ̃h | . . . | τ̃1)

with

τ̃j =
{
Siτj aj = (Siτj)(aj−1)
(i aj−1)Siτj(i aj−1) aj 6= (Siτj)(aj−1)

and with respect to the partition of p+ 1 = p1 + . . .+ pk−1 + (pk + 1) + pk+1 + . . .+ pr.

Remark 2.9.6. For a ∈ Ti(Σ) and a.Σ = (τ̃h | . . . | τ̃1), we have

aj 6= (Siτj)(aj−1) iff τ̃j(i) 6= i iff τ̃j = (i (Siτj)(aj−1)) .

Proposition 2.9.7. Consider P = P (h,m; r1, . . . , rn), the bisimplicial complex associated
with Mm

g,n. For every non-degenerate cell Σ ∈ Pp,h and 1k ≤ i ≤ pk, the map

Φ: Ti(Σ) −−→ cfi(Σ) with a 7−−→ a.Σ

is bijective. The pth coboundary operator of the associated Ehrenfried complex is therefore

∂∗E(Σ) =
p∑
i=1

(−1)i
∑

a∈Ti(Σ)
κ∗(a.Σ) .

We prove this proposition using the following basic properties.

Lemma 2.9.8. Consider Σ = (τh | . . . | τ1) and Σ′ = (τ ′h | . . . | τ ′1) of bidegree (p, h) that
have their ith horizontal face in common. Assume that σj(i) = σ′j(i) for all j. Then already
Σ = Σ′.

Proof. Using the definition of the horizontal differential (see 2.3.3), we have

(i σj(i))σj = Di(σj) = Di(σ′j) = (i σ′j(i))σ′j = (i σj(i))σ′j

for arbitrary j, up to renormalization. Hence σj = σ′j for all j and the claim follows.

Lemma 2.9.9. Let a = (ah : . . . : a0) be an ith coboundary trace of Σ and denote a.Σ =
(σ̃h : . . . : σ̃0). Then we have

aj = σ̃j(i) .

Proof. By construction a0 = i + 1 = σ̃0(i). We assume there is a minimal index j with
aj 6= σ̃j(i). Hence

aj 6= σ̃j(i) = τ̃j(σ̃j−1(i)) = τ̃j(aj−1) =
{

(Siτj)(aj−1) aj = (Siτj)(aj−1)(
(i aj−1)Siτj(i aj−1)

)
(aj−1) = aj−1 aj 6= (Siτj)(aj−1)

by definition of τ̃j . The first case is clearly impossible, and the second case implies σj(i) =
aj−1 = aj by (ii) in Definition 2.9.2.
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Lemma 2.9.10. Let a ∈ Ti(Σ). Then

d′′i (a.Σ) = Σ .

Proof. Denote a.Σ = (τ̃h | . . . | τ̃1) = (σ̃h : . . . : σ̃0) and d′′i (a.Σ) = (τ̃ ′′h | . . . | τ̃ ′′1 ). For q ≥
j ≥ 1, by Proposition 2.3.10 and Lemma 2.9.9, we have

τ̃ ′′j = Di(τ̃j · (i aj−1)) =
{
Di(Siτj · (i aj−1)) aj = (Siτj)(aj−1)
Di((i aj−1) · Siτj) aj 6= (Siτj)(aj−1)

.

Now (i aj−1) is disregarded in both cases by Proposition 2.3.10 and we are done as DiSiτj =
τj .

Lemma 2.9.11. Consider a non-degenerate cell Σ ∈ Pp,h and let a ∈ Ti(Σ). Then the cell
a.Σ ∈ Pp+1,h is also non-degenerate.

Proof. Denote

Σ = (τh | . . . | τ1) = (σh : . . . : σ0) and a.Σ = Σ̃ = (τ̃h | . . . | τ̃1) = (σ̃h : . . . : σ̃0) .

We show that Σ̃ is a connected inner cell with the correct number of punctures and bound-
aries.
Clearly, τ̃j 6= 1 for all q ≥ j ≥ 1. Recall that the τ̃q, . . . , τ̃1 have a fixed point k in

common if and only if σ̃j(k− 1) = k for all j. By assumtion, Di(σ̃j) = σj and Σ is an inner
cell. Hence, it suffices to check k = i, i + 1. By condition (iii) in Definition 2.9.2, there is
at least one aj 6= (Siτj)(aj−1). This implies τ̃j(i) 6= i (see Remark 2.9.6). By condition (iv)
in Definition 2.9.2, there is at least one j with aj 6= aj−1. This implies σ̃j(i) 6= i+ 1 for at
least one j. Thus Σ̃ is an inner cell.
By Lemma 2.9.10, Σ̃ is an ith coboundary of Σ. In particular, it is connected. Moreover,

σ̃j(i) = aj 6= i (by Lemma 2.9.9 and Remark 2.9.4) and Di(σ̃j) = σj . Therefore

ncyc(Σ̃) = ncyc(Σ)

and, by construction, N(Σ̃) = h. The levels of Σ̃ are ordered ascendingly as this is true for
Σ.

Proof of Proposition 2.9.7. The map Φ is well defined by Lemma 2.9.11 and Lemma 2.9.10.
By Lemma 2.9.9, every ith coboundary trace a ∈ Ti(Σ) defines a coboundary a.Σ =

(σ̃h : . . . : σ̃0) with aj = σ̃j(i). We conclude that Φ is injective (as a consequence of Lemma
2.9.8).
Using Lemma 2.9.9 and Lemma 2.9.8, it remains to show that every ith coboundary

Σ̃ = (σ̃h : . . . : σ̃0) defines an ith coboundary trace a of Σ with aj = σ̃j(i). Both the
conditions

σ̃0(i) = i+ 1 and σ̃j(i) 6= σ̃j−1(i) at least once

are clearly satisfied; it remains to prove (ii) and (iii).
In order to show condition (ii) of Definition 2.9.2, let σ̃j−1(i) 6= σ̃j(i) = τ̃j(σ̃j−1(i)). But

σ̃j−1(i) 6= i 6= σ̃j by Proposition 2.8.12, hence τj(i) = i. Now, by Proposition 2.3.10,

τj = Di(τ̃j(i σ̃j−1(i))) = Di(τ̃j) , hence τ̃j = Siτj .
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We have shown that

σ̃j(i) 6= σ̃j−1(i) implies σ̃j(i) = τ̃j(σ̃j−1(i)) = (Siτj)(σ̃j−1(i)) .

It remains to proof condition (iii) of Definition 2.9.2. By assumption, Σ̃ is an inner cell,
so τ̃j = (i c) for at least one j with c 6= σ̃j−1(i) by Proposition 2.8.12. We have

τj = Di(τ̃j(i σ̃j−1(i))) hence Siτj = (c σ̃j−1(i))

and therefore
(Siτj)(σ̃j−1(i)) = c 6= σ̃j−1(i) .

The next proposition states in what sense two cofaces might differ.

Proposition 2.9.12. Let Σ = (τh | . . . | τ1) and Σ′ = (τ ′h | . . . | τ ′1) be cells of bidegree
(p, h) that have their ith face in common. If we assume σj(i) = σ′j(i) for all j then Σ = Σ′.
In any case, the transpositions τj and τ ′j satisfy

(1) If τj(i) = i = τ ′j(i), then
τ ′j = τj .

(2) Otherwise we can assume without loss of generality τj = (i c).
(2.1) If in addition σj−1(i) = σ′j−1(i), then

τ ′j = (σj−1(i) c) or τ ′j = (i c) .

(2.2) If in addition σj−1(i) 6= σ′j−1(i), then

τ ′j = (σj−1(i) c) or τ ′j = (i σj−1(i)) .

Proof. The first statement is Lemma 2.9.8, so we concentrate on the second one. We
denote the ith face of the above cells by d′′i (Σ) = (τ̄q | . . . | τ̄1) and omit the subscripts since
j is fixed. Identifying the permutations in Sp−1 with their image under the ith pseudo
degeneracy Si : Sp−1 ↪−−→ Sp, Proposition 2.3.10 yields

τ̄ = τ for τ(i) = i , (2.4)
τ̄ = (σ(i) c) 6= id for τ = (i c) , (2.5)

This implies (1). The cases (2.1) and (2.2) follow immediately from

(σ(i) c) (2.5)= τ̄ = τ̄ ′ =
{
τ ′ for τ ′(i) = i by (2.4)
(σ′(i) c′) for τ ′(i) 6= i by (2.5)

,

since for (σ(i) c) = (σ(i)′ c′), equation (2.5) yields

τ ′ =
{

(i c) for σ(i) = σ′(i)
(i σ(i)) for σ(i) 6= σ′(i)

.
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2.9.2. The Dual of κ
The map π∗ is the canonical inclusion and we understood the horizontal coboundary op-
erator (∂′′)∗ in terms of coboundary traces via Proposition 2.9.7. It remains to gain some
insights on the dual of κ.

Definition 2.9.13. Let a and b be positive integers. Denote Jba = (b, b − 1, . . . , a + 1, a)
for a ≤ b and let Jba = () be the empty sequence for a > b. The set of κ∗-sequences is

Λ∗1{()} and by concatenation Λ∗n+1 = Λ∗n.{Jn1 , . . . , Jnn , Jnn+1} .

For a κ∗-sequence J = (i1, . . . , ik) we set

κ∗J = ∗
i1 ◦ . . . ◦

∗
ik
.

Lemma 2.9.14. The map κ∗ is the alternating sum of all κ∗-sequences:

κ∗h =
∑

(i1,...,ik)∈Λ∗
h

(−1)kκ∗(i1,...,ik) .

Proof. This is just the dual statement of Lemma 2.8.11.

To get our hands on κ∗, we have to understand ∗
j . From the definition of the factorization

map and κ∗, it suffices to examine the image of a cell (τ2 | τ1) of bidegree (p, 2) with
p = 2, 3, 4 under = 1.

Lemma 2.9.15. We have

∗
( )

= + (1.1)

∗
( )

= + (1.2)

∗
( )

= + (1.3)

∗
( )

= + + (2.1)
∗
( )

= + + (2.2)

and for every Σ not listed above we have

∗(Σ) = 0 (3)

Proof. This is follows directly from a case-by-case analysis of (τ2 | τ1) for all inner cells of
bidegree (p, 2) with p = 2, 3, 4.

Lemma 2.9.16. Let Σ = (τq | . . . | τ1) be an inner cell with ht(τj+1) > ht(τj) for some
q > j ≥ 1. Then

∗
j (Σ) = 0 .

Proof. This follows immediately from the definition of the factorization map or from the
lemma above.
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Definition 2.9.17. Let Σ be a top dimensional cell. A κ∗-sequence I ∈ Λ∗ is relevant
if κ∗I(Σ) 6= 0 and irrelevant else. The set of relevant κ∗-sequences with respect to Σ is
denoted by RΣ.

The next lemma will become handy in the study of homology operations see Chapter
4. It states that every relevant κ∗-sequences of a cell pictured in Figure 2.32 is (up to a
canonical shift) the concaternation of κ∗-sequences of Σ′ and Σ′′

Σ′

Σ′′

Figure 2.32.: This cell might be seen as the product of Σ′ and Σ′′ (see Definition 4.1.2).

Lemma 2.9.18. Consider a top dimensional cell Σ = (τt+q | . . . | τt+1 | τt | . . . | τ1) with

supp(τt, . . . , τ1) ⊆ {1, . . . , s} and supp(τt+q, . . . , τt+1) ⊆ {s+ 1, . . . , s+ p} .

Then, the set of relevant κ∗-sequences with respect to Σ is the concatenation

RΣ = R(τt|...|τ1).StR
(τt+q |...|τt+1) ,

where St is defined on κ∗-sequences to be St(i1, . . . , ik) = (t+ i1, . . . , t+ ik).

Proof. The supports of τt+q, . . . , τt+1 and τt, . . . , τ1 satisfy the inequality

min supp(τt+q, . . . , τt+1) > max supp(τt, . . . , τ1)

and so does every term of κ∗I(Σ) for I a relevant κ∗-sequence (compare Lemma 2.9.15).
Then, by Lemma 2.9.16, there is not a single κ∗-sequence (i1, . . . , ik) with ij = t for some
j. Therefore every relevant κ∗-sequence I ∈ RΣ is the concatenation of two relevant κ∗-
sequences I ∈ R(τt|...|τ1).StR

(τt+q |...|τt+1) and vice versa.

2.9.3. The dual Ehrenfried complex of M0
1,1.

The following example is indented to give the reader a better understanding for explicit
computations. We consider the dual Ehrenfried complex associated with the moduli space
M0

1,1 of genus one surfaces with one boundary component and no punctures. Here, we use
the trivial partition r = (1). Recall that the orientation coefficients O are constant since
m ≤ 1, so we drop them in the notation. Clearly,

h = 2g − 2 +m+ n+ r1 + . . .+ rn = 2

and therefore we have cells in range 2 = h ≤ p ≤ 2h = 4. We show that the homology of
the moduli space M0

1,1 is

H∗(M0
1,1;Z) ∼= H4−∗(E∗;O) ∼=


Z ∗ = 0
Z ∗ = 1
0 else

.
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Recall that a p-cell Σ in the (dual) Ehrenfried complex is Σ = (τ2 | τ1) with τ1, τ2 ∈ S×p
such that the following two conditions are satisfied. Let us write τi = (ai bi) with ai > bi.
We require

a2 ≥ a1 (2.6)

and

τ2τ1(0 1 . . . p) has exactly one cycle . (2.7)

Therefore, we have exactly one 2-cell

e1 = ,

we have exactly two 3-cells

f1 = and f2 =

and we have exactly one 4-cell
g1 = .

Let us compute the transformation matrices of the dual Ehrenfried complex.

Z〈e1〉
(∂∗E)2−−−−−→ Z〈f1, f2〉

(∂∗E)3−−−−−→ Z〈g1〉 (2.8)

The coboundary map ∂∗E is computed as the composition ∂∗E = κ∗∂∗Kπ
∗. The map π∗ is the

canonical inclusion. Using either the geometric idea of the cofaces or listing all coboundary
traces we compute

d∗1( ) = +

and
d∗2( ) = + .

By construction ∂∗K =
∑p−1
i=1 (−1)id∗i therefore

∂∗K( ) = − + .

The map κ∗ is the sum all κ∗-sequences (compare Lemmata 2.9.14 and 2.8.11). Therefore
we use Lemma 2.9.15 to conclude that the transformation matrix of the second coboundary
∂∗E is

(∂∗E)2 =
(

2
1

)
.

By the same arguments, the transformation matrix of the third coboundary ∂∗E vanishes.
Now, diagram (2.8) is seen to be

Z〈e1〉

(
2
1

)
−−−−−→ Z〈f1, f2〉

(
0 0

)
−−−−−−−→ Z〈g1〉
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thus the homology of the moduli space M0
1,1 is

H∗(M0
1,1;Z) ∼= H4−∗(E∗;O) ∼=


Z ∗ = 0
Z ∗ = 1
0 else

.

2.9.4. Classification of the Cells of the Ehrenfried Complex

In this subsection, we encode the geometric ideas presented in the first paragraphs of Section
2.9 in order to study cofaces that are obtained by glueing a stripe inbetween two slits of the
same height. As we concentrate on the Ehrenfried complex E (and its dual), we are only
interested in top dimensional cells of the bicomplex. Hence the position of a stripe, which
is about to be glued in, is just a coordinate (j, i) with h ≥ j ≥ 1 and p ≥ i ≥ 1. Proposition
2.9.23 states that glueing in different stripes is commutative (up to relabeling the heights).
A cell that does not arise from such a process will be called thin and Proposition 2.9.26
states that every cell of E is uniquely obtained from a thin cell by such an expansion.

Definition 2.9.19. Consider a cell Σ ∈ E. An ith coboundary trace (ah | . . . | a1) is basic
it there exists an index j with

(i) aj−1 = . . . = a0 = i+ 1,

(ii) aj = (Siτj)(aj−1) 6= aj−1 (i.e. τi = (i d∆
i (aj))) and

(iii) ak+1 = (Siτk+1)(ak) for h ≥ k ≥ j.

In this case, the coface a.Σ is called basic expansion of Σ.

Lemma 2.9.20. Let a = (ah : . . . : a0) be a basic coboundary trace of Σ. Then, the j
mentioned in Definition 2.9.19 is unique and (ah : . . . : a0) is an ith coboundary trace with
i = τj(d∆

i (aj)). Moreover,

a.Σ = (Siτh | . . . | Siτj | Si+1τj−1 | . . . | Si+1τ1) . (2.9)

Proof. The index j is clearly unique and aj fulfills aj = (Siτj)(i+1) 6= i+1, so aj = s∆
i (τj(i))

or equivalently d∆
i (aj) = τj(i).

Equation (2.9) is readily verified using Definitions 2.9.5 and 2.9.19.

Lemma 2.9.21. For Σ ∈ Ep, the set Btrace(Σ) of basic coboundary traces is in one-to-one
correspondence to the disjoint union

Bsupp(Σ) =
∐

h≥j≥1
supp(τj) ∩ supp(τj−1, . . . , τ1) ,

where (ah : . . . : a0) ∈ Btrace(Σ) is mapped to the unique index i in the jth component, with
j and i = τj(d∆

i (aj)) as in Lemma 2.9.20. In particular, the number of basic coboundary
traces is

|Btrace(Σ)| = |Bsupp(Σ)| = 2h− p .
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Proof. By Definitions 2.9.2 and 2.9.19, the sequence (ah : . . . : a0) is a basic coboundary
trace with respect to j if and only if

(i) aj−1 = . . . = a0 = i+ 1,

(ii) ak 6= (Siτk)(ak−1) at least once,

(iii) aj = (Siτj)(aj−1) and

(iv) ak = (Siτk)(ak−1) for h ≥ k > j.

Thus, the indicated map is a bijection Btrace(Σ) ∼= Bsupp(Σ).
A symbol i occures in Bsupp(Σ) exactly k times if and only if it is in the support of

exactly k + 1 transpositions. Thus∣∣∣∣∣∣
∐

h≥j≥1
supp(τj) ∩ supp(τj−1, . . . , τ1)

∣∣∣∣∣∣ =
∑
i

∑
j

|{i} ∩ supp(τj)|

− 1


=

∑
i,j

|{i} ∩ supp(τj)|

− p
=

∑
j

|supp(τj)|

− p
= 2h− p .

Notation 2.9.22. In order to forumlate Proposition 2.9.23 we introduce yet another no-
tation. We want to ignore the index shifts that occures if we compare Bsupp(Σ) with
Bsupp(a.Σ) for a basic coboundary trace a = (ah : . . . : a0): It suffices to compare the
relative index in the support of every transposition. For sj = supp(τj)∩ supp(τj−1, . . . , τ1),
we have |sj | ≤ 2. Thus we write

sj 3 c = jε with ε =
{

0 c = min(sj)
1 c = max(sj)

and identify j0 = j1 if |sj | = 1 .

Using the bijection in Lemma 2.9.21, we write a(jε) for the basic coboundary trace corre-
sponding to jε ∈ Bsupp(Σ) and denote by jε.Σ the coboundary a(jε).Σ.

Proposition 2.9.23. Using the above notation, let jε ∈ Bsupp(Σ). Then

Bsupp(jε.Σ) = Bsupp(Σ)− {jε} . (2.10)

Moreover, basic expansions commute, i.e. for two distinct basic coboundary traces jε1
1 and

jε2
2 ∈ Bsupp(Σ), we have

jε2
2 .(j

ε1
1 .Σ) = jε1

1 .(j
ε2
2 .Σ) . (2.11)
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Proof. Using Lemma 2.9.20, we have

a(jε).Σ = (Siτh | . . . | Siτj | Si+1τj−1 | . . . | Si+1τ1) = (τ̃h | . . . | τ̃1)

for i = τj(d∆
i (aj)). Up to an order preserving renaming of the symbols, we have

supp(τ̃k) ∩ supp(τ̃k−1, . . . , τ̃1) = s∆
i ( supp(τk) ∩ supp(τk−1, . . . , τ1) )

if i is not in the support of τk. Otherwise a case by case analysis yields

supp(τ̃k)∩supp(τ̃k−1, . . . , τ̃1) =


s∆
i+1( supp(τk) ∩ supp(τk−1, . . . , τ1) ) for k < j

s∆
i ( (supp(τk) ∩ supp(τk−1, . . . , τ1) )− {i+ 1} for k = j

s∆
i ( supp(τk) ∩ supp(τk−1, . . . , τ1) ) for k > j

,

and (2.10) is an immediate consequence.
The commutativity (2.11) follows from (2.10) and the behaviour of the bijectionBsupp(Σ) =

Btrace(Σ) in Lemma 2.9.21.

Definition 2.9.24. Consider a cell Σ ∈ E and a non-empty subset J = {jε1
1 , . . . , j

εt
t } ⊆

Bsupp(Σ). The cell
J.Σ = jε1

1 . · · · .j
εt
t .Σ

is called an expansion of Σ.

Definition 2.9.25. A cell Σ ∈ E that is not an expansion of some other cell is called thin.
The set of thin cells is Thinmg,n[(r1, . . . , rn)].

Proposition 2.9.26. Every cell Σ ∈ E is a unique expansion of a thin cell, i.e. denoting
the power set operator by Pow, there is a bijection

ex :
∐

Σ∈Thinmg,n[(r1,...,rn)]
Pow(Bsupp(Σ)) −−→ Cells(E) with Bsupp(Σ) ⊇ J 7−−→ J.Σ .

Proof. The expansion map ex is surjective by the definition of thin cells.
In order to proof injectivity, consider thin cells Σ̃ and Σ̃′ together with J ⊆ Bsupp(Σ̃) of

minimal size and some K ⊆ Bsupp(Σ̃′) such that J.Σ̃ = K.Σ̃′. We show that J has to be
empty to deduce Σ̃ = K.Σ̃′, so K is also empty (because Σ̃ is thin).
Assume J is non-empty and consider jε ∈ J and kδ ∈ K. We denote

Σ = (J − {jε}).Σ̃ = (τh | . . . | τ1) and Σ′ = (K − {kδ}).Σ̃′ = (τ ′h | . . . | τ ′1) .

By assumption,

jε.Σ = (Saτh | . . . | Saτj | Sa+1τj−1 | . . . | Sa+1τ1) (2.12)
= (Sbτ ′h | . . . | Sbτ ′k | Sb+1τ

′
k−1 | . . . | Sb+1τ

′
1) = kδΣ′ (2.13)

for some unique a and b.
Here, a = b is impossible: If j = k, the index set J was clearly not minimal, but

for j > k, we have Sa+1τk = Saτ
′
k with a ∈ supp(τk) by (ii) in Definition 2.9.19, so

supp(Sa+1τk) 63 a+ 1 ∈ supp(Saτ ′k).
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Without loss of generality, let a < b. Similar to the previous consideration, a + 1 = b
and j > k must not hold at once as otherwise Saτj = Sbτ

′
j = Sa+1τ

′
j with supp(Sa+1τj) 3

a+ 1 6∈ supp(Sa+1τ
′
j).

Now that we excluded all troublesome cases, the transpositions of jε.Σ and kδ.Σ′ at the
lth spot are

Scτl = Sdτ
′
l

for appropriate c < d. We deduce

Sdτ
′
l = ScSd−1τ

′′ with τ ′′l = Dcτ
′
l 6= 1S

as (by the identities in Proposition A.8)

Scτl = ScDcScτl and DcSdτ
′′
l = Sd−1Dcτ

′
l .

Substituting the transpositions of kδ.Σ′ in equation (2.13), it is readily seen that J was not
minimal.
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3. Cluster Spectral Sequence

We assume that the reader is familiar with spectral sequences. There are several intro-
ductions to the theory of spectral sequences and we recommend working through [Wei95,
Chapter 5] or [Spa94, Chapter 9].
As before, we discuss the parallel and radial slit complex P (h,m; r1, . . . , rn) andR(h,m, n)

at once. In order to have a compact notation, we concentrate on the parallel case and we
keep g, n, m and (r1, . . . , rn) fixed. The double complex is denoted by P•,• = P•,•(h,m, ; r1,
. . . , rn), the relative bicomplex associated with a fixed P•,•(h,m, ; r1, . . . , rn) is P•,• =
(P/P ′)•,• and the corresponding Ehrenfried complex is E = E•(h,m; r1, . . . , rn).
In this chapter, we follow [Böd14]. We define a filtration on the bicomplex P•,• inducing a

filtration on the Ehrenfried complex E•. In both cases, we obtain a first quadrant spectral
sequence which collapses at the second page.

3.1. The Cluster-Filtration on P•,• and E•
The upcoming filtration is inspired by the following observation. For a surface F and a
potential function u, we obtain the critical graph K0 on F . Observe that K0 is connected.
Removing all poles and punctures from K0 yields a possibly disconnected graph K− with c
connected components. We imagine the horizontal and vertical face operators, which were
defined on slit domains, as follows. The critical flow lines and the equipotential lines which
run through the stagnation points indicate vertical and horizontal stripes. Each vertical or
horizontal face operator collapses its corresponding stripe. Let us assume that the surface,
which results from a single collapse, is non-degenerate in order to study how K− is altered.
It is readily seen that vertical faces leave the number of connected components of K− fixed
since vertical faces only collapse edges inside K−. The horizontal face operator collapses
a horizontal stripe l along an equipotential line. Therefore, it identifies the edges of K−
which form the upper margin of l with the edges of K− that form the lower margin of l.
The number of connected components of the new graph is therefore at most c and at least
c− 1. Keeping this in mind, following definitions and lemmata are straightforward.

Definition 3.1.1. Consider a cell Σ = (σq : . . . : σ0) = (τq | . . . | τ1) ∈ Pp,q with respect to
[p] = {01, . . . , p1, . . . , 0r, . . . , pr}. On [p], we declare a relation ∼CL as follows.

i ∼CL i
′ if i and i′ are in the same cycle of some τj .

The transitive closure of ∼CL is an equivalence relation. Equivalence classes are called
(index) cluster of Σ. The number c(Σ) = c of equivalence classes is called the cluster
number of Σ and we set c(0) = 0.

Remark 3.1.2. Obviously, we have 1 ≤ c(Σ) ≤ h for every generator Σ.
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Definition 3.1.3. The modules of the bicomplex P are filtred as follows. For c = 1, . . . , h,
let

FcPp,q = 〈Σ with c(Σ) ≤ c〉 .

This filtration of the chain modules is a filtration of the chain complex by the next lemma.

Lemma 3.1.4. For a generator Σ ∈ Pp,q we have

(i) c(d′j(Σ)) = c(Σ) for all j and

(ii) c(Σ)− 1 ≤ c(d′′i (Σ)) ≤ c(Σ) for all i ∈ [p],

if the faces are non-degenerate and therefore generators.

Proof. The index set [p] of a non-degenerate vertical face d′j(Σ) agrees with the index set
of Σ. In fact, the equivalence relation ∼CL coincides on these index sets.
The index set of a horizontal face d′′ik(Σ) is reduced by one, namely — in the inhomoge-

neous notation — by identifying ik with i+ 1k. This changes the number of clusters if and
only if ik 6∼CL i+ 1k, and obviously we have at most one cluster less.
Thus c(∂(Σ)) ≤ c(Σ) and the filtration is a filtration of a chain complex.

The definition of the equivalence relation ∼CL on the index set [p] of a cell Σ is valid for
all non-degenerate cells Σ. In particular, we have a cluster number c(Σ) defined for the
generators of the Ehrenfried complex. We need to see how it behaves under the boundary
operator ∂E. Recall that E is a quasi-isomorphic direct summand1 of the total complex of
P. The projection π onto the top dimensional monotone cells is just the projection onto
this summand. The inverse of π is κ, compare Section 2.8.

Definition 3.1.5. The modules of E are filtred as follows. For c = 1, . . . , h, let

FcEp = 〈Σ with c(Σ) ≤ c〉 .

This filtration of the chain modules is a filtration of the chain complex by the next lemma
since ∂E = π ◦ ∂′′ ◦ κ.

Lemma 3.1.6. For a generator Σ ∈ Ep we have

(i) c(π(Σ)) = c(Σ) and

(ii) c(κ(Σ)) = c(Σ).

This lemma is an immediate consequence of Section 2.8 as E is a direct summand of
Tot(P). However, we give another proof.

Proof. The projection π preserves the cluster number if Σ is monotone.
Recall that κ is the alternating sum of all κ-sequences

κ(j1,...,jk) = j1 ◦ . . . ◦ jk

1To be precise, the Ehrenfried complex is, up to a shift in the homological degree, identified with a direct
summand. The inclusion induces an isomorphism in homology.
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and l is the composition ηµ of the multiplication µ with the factorability structure η,
applied to τj+1|τj in the h-tuple Σ = (τh | . . . | τ1). Since d′j( l(Σ)) = d′j(Σ) for all j = 1,
. . . , h − 1 it follows from (i) in Lemma 3.1.4, that c( l(Σ)) is either zero or equal to the
cluster number of Σ. Thus the same is true for iterations of these l for various l. In the
linear combination κ(Σ) all non-zero terms therefore have the same cluster number as Σ.
Since Σ itself is such a term, claim (ii) follows.

Proposition 3.1.7. Let Σ be a generator in P or E and denote the respective boundary
operator by ∂ = ∂P or ∂E. The cluster number of every non-vanishing term Σ̃ in ∂(Σ)
satisfies

c(Σ)− 1 ≤ c(Σ̃) ≤ c(Σ) .

Proof. The claim is an immediate consequence of Lemmata 3.1.4 and 3.1.6 since ∂E =
π ◦ ∂′′ ◦ κ.

3.2. The Cluster Spectral Sequence for P•,• and E•
Throughout this section, we fix a ring A. Consequently, we treat P and E as complexes
over A.

Proposition 3.2.1. Let g, n, m and (r1, . . . , rn) be given and set h = 2g−2+m+n+r1 +
. . .+ rn. There are two first quadrant spectral sequences

E0
k,c(P) =

⊕
p+q=k

[FcPp,q(h,m; r1, . . . , rn)/Fc−1Pp,q(h,m; r1, . . . , rn)]

converging towards
E0
k,c(P)⇒ Hk+c(P•,•(h,m; r1, . . . , rn);A)

and
E0
p,c(E) = FcEp(h,m; r1, . . . , rn)/Fc−1Ep(h,m; r1, . . . , rn)

converging towards
E0
p,c(E)⇒ Hp+c(E•(h,m; r1, . . . , rn);A) .

Both spectral sequences collapse at the second page.

Proof. The existence of both spectral sequences is evident. Both complexes P and E are
bounded, so the associated spectral sequence is first quadrant and convergent. The only
non-trivial differentials are page zero and one by Proposition 3.1.7, see Lemma 3.2.3.

Remark 3.2.2. If A is a field, then we have

H∗(E•(h,m; r1, . . . , rn);A) =
⊕
p+c=∗

E2
p,c(E) .

This is one foundation of our computer-aided computations.

Lemma 3.2.3. Consider a chain complex (C, ∂) with filtration FcC and assume ∂ decreases
the filtration degree by at most s. Then, the associated spectral sequence collapses at Es+1.
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Proof. In order to prove the convergence theorem for reasonable filtred chain complexes
(c.f. [Spa94, Chapter 9, Theorem 2]) one finds

Zrp,c = {x ∈ FpCp+c | ∂x ∈ Fp−rCp+c−1}

and
Erp,c = Zrp,c/

(
Zr−1
p−1,c+1 + ∂(Zr−1

p+r−1,c−r+2)
)
.

The rth differential drp,c : Erp,c −−→ Erp−r,c+r−1 is induced by ∂ since

∂(Zrp,c) ⊆ Zrp−r,c+r−1 and ∂
(
Zr−1
p−1,c+1 + ∂(Zr−1

p+r−1,c−r+2)
)
⊆ ∂(Zr−1

p−1,c+1) .

For r ≥ s+ 1, we assumed ∂(Zrp,c) = 0. We conclude dr = 0 and E∞ = Es+1.

3.3. The Cluster Spectral Sequence in Terms of Matrices
Let us study the differentials of the spectral sequence associated with the Ehrenfried com-
plex. The presented arguments can be applied to P as well.
The Ehrenfried complex is a based chain complex and the cluster-filtration has a remark-

able effect on the transformation matrices. We exploit this fact in our computer program,
compare Section 6. The filtration of E is induced by a filtration of the bases elements. For
each degree p, we regroup the basis elements with identical cluster number and order the
groups ascendingly. The boundary operator reduces the filtration degree by at most one
by Proposition 3.1.7. The pth transformation matrix is therefore a block matrix.

d0 d1

d0 d1

d0 d1

. . .


The submatrices d0 or d1 correspond to the differentials of the zeroth respectively first
page. Observe that the second term E2 is given by

ker(d1|ker(d0))/
[
im(d0) + im(d1|ker(d0))

]
.

For actual computation, it is worthwile to detect the homology via determining and diag-
onalizing the transformation matrix block by block.
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4. Homology Operations

In this chapter, we discuss well-known homology operations defined on the space of parallel
slit domains or the space of radial slit domains. We relate them via the parallelization and
radialization map and realize them by cochainmaps using our formula for the coboundary
operator.

4.1. Operations on Par1 by Patching Slit Pictures
In this section, we review some of the homology operations provided by [Böd90b]. They
are defined on the space of all parallel slit domains on exactly one level. In order to make
the notation more compact, we write Parmg,1 = Parmg,1[(1)] and Par1 =

∐
g,mParmg,1. The

mentioned homology operations on Par1 are induced by the action of a little cubes operad,
namely of the ordered configuration spaces of the complex plane. The precise background
on little cubes operads can be found in [May72].
The kth ordered configuration space of the complex plane is

C̃k = C̃k(C) = {(z1, . . . , zk) ∈ Ck | zi 6= zj for i 6= j}

where the trivial configuration () ∈ C̃0 is seen as the origin of the complex plane. Recall
that the family of all configuration spaces

(
C̃k(C)

)
k≥0 constitutes an operad as follows:

For a configuration z = (z1, . . . , zl) ∈ C̃ l and configurations x(1) ∈ C̃k1 , . . . , x(l) ∈ C̃kl ,
we continuously choose l paraxial disjoint squares of the same size centred at the points
z1, . . . , zl, in which we insert the configurations x(1), . . . , x(l). This yields a configuration
θ(z, x(1), . . . , x(l)) in C̃k1+...+kl (see Figure 4.1). The trivial configuration is seen as the
origin of the complex plane and therefore serves as identity 1. Moreover, we have a canonical
associativity law.

z1

z2

a b

c

d

a

b
c

d

,, 7−−→

Figure 4.1.: The configuration spaces C̃k(C) define a little cubes operad.

Let us review the action of this little cube operad on the disjoint unionPar1 =
∐
g,mParmg,1

of all parallel slit domains with one boundary curve by defining

ϑ̃ : C̃k ×Parm1
g1,1 × . . .×Parmkgk,1 −−→ Parmg,1

with g = g1 + . . . + gk and m = m1 + . . . + mk. Consider (z1, . . . , zk) ∈ C̃k at which we
want to place given slit pictures L1, . . . , Lk. In the naive approach, we continuously choose
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k disjoint, paraxial squares of equal size Bi with center zi in which we want to patch L1,
. . . , Lk, but the insertion of a single slit picture implies the removal of certain slits and
the introduction of glueing information. Ignoring this fact, we may produce degenerate
slit configurations, compare Figure 4.2. In order to obtain non-degenerate slit pictures, we

Figure 4.2.: The naive / wrong definition of the action of the little cubes operad does not
respect the introduced slits.

have to alter our approach. The geometric idea is to insert the squares from the rightmost
point zj1 to to the leftmost point zjk one after another, by letting the box Bi float vertically
from a point near infinity down to xi +

√
−1 · yi while jumping through all slits it passes.

We picture this process for k = 2 in Figure 4.3.

Figure 4.3.: The appropriate definition of the action of the little cubes operad.

From the geometric viewpoint, this is clearly an action of the little cubes operad; the
details are discussed in [Böd90b, Section 3].

Theorem 4.1.1 ([Böd90b, Theorem 3.6.2]). There are operations

ϑ̃ : C̃k ×Parm1
g1,1 × . . .×Parmkgk,1 −−→ Parmg,1

with the following properties.

(i) (associativity) The diagram

C̃ l × (C̃k ×Parm1
g1,1 × . . .×Parmkgk,1)l C̃ l × (Parmg,1)l

C̃ lk × (Parm1
g1,1 × . . .×Parmkgk,1)l Parlmlg,1

id×ϑ̃k

θ × id ϑ̃

ϑ̃

commutes for g = g1 + . . .+ gk and m = m1 + . . .+mk.
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(ii) (equivariant associativity) If in addition g1 = . . . = gk and m1 = . . . = mk holds,
then the above diagram commutes equivariantly with respect to permutations of the
points in a given configuration in C̃k and permutations of the factors of (Parmg,1)k.
In particular, dividing out the action of S×k = Aut({1, . . . , k}) defines operations

ϑ : C̃k ×S×
k

(Parmg,1)k −−→ Parkmkg,1

such that the following diagram commutes

C̃ l ×S×
l

(C̃k ×S×
k

(Parmg,1)k)l C̃ l ×S×
l

(Parmg,1)l

C̃ lk ×S×
l
k ((Parmg,1)k)l Parlmlg,1

id×ϑk

θ × id ϑ

ϑ

(iii) (unity) The composition

Par1
1×id−−−−−→ C̃1 ×Par1

ϑ̃−−−→ Par1

is homotopic to the identity.

Definition/Corollary 4.1.2. The restriction

µ = ϑ̃|(−1+i,1−i) : Par1 ×Par1 −−→ Par1 ,

which places the first slit picture into the upper left and the second slit picture into the lower
right (see Figure 4.4), equips Par1 with the structure of an h-commutative, h-associativ,
H-space which admits a two-sided h-unit, the trivial slit picture ∅.

L1

L2

Figure 4.4.: Patching two slit pictures into the complex plane via µ.

Proof. By the above theorem, it remains to specify a homotopy which makes µ h-commu-
tative. In C̃2 we use some path joining the configurations (−1 + i, 1− i) and (1− i,−1 + i),
so

µ = ϑ̃|(−1+i,1−i) ' ϑ̃|(−1+i,1−i) = µ ◦ t

with t being the swapping map.
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Definition 4.1.3. Using the homology cross product we obtain a family of homology
operations

ϑ̃∗ : Hs(C̃k)⊗Ht1(Parm1
g1,1)⊗ . . .⊗Htk(Parmkgk,1) −−→ Hs+t(Parmg,1)

defined by
ṽ ⊗ x1 ⊗ . . .⊗ xk 7−−→ ϑ̃?(ṽ ⊗ x1 ⊗ . . .⊗ xk)

with g = g1 + . . . + gk, m = m1 + . . . + mk, t = t1 + . . . + tk and ϑ̃? the induced map in
homology.

4.1.1. The Action of C̃2(C) on Par1 in Detail
Throughout this thesis, we are mainly interested in the case k = 2 and we remark that
this is not an actual restriction: The configuration spaces C̃k(C) serve as classifying spaces
for the braid groups Bk on k strings whose homology is understood due to [CLM76]. The
inclusion into the braid group B∞ on infinitely many strings induces a monomorphism in
homology and identifies the p-torsion H∗(Bk;Z/pZ) with a sub-polynomial-algebra gener-
ated by infinitely many generators a1, . . . , b1, . . ., where each generator is identified with
aj = Qj−1

1 (a1) or bj = βaj+1 with a1 the distinguished generator in the first homology, Qk1
an iterated Dyer–Lashof operation and β the Bockstein. The action of the Dyer-Lashof
algebra is therefore determined by the action of C̃2(C). A more elaborate description of
this fact can be found in the survey article [Ver98].
Note that the ordered configuration space C̃2 defines a canonical two-fold covering over

the unordered configuration space C2 and this covering map is homotopic (as a cover-
ing) to the well-known covering S1 −−→ RP 1, by regarding the first point of an ordered
configuration as (wandering) basepoint.

Definition 4.1.4. Under the above identification, we fix the generator ṽ0 = [(−1 + i, 1−
i)] ∈ H0(C̃2) and the generator ṽ1 ∈ H1(C̃2) = H1(S1) which is represented by the identity
map S1 −−→ S1, compare Figure 4.5.

Figure 4.5.: The generators ṽ0 ∈ H0(C̃2) and ṽ1 ∈ H1(C̃2).

Definition/Corollary 4.1.5. The map µ defines the Pontryagin product

Hs(Par1)⊗Ht(Par1) −−→ Hs+t(Par1)

denoted by
x⊗ y 7−−→ x#y = ϑ̃∗(ṽ0 ⊗ x⊗ y)

which equips
⊕
∗H∗(Par1) with the structure of a commutative, unital ring.
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Definition 4.1.6. Using the distinguished homology class ṽ1, the Browder operation
R1 : Hs(Par1)⊗Ht(Par1) −−→ Hs+t+1(Par1)

is sketched in Figure 4.6 and defined by
R1(x⊗ y) = ϑ̃∗(ṽ1 ⊗ x⊗ y) .

x

y

Figure 4.6.: We picture the Browder operation R(x, y).

In order to define the Dyer–Lashof operations Q0 and Q1, we restrict ourselves either
to homology classes x in Par1 of even degree or to coefficients in the field F2. A direct
computation shows that every chain w̃ in C̃2 ' S1 which projects to a cycle w in the
unordered configuration space C2 ' RP 1 defines a cycle w̃ ⊗ x ⊗ x in C̃2 ×S×2

(Parmg,1 ×
Parmg,1).
Definition 4.1.7. Using the homology cross product we obtain a family of homology
operations

ϑ∗ : Hs(C̃2)⊗Ht(Parmg,1) −−→ Hs+2t(Par2m2g,1)
by

w ⊗ x 7−−→ ϑ?(w̃ ⊗ x⊗ x)
with w̃ a chain in C̃2 which projects onto w and ϑ? the induced map in homology.
Definition 4.1.8. We fix the chains w̃0 respectively w̃1 in C̃2 mapping to the distinguished
non-vanishing classes in H0(C2) respectively H1(C2), compare Figure 4.7.

Figure 4.7.: The generators w0 ∈ H0(C2) and w1 ∈ H1(C2).

Definition 4.1.9. The Dyer–Lashof operations Q0 and Q1 are
Q0 : Ht(Parmg,1) −−→ H2t(Par2m2g,1) with Q0(x) = ϑ∗(w̃0 ⊗ x⊗ x)

and
Q1 : Ht(Parmg,1) −−→ H2t+1(Par2m2g,1) with Q1(x) = ϑ∗(w̃1 ⊗ x⊗ x) .

They are sketched in Figure 4.8.
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x

x

x

x

Figure 4.8.: The Operations Q0 and Q1.

4.1.2. Formulas for Q0, Q1 and R1

In this subsection, we remind ourselves of well-known formulas for the Dyer–Lashof opera-
tions Q0, Q1 and R1 which hold for coefficients in the field F2, see [CLM76, Pages 214–218]
or [Böd90b, Sections 4.3–4.5].

Proposition 4.1.10. The operations Q0 satisfy

(i) (squaring)
Q0(x) = x#x = x2 ,

(ii) (linearity)
Q0(x+ y) = Q0(x) +Q0(y) ,

(iii) (multiplicativity)
Q0(x#y) = Q0(x)#Q0(y) ,

(iv) (stability)
Q0(ρx) = ρ2(Q0(x))

for ρ = (ψφ)∗ the stabilization map on Page 8,

(v) (units)
Q0(1) = 1

for the respectively units in H0(Parmg,1) or H0(Par2m2g,1),

(vi) (Nishida relation)
Sq2t(Q0(x)) = Q0(Sqt(x))

and
Sq2t+1(Q0(x)) = 0

for Sqt the dual Steenrod squares.

Proposition 4.1.11. The operations Q1 are not in general additive and the Browder op-
erations measure this defect. They satisfy

(i) (linearity)
Q1(x+ y) = Q1(x) +R1(x, y) +Q1(y) ,
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(ii) (Cartan formula)

Q1(xy) = x2Q1(y) + xR1(x, y)y +Q1(y)y2 ,

(iii) (nullification)
Q1(1) = 0

for the unit in H0(Parm0,1),

(iv) (Nishida relations)

Sq2t(Q1(x)) = Q1(Sqt(x)) +
∑
i+j=2t
i<j

R1(Sqi(x), Sqj(x))

and
Sq2t+1(Q1(x)) = Q0(Sqt(x)) +

∑
i+j=2t+1
i<j

R1(Sqi(x), Sqj(x)) .

Proposition 4.1.12. The Browder operations R1 satisfy

(i) (commutativity)
R1(x, y) = R1(y, x) ,

(ii) (unit)
R1(1, x) = 0 = R1(x, 1)

for the unit in H0(Parm0,1),

(iii) (nullification)
R1(x, x) = 0 ,

(iv) (Cartan formula)

R1(xy, x′y′) = xR1(y, x′)y′ +R1(x, x′)yy′ + xx′R1(y, y′) + x′R1(x, y′)y′ ,

(v) (Jacobi identity)

R1(x,R1(y, z)) +R1(y,R1(z, x)) +R1(z,R1(x, y)) = 0 ,

(vi) (Nishida relation)

Sqt(R1(x, y)) =
∑
i+j=t

R1(Sqi(x), Sqj(x)) ,

(vii) (Bockstein relation)
βR1(x, y) = R1(βx, y) +R1(x, βy) ,

(viii) (Ádem relations)
R1(x,Q0(y)) = 0 = R1(Q0(x), y)

and
R1(x,Q1(y)) = 0 = R1(Q1(x), y) .
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4.2. Operations for Parallel Slit Domains on Several Levels

In this section, we propose a generalization of the above operations to parallel slit domains
on several levels. Hereby, we imagine the parallel slit domains in question as slit pictures
and surfaces with boundaries simultaneously. Consequently, we picture the product of two
parallel slit domains L1 ∈ Parm1

g1,1[(1)] and L2 ∈ Parm2
g2,1[(1)] as follows. We view L1 and L2

as disjoint paraxial rectangles that miss several slits and identify them with the associated
surfaces F1 and F2 which have exactly one boundary curve, see Figure 4.9.

L1

L2

F1

F2

Figure 4.9.: Two surfaces with boundary and their associated parallel slit domains.

The slit picture µ(L1, L2) is obtained by glueing in a stripe which joins the top of L2 with
the bottom of L1. The boundary of the surfaces F1 respectively F2 admits a distinguished
arc c+

2 respectively c−1 , which corresponds to the top respectively bottom of the associated
slit picture. Joining c−1 with c+

2 by glueing a stripe inbetween gives rise to the surface
associated with µ(L1, L2), compare Figure 4.10. In order to define the glueing construction,

L1

L2

F1

F2

c−1

c+
2

c−1

c+
2

c+
1

c−2

c−2

c+
1

Figure 4.10.: The surface associated with the parallel slit domain µ(L1, L2).

we will think of two surfaces to stand opposite to each other, compare Figure 4.11.
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F1 F2
c−1 c+

2
c+
1 c−2

Figure 4.11.: The surface associated with the parallel slit domain µ(L1, L2).

4.2.1. The Glueing Construction
In order to treat the general case, consider a parallel slit domain L ∈ Parmg,n[(r1, . . . , rn)].
The associated surface F has exactly n boundary curves C1, . . . , Cn, each Ci is subdivided
into ri increasingly enumerated regions and each region admits two arcs c+

ij and c
−
ij which

correspond to the top and bottom of the incidential level of the parallel slit domain L.
Fix parallel slit domains L1 ∈ Parm1

g1,n1 [(r(1)
1 , . . . , r

(1)
n1 )] and L2 ∈ Parm2

g2,n2 [(r(2)
1 , . . . , r

(2)
n2 )].

We discuss the glueing construction for the associated surfaces F1 and F2 at first. Imagine
F1 to stand left of F2. Moreover, the boundary curves of F1 form the boundaries of tubes
that tend to F2 and analogously the boundary curves of F2 form the boundaries of tubes
that tend to F1 as is sketched in Figure 4.12.

c−1,1

c+
1,1

c+
1,r1

c−1,1

c+
1,r1

c+
1,1

c−2,1

c+
2,r2

c+
2,1

F1

F2

c±1,j

c±2,k

c±1,l

Figure 4.12.: Two surfaces looking at each other.

In the first step, we match some of the arcs c− of F1 with some of the arcs c+ of F2.
The matching is not allowed to be empty (this would produce a disconnected surface). In
the second step, we join the matched arcs by glueing (untwisted) stripes inbetween. The
resulting surface F has m = m1 + m2 punctures, but both the genus g and the number
of boundary curves n is subject to the chosen matching. In the third step, we choose an
enumeration of the boundaries of F and for each boundary Ci of F there are ri arcs c−
which were not used in the glueing process (e.g. all arcs c− in F2). The resulting (ordered)
partition is therefore r = r1 + . . .+ rn. Moreover, we choose an arc c−i for each boundary
curve Ci of F and the levels of the associated parallel slit domain are ordered with respect to
the occurence of the incidential arcs c− by wandering through the corresponding boundary
curve starting at the arc c−i chosen above.
In terms of parallel slit domains, we start with the choice of a partial, non-empty matching

of the respective levels of L1 and L2. Using the action of the little cubes operad for each
pair of levels, we emplace each pair into its own complex plane. The number of punctures
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is m = m1 + m2, the norm is h = h1 + h2, but both the number n of boundary curves
and the number ri of levels per boundary curve have to be computed — note that the
number of levels is not determined by r(1), r(2) and the size of the matching — and the
genus is given by g = h+2−m−n−r

2 . Having this done, we choose an enumeration of the
n boundary curves by declaring a first level for each boundary. The remaining levels are
ordered by their occurence of the permutation induced by σh. This ends the construction
of a non-degenerate parallel slit domain in Parmg,n[(r1, . . . , rn)].
We reflect the construction discussed above in the next

Definition 4.2.1. The combinatorial type G which specifies the glueing construction
depends on the parameters

P(G) = (g1, g2, n1, n2,m1,m2, (r(1)
1 , . . . , r(1)

n1 ), (r(2)
1 , . . . , r(2)

n2 ))

and consists of the following two data.

(i) A partial, non-empty matching of the levels.

The size of the matching is denoted by s(G). The corresponding surface of genus g(G) has
m(G) = m1 +m2 punctures and n(G) (yet unordered) boundary curves each consisting of
several levels.

(ii) A partial enumeration of the levels such that each boundary curve belongs to exactly
one selected level.

The corresponding ordered configuration is (r(G)
1 , . . . , r

(G)
n(G)). The set of combinatorial

types that specify a glueing construction is denoted by G.

Using the introduced notation we have proven the following

Proposition 4.2.2. For every combinatorial type G ∈ G with parameters

P(G) = (g1, g2, n1, n2,m1,m2, (r(1)
1 , . . . , r(1)

n1 ), (r(2)
1 , . . . , r(2)

n2 ))

there are operations

ϑ̃G :

∐
s(G)

C̃2(C)

×Parm1
g1,n1(r(1)

1 , . . . , r(1)
n1 )×Parm2

g2,n2(r(2)
1 , . . . , r(2)

n2 ) −−→

Par
m(G)
g(G),n(G)(r

(G)
1 , . . . , r

(G)
n(G)) ,

where each C̃2(C) acts on exactly one predescribed pair of matched levels. Using the ho-
mology cross product, we obtain homology operations

(ϑ̃G)∗ : Hi(C̃2(C))⊕s(G) ⊗Hj(Parm1
g1,n1(r(1)

1 , . . . , r(1)
n1 ))⊗Hk(Parm2

g2,n2(r(2)
1 , . . . , r(2)

n2 )) −−→

Hi+j+k(Par
m(G)
g(G),n(G)(r

(G)
1 , . . . , r

(G)
n(G))) .

Now that we have established the general framework, let us discuss three special cases
of the glueing construction. The first operation µ� is discussed in terms of parallel slit
domains, the second operation µ � is discussed in terms of surfaces with boundaries and
the third operation µcs is discussed in terms of the dual Ehrenfried complex.
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4.2.2. The Operation µ�
∗

The first homology operation is induced by a product called µ� and is defined for all
parallel slit domains in Parn[(r1, . . . , rn)] =

∐
g,mParmg,n[(r1, . . . , rn)] with n and r = r1 +

. . .+rn fixed. For two parallel slit domains L1 ∈ Parm1
g1,n[(r1, . . . , rn)] and L2 ∈ Parm2

g2,n[(r1,
. . . , rn)], we match the levels with the same index and insert each pair into a complex plane
via µ. The resulting parallel slit domains are sketched in Figure 4.13 where L1 is colored
green and L2 is colored blue. Note that for each pair of boundary curves Ci of L1 and L2

...
...

L
(r)
1

L
(1)
1

L
(r)
2

L
(1)
2

7−−→
...

L
(r)
1

L
(1)
1

L
(r)
2

L
(1)
2

Figure 4.13.: The parallel slit domain µ�(L1, L2).

with ri ≡2 1 the resulting parallel slit domain L receives exactly one boundary curve, but
for ri ≡2 0 we receive two boundaries. This is due to the fact that the induced ordering of
the levels of L is (

(01, . . . , 0r1)(0r1+1, . . . , 0r2) . . .
)2 = (01, 03, . . .) . . . .

We order the boundaries and levels ascendingly, i.e. the lowest level corresponds to the first
level of the first boundary. The subsequent levels are ordered with respect to their occurence
in (01, . . . , 0r1)2. On the remaining levels we repeat this process until all levels are ordered.
The resulting parallel slit domain L has m̃ = m1 + m2 punctures, ñ = n + #{ri ≡2 0}
boundary components, the ordered partition (r̃1, . . . r̃ñ) arises from (r1, . . . , rn) by replacing
every even (. . . , ri, . . .) by (. . . , ri2 ,

ri
2 , . . .) and the genus is g̃ = g1 + g2 + n+r−#{ri≡20}

2 − 1.
We write µ�(L1, L2) to remind us that the levels of both parallel slit domains occured
ascendingly. This ends the discussion of the first selected homology operation. Summing
up, we have

Definition/Proposition 4.2.3. Using the homology cross product we obtain a family of
homology operations

µ�∗ : Hs(Parm1
g1,n[(r1, . . . , rn)])⊗Ht(Parm2

g2,n[(r1, . . . , rn)]) −−→ Hs+t(Parm̃g̃,ñ[(r̃1, . . . , r̃n)])

by
x⊗ y 7−−→ µ�? (x⊗ y) ,

with g̃, m̃, ñ and r̃ as above and µ�? the induced map in homology.
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4.2.3. The Operation µ �∗

The second homology operation is induced by a product called µ � and is defined for all
parallel slit domains in Parn[(r1, . . . , rn)] =

∐
g,mParmg,n[(r1, . . . , rn)] with n and r = r1 +

. . . + rn fixed. Consider two parallel slit domains L1 ∈ Parm1
g1,n[(r1, . . . , rn)] and L2 ∈

Parm2
g2,n[(r1, . . . , rn)] and imagine their associated surfaces F1 and F2 such that the bound-

ary components with the same numbering are in the face of each other. For each bound-
ary curve we join the arcs c− in F1 with the arcs c+ on the opposite side in F2. In
Figure 4.14, we sketch this for parallel slit domains L1 = L2 with combinatorial type
Σ1 = Σ2 = ((13 12)|(23 11)) and we obtain the same surface by connecting the boundary

L1 L2

Figure 4.14.: The multiplication of two closed discs on three levels, where g = m = 0,
n = 1 and r = 3.

component of L1 with the boundary component of L2 by a tube which has three additional,
enumerated boundary curves, see Figure 4.15. In general, every two boundary components

L1 L2

Figure 4.15.: A better picture for the multiplication of two closed discs on three levels,
where g = m = 0, n = 1 and r = 3.

with the same numbering say i are connected by a tube with ri additional boundary curves
enumerated by the arcs c− in F1. The resulting surface has ñ = r enumerated boundary
components and it is clear that the associated partition is (1 + . . . + 1). Moreover, the
number of punctures of the resulting parallel slit domain is m̃ = m1 +m2 and by taking a
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glance at Figure 4.16 it is clear that its genus is g1 + g2 + n− 1.

L1 L2

Figure 4.16.: The genus of the resulting surface is g1 +g2 +n−1, it has m1 +m2 punctures
and r enumerated boundary components. The associated partition is (1,
. . . , 1).

As operation on parallel slit domains, we match the ascending levels of L1 with the
descending levels of L2. This is denoted by the symbol µ � . This ends the discussion of the
second selected homology operation. Summing up, we provided

Definition/Proposition 4.2.4. Using the homology cross product we obtain a family of
homology operations

µ �∗ : Hs(Parm1
g1,n[(r1, . . . , rn)])⊗Ht(Parm2

g2,n[(r1, . . . , rn)]) −−→ Hs+t(Parm̃g̃,ñ[(r̃1, . . . , r̃n)])

by
x⊗ y 7−−→ µ �

? (x⊗ y) ,

with g̃ = g1 + g2 +n− 1, m̃ = m1 +m2, ñ = r and partition (1, . . . , 1), and µ �

? the induced
map in homology.

4.2.4. The Operation µcs∗
The third homology operation is induced by a product called µcs and is defined for all
parallel slit domains in Par =

∐
g,m,(r1,...,rn) Parmg,n[(r1, . . . , rn)]. If we think of parallel slit

domains as surfaces with poles, the well-known product µ, which was defined above for
n = r = 1, is understood as the connected sum at the distinguished dipole. The product
µcs (which we are about to define) does the same and its superscript should remind us of
the connected sum operation. For two parallel slit domains L1 ∈ Parm1

g1,n1 [(r(1)
1 , . . . , r

(1)
n2 )]

and L2 ∈ Parm2
g2,n2 [(r(2)

1 , . . . , r
(2)
n2 )], we consider the connected sum of the two associated

surfaces with respect to the first level of L1 and the last level of L2, see Figure 4.17.
Let us describe this operation in terms of the dual Ehrenfried complex.
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L
(1)
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(1)
1
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1

L
(r(2))
2

...

Figure 4.17.: The parallel slit domain µcs(L1, L2).

Definition 4.2.5. Consider cells Σ = (τq | . . . | τ1) ∈ P ∗(h,m; r1, . . . , rn) of bidegree (p, q)
and Σ′ = (τ ′q | . . . | τ ′1) ∈ P ∗(h′,m′; r′1, . . . , r′n) of bidegree (s, t) and denote the sth iterated
pseudo degeneracy S = S0 ◦ · · · ◦ S0 : Sp −−→ Ss+p. The connected sum of Σ and Σ′ is

µcs(Σ,Σ′) = (−1)pq(Sτq | . . . | Sτ1 | τ ′t | . . . | τ ′1)

as cell in P (h+ h′,m+m′; r′1, . . . , r′n′−1, r
′
n′ + r1, r2, . . . , rn).

Proposition 4.2.6. The connected sum defines a cochain map

µcs : E∗(h,m; r1, . . . , rn)⊗ E∗(h′,m′; r′1, . . . , r′n) −−→
E∗(h+ h′,m+m′; r′1, . . . , r′n′−1, r

′
n′ + r1, r2, . . . , rn)

and therefore a homology operation on the associated moduli spaces.

Notation 4.2.7. In order to simplify notation, we write Σ ·Σ′ instead of µcs∗ (Σ,Σ′). More-
over, we assume r = [(1)] = r′, since the general case is proven in the same way.

Lemma 4.2.8. If Σ and Σ′ are non-degenerate cells, then the same holds true for Σ · Σ′.

Proof. Consider non-degenerate cells x = (xq | . . . | x1) ∈ E∗(q,m; 1)p and y = (yt |
. . . | y1) ∈ E∗(t,m′; 1)s and denote their product by

z = (zt+q | . . . | z1) = (Sxq | . . . | Sxq | yt | . . . | y1) .

By assumption, there is neither 1 = xi respectively 1 = yi nor a common fixed point of xq,
. . . , x1 respectively yt, . . . y1, so the same holds true for z. Moreover, N(z) = N(x) +N(y).
Thus, z is non-degenerate in E∗(t+ q,m+m′; 1)s+p if the number of boundary curves is

n(z) = n(x) + n(y)− 1 (4.1)
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and the number of punctures is

m(z) = m(x) +m(y) . (4.2)

We compare the cycles of
α = zt+q · · · z1 · (0 . . . s+ p)

with the cycles of

σ = xq · · ·x1 · (0 . . . p) and ρ = yt · · · y1 · (0 . . . s) .

By construction zt+q · · · zt+1 respectivelyzt · · · z1 is an automorphism of the set {s+ 1,
. . . , s+ p} respectively{1, . . . , s}, so

α|{0,...,s−1} = ρ|{0,...,s−1}

and
α|{s,...,s+p−1} = S(σ)|{s,...,s+p−1} .

Therefore, 0 and s are in the same orbit of α whereas every other cycle corresponds to
exactly one cycle of either σ or ρ. Both (4.1) and (4.2) are immediate consequences.
In order to prove the general case, observe that µcs∗ (Σ,Σ′) is connected. Observe that its

levels are ordered appropriately.

Lemma 4.2.9. The connected sum is subject to the Leibniz rule

(∂∗Kπ∗x) · y + (−1)|x|x · (∂∗Kπ∗y) = ∂∗Kπ
∗(x · y)

Proof. The signs are readily checked. It suffices to show that the following relation,

cfi−p′(x) t cfi(y) ∼ cfi(x · y)

with
cfi−p′(x) 3 x̃ ∼ x̃ · y and cfi(y) 3 ỹ ∼ x · ỹ

is a bijection. By Proposition 2.9.7 it suffices to compare the corresponding coboundary
traces. But a coboundary trace of x·y is a sequence in either {0, . . . , s} or {s+ 1, . . . , s+ p}
and therefore corresponds to a coboundary trace of either x or y. The converse is true by
the same argument.

Lemma 4.2.10. The map κ∗ commutes with connected sums, i.e.

κ∗(Σ · Σ′) = (κ∗Σ) · (κ∗Σ′) .

Proof. This is an immediate consequence of Lemma 2.9.18.

Proof of Proposition 4.2.6. The product of two monotoneous cells is clearly monotoneous.
We have

(∂∗Kπ∗x) · y + (−1)|x|x · (∂∗Kπ∗y) = ∂∗Kπ
∗(x · y)

by Lemma 4.2.9 and κ∗ commutes with products by Lemma 4.2.10.

(κ∗∂∗Kπ∗x) · κ∗y + (−1)|x|κ∗x · (κ∗∂∗Kπ∗y) = κ∗∂∗Kπ
∗(x · y)
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The cells x and y are monotoneous, thus by Lemma 2.9.16

κ∗(x) = x and κ∗(y) = y .

This ends the discussion of the third selected homology operation. Summing up, we
provided

Definition/Proposition 4.2.11. By Poincaré duality the operation on the dual Ehren-
fried complex defines an operation

µcs∗ : Hs(Mm1
g1,n1)⊗Ht(Mm2

g2,n2) −−→ Hs+t(Mm1+m2
g1+g2,n1+n2) .

4.3. Operations on Par via Bundles
We assume that the reader is familiar with spectral sequences. There are several intro-
ductions to the theory of spectral sequences and we recommend working through [Wei95,
Chapter 5] or [Spa94, Chapter 9].
In this section, we sketch three homology operations that are induced by certain bundle

maps. For a more detailed discussion we refere the reader to [Meh11, Chapter 4]. Moreover,
we realize the homology operation T via the dual Ehrenfried complex using our description
of the coboundary operator.
For trivial bundles F −−→ X −−→ B with F a q-dimensional, connected, oriented, closed

manifold, taking the cross product with the fundamental class defines a homomorphism in
integral homology

Hp(B) −−→ Hp+q(X) .

For oriented bundles a similar construction is possible and there are many ways to state
naturality of this construction. The next proposition is an algebraic solution. For a given
bundle with fibre F , denote by dim(F ) the largest homological degree with Hdim(F )(F ) 6= 0.
In this case, we call X a dim(F )-dimensional bundle over B.

Proposition 4.3.1. Fix a coefficient ring R and a homological degree q. For the category
of R-oriented1, q-dimensional bundles F −−→ X −−→ B there is a natural map

⊗ : Hp(B;R)⊗Hq(F ;R) −−→ Hp+q(X;R)

which agrees with the homological cross product in case X is a trivial bundle and H∗(F ) is
of finite rank and torsion free.

Proof. Recall the construction of the homological Leray–Serre spectral sequence ([Spa94,
Chapter 9]). The base B is (up to CW-replacement) a CW-complex and the preimage of
the cellular filtration FpB of B defines a filtration of X. The associated spectral sequence
is the Leray–Serre spectral squence with second page

E2
p,q = Hp(B;Hq(F ;R))⇒ Hp+q(X;R) .

1 We assume that the induced action of the fundamental groupoid on H∗(F ;R) is trivial. Geometrically
speaking, the tour along a closed path in X is always orientation preserving (with respect to the fibres
and the coefficient ring).
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The local coefficient system is trivial by assumption. In particular, we have natural, exact
sequences

Hp(B;R)⊗Hq(F ;R) = E2
p,q

α−−−→ E∞p,q −−→ 0

and
0 −−→ E∞p,q

β−−−→ Hp+q(X;R)

since E∞p,q = FpHp+q(X;R)/Fp−1Hp+q(X;R) and E∞p−k,q+k = 0 for k > 0. Thus

⊗ = βα : Hp(B;R)⊗Hq(F ;R) −−→ Hp+q(X;R)

is a natural homomorphism.
For X the trivial bundle B × F −−→ B the filtration of X is just FpX = FpB × F . By

the Eilenberg-Zilber theorem, we have a natural chain homotopy equivalence

C(X) ' C(B)⊗ C(F ) ,

so the induced filtration on the right hand side is (FpC(B)) ⊗ C(F ). But this filtration
induces the Tor spectral sequence which collapses at the second page (as H∗(F ) is torsion
free and of finite rank). In particular, the Leray–Serre spectral squence of B × F −−→ F
is natural isomorphic to this Tor spectral sequence, so the map ⊗ agrees (up to natural
isomorphism) with the homology cross product.

Consider the space of parallel slit domains with a distinguished punctures Parm−1,1
g,n [(r1,

. . . , rn)]. This is a non-trivial m-fold covering Parm−1,1
g,n

π−−−→ Parmg,n[(r1, . . . , rn)] and we
have the transfer map2

tr : H∗(Parmg,n[(r1, . . . , rn)]) −−→ H∗(Parm−1,1
g,n [(r1, . . . , rn)]) .

For varying slit domains, we continuously insert a small circle around the distinguished
puncture. This defines a non-trivial orientable circle bundle S1 −−→ IT −−→ Parm−1,1

g,n [(r1,
. . . , rn)]. Adding a pair of slits, one slit ending in a given point z of the small circle and its
partner above all other slits (take a glance at Figure 4.18) defines a continuous map

ϑ̃T : IT −−→ Parm−1
g+1,n[(r1, . . . , rn)] .

Topologically, we forget the distinguished puncture, remove small discs around the two
points and glue in a handle, increasing the genus of the surface by one.

Definition 4.3.2. The map ϑ̃T induces the homology operation

T : Hs(Parmg,n[(r1, . . . , rn)]) −−→ Hs+1(Parm−1
g+1,n[(r1, . . . , rn)])

by
x 7−−→ (ϑ̃T )?(tr(x)⊗ [S1]) ,

where [S1] is the fundamental class of the circle and ⊗ as in Proposition 4.3.1 and (ϑ̃T )?
the induced homomorphism in homology. We imagine (ϑ̃T )∗ as seen in Figure 4.18.

2The transfer map is already defined on the singular complexes by summing over the m choices of lifting
singular chains. Note that π∗ ◦ tr is just the multiplication by m.
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Figure 4.18.: The operation (ϑ̃T )∗ inserts a new pair of slits while rotating the slit sitting
in the distinguished puncture.

Similar to the construction above, we continuously embed a circle C near a distinguished
puncture and consider two distinct points on C This is, up to homotopy, a non-trivial
orientable circle bundle S1 −−→ IF −−→ Parm−1,1

g,n [(r1, . . . , rn)]. Inserting a pair of slits
which end in the two marked points on the circle (take a glance at Figure 4.19) defines a
continuous map

ϑ̃F : IF −−→ Parm+1
g,n [(r1, . . . , rn)] .

Topologically, we introduce a new puncture near the distinguished one.

Figure 4.19.: The operation (ϑ̃F )∗ inserts a new pair of rotating slits sitting in the distin-
guished puncture.

Definition 4.3.3. For m ≥ 1, the map ϑ̃F induces the homology operation

F : Hs(Parmg,n[(r1, . . . , rn)]) −−→ Hs+1(Parm+1
g,n [(r1, . . . , rn)])

by
x 7−−→ (ϑ̃F )?(tr(x)⊗ [S1])

where [S1] is the fundamental class of the circle and ⊗ as in Proposition 4.3.1 and (ϑ̃F )?
the induced homomorphism in homology, see Figure 4.19.

Similarly, for the space of parallel slit domains with two distinguished, enumerated
punctures Parm−2,1,1

g,n [(r1, . . . , rn)], there is a non-trivial orientable torus bundle ĨE −−→
Parm−2,1,1

g,n [(r1, . . . , rn)] by considering two enumerated circles on the surface, each near one
of the two enumerated punctures. Dividing out the obvious action of S×2 = Aut({1, 2}) (de-
fined by interchanging the coordinates in the torus respectively the enumerated punctures)
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defines a F2-orientable torus bundle

S1 × S1 −−→ IE −−→ Parm−2,2
g,n [(r1, . . . , rn)]

with Parm−2,2
g,n [(r1, . . . , rn)] the space of parallel slit domains with two distinguished, un-

ordered punctures. Inserting a pair of slits which end in the two marked points on the two
unordered circles (take a glance at Figure 4.20) defines a continuous map

ϑ̃E : IE −−→ Parm−2
g+1,n[(r1, . . . , rn)] .

Topologically, we forget the two distinguished punctures, remove small discs around the
two points and glue in a handle, increasing the genus of the surface by one. In order to
define the homology operation, observe that the forgetful map

Parm−2,2
g,n [(r1, . . . , rn)] −−→ Parmg,n[(r1, . . . , rn)]

is a
(m

2
)
-fold non-trivial covering, so we have again a transfer map tr.

Definition 4.3.4. For m ≥ 2, the map ϑ̃E induces the homology operation

E : Hs(Parmg,n[(r1, . . . , rn)]) −−→ Hs+2(Parm−2
g+1,n[(r1, . . . , rn)])

by
x 7−−→ (ϑ̃E)?(tr(x)⊗ [S1 × S1])

where [S1 × S1] is the fundamental class of the torus and ⊗ as in Proposition 4.3.1 and
(ϑ̃E)? the induced homomorphism in homology. We sketch our geometric interpretation of
(ϑ̃E)∗ in Figure 4.20.

Figure 4.20.: The operation (ϑ̃E)∗ inserts a new pair of independently rotating slits sitting
in the distinguished punctures.

4.3.1. The Operation T via the Dual Ehrenfried Complex
In this subsection, we construct the operation T in terms of the dual Ehrenfried complex.
Geometrically speaking, we start with a combinatorial cell Σ and have to introduce two
new slits, one rotating in a puncture and the other on top of all other slits. In the algebraic
model, there is no notion of rotating slits but it is easy to come up with the right definition.
In order to reduce the cohomological degree of the resulting cell by one, we append every
cell by a transposition (pr + 1r c) with c a symbol in a puncture. Using the geometric
intuition of jumping slits and relevant κ∗-sequences, it is easy to see that we defined a
coboundary map.
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Definition 4.3.5. Let Σ = (τh | . . . | τ1) = (σh : . . . : σ0) be a top dimensional, non-
degenerate cell in P (h,m; r1, . . . , rn). Denote the cycles of σh that correspond to the m
punctures by α1, . . . , αm. The symbols corresponding to the punctures of Σ are

punc(Σ) = supp(α1, . . . , αm) .

Notation 4.3.6. Since T adds a new slit above all other slits, we obtain the ordered
partition p+1 = p1+. . .+pr−1+(pr+1). In particular, the largest symbol is pr + 1r = pr+1.

Definition 4.3.7. Then the operation T is defined on generators Σ ∈ E∗ by

T (Σ) =
∑

c∈punc(Σ)
Σc

where
Σc =

(
(pr + 1r c) | τq | . . . | τ1

)
.

Proposition 4.3.8. The operation T defines a cochain map

T : E∗+1(h,m; r1, . . . , rn) = E∗(h,m; r1, . . . , rn)⊗ Z[1] −−→
E∗(h+ 1,m− 1; r1, . . . , rn) .

Lemma 4.3.9. If Σ is top dimensional, non-degenerate cell of bidegree (p, h) in Pmg,n[(r1,
. . . , rn)], then every term Σc of T (Σ) is a top dimensional, non-degenerate cell of bidegree
(p+ 1, h+ 1) in P (h+ 1,m− 1; r1, . . . , rn).

Proof. Consider Σ = (τh | . . . | τ1) = (σh : . . . : σ0) and let Σc = (xh+1 | . . . | x1) = (σc : σh :
. . . : σ0) be a term of T (Σ), i.e. Σc =

(
(pr + 1r c) | τq | . . . | τ1

)
and σc = (pr + 1r c)σh,

with c ∈ punc(Σ).
The following is evident: N(Σc) = N(Σ) + 1 = h + 1, Σc is connected, the levels are

ordered and there is neither 1 = xi nor a common fixed point of xq+1, . . . , x1. From
σc = (pr + 1r c)σh and pr + 1r 6∈ punc(Σ) 3 c we deduce

n(Σc) = n(Σ) and m(Σc) = m(Σ)− 1 .

Lemma 4.3.10. We have
T∂∗Kπ

∗ = ∂∗Kπ
∗T .

In order to prove the lemma, we use Proposition 2.9.7 to show that every term in
T∂∗Kπ

∗(Σ) occures in ∂∗Kπ
∗T (Σ). Then, using Proposition 2.9.7 again, the difference of

both sums is zero.

Proof. By Proposition 2.9.7, the terms of ∂∗Kπ∗(Σ) correspond bijectively to all coboundary
traces of Σ. Applying T , every term x of T∂∗Kπ∗(Σ) is identified with an ith coboundary
trace a = a(x) and a symbol c = c(x) corresponding to one of the punctures of a.Σ.
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If c 6= i, we identify x with the term ã.Σc̃, where c̃ = d∆
i (c) and ã is the ith coboundary

trace of Σc̃ with

ãj =
{
aj j ≤ h
(pr + 1r c)(ah) j = h+ 1

(4.3)

as both ã ∈ Ti(Σc̃) and x = ã.Σc̃ are readily verified.
Otherwise, i.e if c = i, we identify x with the term a′.Σc′ where c′ = d∆

i (ah) and a′ is the
ith coboundary trace of Σc′ with

a′j =
{
aj j ≤ h
ah j = h+ 1

(4.4)

as both a′ ∈ Ti(Σc′) and x = a′.Σc′ are again readily verified.
Observe that in case (4.3) we have

ãh+1 = Si(pr + 1r c̃)(aj)

and in case (4.4) we have
ãh+1 6= Si(pr + 1r c′)(aj) .

We identify the terms of T∂∗Kπ∗(Σ) with all coboundary traces a = (ah+1 : . . . : a0) of all
terms of T (Σ) that satisfy both

aj 6= aj−1 for some j ≤ h and aj 6= (Siτj)(aj−1) for some j ≤ h .

The remaining terms of ∂∗Kπ∗T (Σ) − T∂∗Kπ∗(Σ) are identified with the coboundary traces
of all terms Σc = (xh+1 | . . . | x1) of T (Σ) that satisfy

aj = aj−1 = i+ 1 for all j ≤ h and ah+1 6= ah (4.5)

or

aj = (Sixj)(aj−1) for all j ≤ h and ah+1 6= (Sixh+1)(ah) . (4.6)

Let us reformulate (4.5) and (4.6). Clearly

a ∈ Ti(Σc) satisfies (4.5) ⇐⇒ Si(pr + 1r c)(i+ 1) 6= i+ 1 (4.7)
⇐⇒ c = i (4.8)
⇐⇒ a = (pr + 1r : i+ 1 : . . . : i+ 1) and i ∈ punc(Σ) (4.9)
⇐⇒ a = (pr + 1r : i+ 1 : . . . : i+ 1) and σh(i) ∈ punc(Σ)

(4.10)

and

a ∈ Ti+1(Σc) satisfies (4.6) ⇐⇒ Si+1(pr + 1r c)(ah) 6= ah (4.11)
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using aj = Si+1(τj · · · τ1)(i+ 2) = s∆
i+1(σj(i)) yields

⇐⇒ c = ah = σh(i) (4.12)
⇐⇒ a = (s∆

i+1(σh(i)) : s∆
i+1(σh(i)) : . . . : s∆

i+1(σ0(i)))
and σh(i) ∈ punc(Σ) . (4.13)

By (4.10) and (4.13) the remaining terms of ∂∗Kπ∗T (Σ)− T∂∗Kπ∗(Σ) come in pairs, where

a ∈ Ti(Σi) is paired with a′ ∈ Ti+1(Σσh(i))

and a direct computation shows

a.Σi =
(

(pr + 1r i+ 1) | Si+1τq | . . . | Si+1τ1
)

= a′.Σσh(i)

which finishes the proof:

∂∗Kπ
∗T (Σ)− T∂∗Kπ∗(Σ) =

∑
a∈Ti(Σi)

(−1)ia.Σi + (−1)i+1a′.Σσh(i) = 0 .

Proof of Proposition 4.3.8. The map T is well defined by Lemma 4.3.9, it commutes up to
κ∗ with ∂∗E = κ∗∂∗Kπ

∗ by Lemma 4.3.10, so the comparision of relevant κ∗-sequences using
Lemma 2.9.16 ends the proof.

4.4. The Operation α
During this section, let n = r = 1 + · · ·+ 1 the trivial partition.
Consider a surface F with genus g, m punctures and n boundary curves, and choose

the kth of these boundary curves. We can then add another puncture to F by glueing a
cylinder with a puncture to this boundary curve, see Figure 4.21.

Figure 4.21.: Adding a puncture to a surface.

In order to realize this map on parallel slit pictures, consider the kth level of a parallel
slit picture L. Recall that the border of the relevant clipping of L can be identified with
the boundary curves and punctures of L. The kth boundary curve needs to be seperated
into one new boundary curve and one new puncture. Therefore, we insert a new pair of
slits per level as in Figure 4.22. The new slits are longer than any other slit of the slit
picture, and they are placed below respectively above all other slits.
In [BT01, Theorem 1.3], Bödigheimer and Tillmann prove the following
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Figure 4.22.: Adding a puncture to a parallel slit picture.

Theorem 4.4.1. The map αk : Mm
g,n −−→Mm+1

g,n admits a stable retraction. In particular,
αk induces an injective splitting in homology.

By applying the map αk successively for all k = 1, . . . , n, we obtain

Definition/Proposition 4.4.2. The map

α = αn ◦ . . . ◦ α1 : Mm
g,n −−→Mm+n

g,n

induces a split injective map

α∗ : H∗(Mm
g,n) −−→ H∗(Mm+n

g,n )

in homology.

As promised in Subsection 2.7.2, we can now proof

Corollary 4.4.3. The radialization map

rad: Mm
g,n −−→M•g(m,n)

induces a split injective map on homolgoy.

Proof. Note that
α = par ◦ rad ,

which can be seen in Figure 4.23. The claim follows with Proposition 4.4.2.

+

+

−

+

Figure 4.23.: Applying radialization and then parallelization to a surface with punctures
and boundaries.
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4.5. Radial Multiplication

We will now define a multiplication for radial slit pictures, which looks very analogous to the
multiplication for parallel slit pictures. Nevertheless, it will turn out that the radialization
map defined in Subsection 2.7.2 is not multiplicative with respect to these multiplications,
compare Remark 4.5.7.
So let A respectively A′ be two radial slit domains, each on n annuli. We merge each

corresponding pair of annuli of the radial slit pictures of A and A′ into one as in Picture
4.24. We subdivide the new annulus equally into an outer and an inner ring, putting A

A A′

=

A

A′

Figure 4.24.: Two radial slit pictures A and A′ and their product A A′.

into the outer ring and A′ into the inner ring, whereby A′ uses the lower half of the slits
and A′ the upper half. Be aware that the slits of A also start at the outer boundary of the
annulus. Thus we introduce a new slit pair on each annulus in order to ensure that the
outer boundary curves of A and A′ do not interfere. We obtain

Definition 4.5.1. Let A ∈ Radg(m,n) and A′ ∈ Radg′(m′, n) be two radial slit domains

100



with the same number of incoming boundary curves. The product

A A′

of A and A′ is given by the radial slit domain obtained by the process described above. We
shall refer to this multiplication as radial multiplication.

Proposition 4.5.2. The radial multiplication is a map

: Radg(m,n)×Radg′(m′, n) −−→ Radg̃(m̃, n) ,

where g̃ = g + g′ + n− 1 and m̃ = m+m′.

Proof. By construction, we obtain n(A A′) = n. Due to the insertion of the new slits,
we assert

m(A A′) = m(A) +m(A′) .
Using the formula N(A) = 2g(A)− 2 +m(A) + n(A) for A, A′ and A A′, we obtain

g(A A′) = g + g′ + n− 1 .

In order to develop a deeper understanding why these formulas are correct, let us see
how radial multiplication looks on surfaces, compare Figure 4.25.

F F ′

− ++

Figure 4.25.: Radial multiplication applied to surfaces F and F ′.

The kth inner boundary curves of F and F ′ are connected by a tube, upon which a new
kth inner boundary curve arises. Thereby, each two neighboring tubes contribute to the
genus of the new surface. The newly inserted slits make sure that the outer boundary
curves of the new surface are simply the outer boundary curves of F and F ′.
Now we come to several properties we expect to be fulfilled by a multiplication, and see

which of them are indeed satisfied by this radial multiplication.

101



Proposition 4.5.3. Radial multiplication is associative up to homotopy.

Proof. LetA,B,C be three radial slit pictures. In Figure 4.26, we see howA (B C)
can be homotoped into (A B) C by successively applying slit jumps and changing
the lengths of slits.

If we consider the definition of the radial multiplication on surfaces, we immediately see

Proposition 4.5.4. Radial multiplication is commutative up to homotopy.

Note that the insertion of a new pair of slits on each annulus nicely maintains all glueing
information, but also cause several disadvantages.

Remark 4.5.5. Radial multiplication does not have a unit (even up to homotopy): Con-
sider a radial slit domain A and try to imagine another radial slit domain B, for which
A B is homotopic to A. But since we always insert a new pair of slits isolating A from
the rest of the annulus, we will always obtain an additional outgoing boundary curve, no
matter how B looks like (even if it is empty).

Remark 4.5.6. Since the radial multiplication of two slit pictures involves inserting new
slits, we cannot directly describe it in terms of operads. See Section 4.6 for an associative
operation that does fulfill this property, but that is only defined under limited conditions.

Remark 4.5.7. The radialization map

rad: Mm
g,n −−→Mg(m+ n, n)

defined in Subsection 2.7.2 is not multiplicative with respect to the radial multiplication
and any of the multiplications µ�, µ � or µcs from Subsections 4.2.2, 4.2.3 and 4.2.4. To
see this, let F respectively F ′ be two surfaces with m respectively m′ punctures, and
with n boundary curves each. Compare rad(F ) rad(F ′) and rad(F · F ′) with _ · _
denoting any of these parallel multiplications. Recall that the radialization map applied to
F transforms the punctures of F in outgoing boundaries and creates one additional outgoing
boundary for each boundary curve of F . Hence, the number of outgoing boundaries of
rad(F ) rad(F ′) equals m+n+m′+n. On the other hand, the product F ·F ′, however
the parallel multiplication is chosen among µ�, µ � or µcs, only keeps the punctures from
F and F ′ and does not create any new ones. Thus, we have

m(rad(F · F ′)) = m+m′ + n 6= m+m′ + 2n = m(rad(F ) rad(F ′))

for n > 0, which is always presumed.

Summarizing the positive results, we obtain

Corollary 4.5.8. Radial multiplication yields an associative and commutative homology
operation

∗ : H∗(Mg(m,n))⊗H∗(Mg′(m′, n)) −−→ H∗(Mg+g′+n−1(m+m′, n)) .
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B

C

A

B

C

A

B

C

A

B

C

A

B

C

A

B

C

Figure 4.26.: Transforming A (B C) into (A B) C, to be read from the
left to the right and then from up to down.
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4.6. Composition of Radial Slit Pictures
In this section, we will describe a homology operation on the space of radial slit domains
that can be expressed via operads (compare also Section 4.1).
This time, we will first give a description of a new operation in terms of surfaces. Let F

and F ′ be two surfaces, where F hasm outcoming boundary curves and n marked incoming
boundary curves, and F ′ has l outgoing boundary curves andm marked incoming boundary
curves. We want to define a canonical composition of these surfaces, compare Figure 4.27,
where the m outgoing boundary curves of F are glued together with the m incoming
boundary curves of F ′. Since there is a marked point P ′−k on each incoming boundary C ′−k
of F ′, we additionally have to require that each outgoing boundary C+

k of F also has a
marked point P+

k .

F

F ′

+−

P+
1

P+
2

P+
3

P−1

P−2

P−3

P ′−1

P ′−2

P ′−3

P ′+1

P ′+2

Figure 4.27.: The composition F � F ′ of two surfaces F and F ′.

In order to formalize the composition, we therefore give

Definition 4.6.1. LetM••g (m,n) denote the moduli space parametrizing Riemann surfaces
with genus g, n incoming and m outgoing boundary curves with one marked point P−i
on each incoming boundary curve C−i , but also one marked point P+

j on each outgoing
boundary curve C+

j . Analogously, the associated space of radial slit pictures is denoted by
Rad••g (m,n).

Now, we can state
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Definition 4.6.2. The composition of surfaces is the map

� : M••g (m,n)×M••g′ (l,m) −−→M••g̃ (l, n) , (F, F ′) 7−−→ F � F ′ ,

which glues the surfaces F and F ′ along their incoming respectively outgoing boundary
curves. Thereby, we have

g̃ = g + g′ +m− 1 .

Note that we actually only need marked points on the outgoing boundary curve of the
surface in the second factor, and that the formula for g̃ is due to the observation that each
two neighboring glued boundary curves contribute to the genus.
It remains to realize the composition via radial slit pictures, see also Figures 4.28 up to

4.31. Therefore, consider two radial slit domains A = (σq : . . . : σ0) and A′ = (σ′q : . . . : σ′0)
with m(A) = n(A′) = m, n(A) = n and m(A′) = l, e.g. those two in Figures 4.28 and 4.29.
In the pictures, we color the outgoing boundary curves of A and the incoming boundary
curves of A′ and each of their marked points since they have to be glued together. We call
the annuli upon that the slits of A respectively A′ lie A1, . . . ,An respectively A′1, . . . ,A′m.
If F and F ′ are the surfaces resulting from glueing A and A′, we want to construct a radial
slit domain B = A�A′, which results in the surface F � F ′ after glueing. Hence, the new
slit picture B resides on n annuli A�1 , . . . ,A�n and fulfills m(B) = l.
For the construction of B, at first concentrate on one annulus A�i . We subdivide A�i

equally into an inner and an outer ring, where the ends of the slits of A and A′ will be
placed, and imagine these rings to be seperated by a line. The outer boundary of Ai has to
correspond to the inner boundary of A′i. Thus, it makes sense to scale down the annulus
Ai and to place it into the inner ring of A�i , see Figure 4.30. The slits of A have to be
extended towards the outer boundary of the annulus A�i .
Now, the seperating lines of the annuli A�1 , . . . ,A�n are divided into arcs by the slits of

A. Each of these arcs belongs to one of the m outgoing boundary curves of A. Due to
the definition of the composition, we have to glue the jth outgoing boundary curve of A
to the inner boundary of the annulus A′j . We obtain a closed path corresponding to the
jth outgoing boundary curve of A by starting at the marked point Pj+ and wandering
along the seperating lines counter-clockwise, jumping across slits of A when they are met.
Reparametrizing the inner boundary of the annulus A′j such that it can be mapped onto
this closed path, especially P ′−j onto Pj+, we insert all slits of A′j into the outer rings of
the annuli A1

�, . . . ,An�. Thereby, all angles have to be preserved. In Figure 4.31, we see
how the annuli A′1,A′2,A′3 are put into the annulus A� this way.
This process to describe a radial slit version of the composition yields

Definition 4.6.3. Let the map

� : Rad••g (m,n)×Rad••g′ (l,m) −−→ Rad••g+g′+m−1(l, n) , (A,A′) 7−−→ A�A′ ,

be given by the process defined above. We call A�A′ the composition of the two radial
slit pictures A and A′.

The composition map fulfills the following properties.

Proposition 4.6.4. The composition yields an H-space structure on the disjoint union
Rad•• =

∐
g,m,nRad••g (m,n) respectively M•• =

∐
g,m,nM

••
g (m,n).
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A1

Figure 4.28.: A radial slit domain A with m(A) = 3, n(A) = 1, g(A) = 0.

A′
1 A′

2
A′

3

Figure 4.29.: A radial slit domain A′ with m(A′) = 2, n(A′) = 3, g(A′) = 0.

A�
1

Figure 4.30.: The slits of A put into the annulus A�1 .

A�
1

Figure 4.31.: The slit picture A�A′ with m(A�A′) = 2, n(A�A′) = 1, g(A�A′) = 2.
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Proof. We have to show that composition is assotiative up to homotopy, but this is evident
if we consider the composition map on surfaces.

Note that if we allow disconnected surfaces, the disjoint union of the appropriate number
of cylinders serves as a right / left unit up to homotopy. Using a generalization of this
composition map, we can equip Rad••g (m,n) with the structure of an operad.
Definition 4.6.5. Define the composition map

�M : M••g (m,n)×
(
M••g1 (l1,m1) . . .M••gs (ls,ms)

)
−−→M••g+g′+m−s(l, n) , (A,A′) 7−−→ A�A′ ,

(F, (F1, . . . , Fs)) −−→ F � (F1, . . . , Fs) ,
by glueing the incoming boundary curves of s surfaces F1, . . . , Fs to the outgoing boundary
curves of a single surface F . Here, m = m1 + · · · + ms is an ordered partition with all
mi > 0, mentioned in the map �M as M = (m1, . . . ,ms). We have g′ = g1 + · · ·+ gs and
l = l1 + · · ·+ ls.
That m = m1 + · · ·+ms is an ordered partition means that the m1 incoming boundary

curves of F1 are glued with the first m1 outgoing boundaries of F and so forth. This
generalized composition maps equip the family of spaces M••g (m,n) with the structure of
an operad. Due to Proposition 4.6.4, we immediately see that the associativity conditions (i)
and (iii) of Theorem 4.1.1 are also fulfilled for the maps �M . For equivariant associativity,
i.e., condition (ii), we need to restrict to n = 1 and m1 = · · · = m2 = 1. Then, the
symmetric group Sm acts on M••g (m,n) by permuting the outgoing boundary curves and
it is clear that equivariant associativity is fulfilled. This results in
Proposition 4.6.6. The operations �M equip the family of spaces M••g (m,n) with an
operad structure. We have to restrict to the subfamily of spaces M••g (m,n) with m = 1 and
n = 1 in order to guarantee equivariant associativity.
Another closely related generalization of the composition map arises as follows. Consider

again the two surfaces in Figure 4.27. We pair the outer boundary curves of F with the
inner boundary curves of F ′ according to their numeration and glue them together in order
to obtain the new surfaces F � F ′. Alternatively, we can choose any pairing of the outer
boundary curves of F and the inner boundary curves of F ′, or even any partial pairing.
We obtain
Definition 4.6.7. Consider two moduli spacesM••g (m,n) andM••g′ (m′, n′). Define a partial
pairing πk of the outgoing boundary curves of F and the incoming boundary curves of F ′
of cardinality k. The composition of surfaces with respect to the partial pairing πk
is the map

�πk : M••g (m,n)×M••g′ (m′,m′) −−→M••g̃ (m̃, ñ) , (F, F ′) 7−−→ F �πk F
′ ,

which glues the surfaces F and F ′ along the paired incoming respectively outgoing boundary
curves. Thereby, we have
• g̃ = g + g′ + k − 1,

• m̃ = m− k +m′,

• ñ = n+ n′ − k.
Obviously, this generalized composition is still assotiative.
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4.7. Rotation of Radial Slit Pictures
In this section, we want to construct an operation on the space Radg(m,n) of radial slit
domains that looks like a rotation of the annuli on which radial slit pictures reside.
Consider the bundle H•g(m,n) ∼= Radg(m,n) first. Recall that its elements are tuples

[F, C+, C−,P, w]. For an explanation of the notation and more details about the following
explanation, see Section 2.4. Here, we only mention that P = (P1, . . . , Pn) is the set of
marked points on the enumerated incoming boundary curves C−1 , . . . , C−n of the surface F ,
On each incoming boundary curve C−k , we can let the sphere act by rotating the marked
point Pk by an angle θk. We obtain

Definition 4.7.1. There is a group operation

ψ : (S1)n × H•g(m,n) −−→ H•g(m,n)

given by

(θ1, . . . , θn).[F, C+, C−, (P1, . . . , Pn), w] = [F, C+, C−, (θ1P1, . . . , θnPn), w] .

Here, θkPk is a shorthand for

θkPk = ϕk(θkϕ−1
k (Pk)) ∈ C−k ,

where ϕk : S1 −−→ C−k parametrizes the kth incoming boundary curve.

Recall that we obtain a radial slit picture from [F, C+, C−,P, w] by mapping it into n
annuli A1, . . . ,An, whereby the marked point Pk is mapped to the real point of the inner
boundary of the annulus Ak. Hence, a rotation of Pk by an angle θk implies a rotation of
the marked point on Ak by θk. Equivalently, we can leave the marked point on the annulus
in the same place as before and rotate all slits on the annulus by an angle −θk instead. We
chose the latter variant in order to avoid confusions about the location of the marked point.
By composing the induced map of this group operation in homology with the homology
cross product, we obtain

Definition 4.7.2. There is a map

Hi((S1)n)⊗Hj(H•g(m,n)) −−→ Hi+j(H•g(m,n)) , γ ⊗ x 7−−→ ψ∗(γ × x) .

The restriction

rotγ : Hj(H•g(m,n)) −−→ Hj+1(H•g(m,n)) , rotγ = ψ∗(γ × x)

of this map is called the rotation map with respect to γ ∈ H1((S1)n).

Proposition 4.7.3. The rotation map satisfies the following properties:

(i) Rotation is associative, i.e. for γ1, γ2 ∈ H1((S1)n), we have

rotγ1 rotγ2 = rotγ1·γ2 .

Here, _ ·_ denotes the Pontryagin product.
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Figure 4.32.: Rotating a radial slit picture by an angle of 50 degree.

(ii) Rotation defines a differential of degree +1 on H∗(H•g(m,n)), i.e. rot2
γ = 0 for γ ∈

H1(S1).

Proof. The first statement is obvious since ψ is a group operation and the cross product
is an isomorphism in our case. The second claim follows from the first one since the ring
H∗((S1)k) is strictly anticommutative, i.e., γ2 = 0 if the degree of γ is odd, which is the
case here. Hence,

rot2
γ = rotγ2 = rot0 = 0 .

4.8. Correlation of Parallel and Radial Homology Operations
In this section, we will use the radialization and parallelization maps to compare parallel
and radial homology operations, or obtain operations of the space of parallel slit domains
on the space of radial slit domains. Thereby, let always r = n = 1 + · · · + 1 be the trivial
partition, and denote Parm1

g,1 = Parm1
g,1 [(1, . . . , 1)]. Thus, the two multiplications µ� and µ �

on parallel slit domains coincide and will be denoted by a simple dot during this chapter.
In our case, the parallel multiplication is hence a map

_ ·_: Parm1
g1,n ×Parm2

g2,n −−→ Parm1
g̃,n

with g̃ = g1 + g2 + n− 1.

4.8.1. Placing Parallel Slit Pictures into Annuli via Operads
First, we would like to let Par1 =

∐
g,mParmg,1 act on Rad(n) =

∐
g,mRadg(m,n) via little

cubes operads, for fixed n > 0.
Therefore, let A ⊂ C be an annulus in the complex plane, and let

C̃k(A) = {(z1, . . . , zn) ∈ A | zi 6= zj for i 6= j}
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denote the kth ordered configuration space of A. We want to use this configuration space
to emplace k parallel slit pictures into A, resulting in a radial slit picture.
Assume we are given a configuration (z1, . . . , zk) ∈ C̃k(A) and k parallel slit pictures

L1, . . . , Lk, where slit picture Li fulfills m(Li) = mi, h(Li) = hi and n(Li) = 1. Since
the points z1, . . . , zk are pairwise distinct, we can choose pairwise disjoint regions around
them. Here, a region is the intersection of a radial segment and a concentrical stripe of the
annulus, see also Figure 4.33. Into the ith such region, we insert the radialization of the
parallel slit picture Li.
Similar as in Figures 4.2 and 4.3, we thereby have to be careful that we insert the slits

in the right order and way: We have to put the slit pictures Li into the annulus A by
increasing distance of the point zi from the center of the annulus. Whenever, during the
insertion of some slit picture Li, there are already some slits in the region we chose for Li
to reside in, we have to thread in the new slit picture through the old slits. For a better
understanding of this process, compare Figure 4.33 and the exact definition of threading
in Section 4.6.

Figure 4.33.: The operation ρ on slit pictures At first, a blue parallel slit domain is inserted
into the inner ring of the annulus via radialization. Afterwards, the green
radial slit picture is threaded in into the outer ring.

Note that, when the first slit picture, say this is L1, is inserted into A, the number
of punctures of the resulting radial slit picture is m1 + 1 since this process is simply the
radialization map, compare Subsection 2.7.1. Each further inserted slit picture Li causes
the number of punctures to increase by mi since it is threaded in into one of the cycles of
the slit picture, which has been built up so far. Since the number h of slit pairs of the final
slit picture is the sum of the slit pairs of L1, . . . , Lk, we can compute that the genus of the
resulting slit picture will be the sum of all the genuses. Thus, this process results in

Proposition 4.8.1. There is a map

ϑ̃ : C̃k(A)×Parm1
g1,1 × · · · ×Parmkgk,1 −−→ Radg̃(m̃+ 1, 1)

defined by an action of the little cubes operade. The map is given by choosing k distinct
points on the annulus A and emplacing each of the k parallel slit pictures into disjoint
regions as described above. Hereby, we have g̃ =

∑k
i=1 gi and m̃ =

∑k
i=1mi.

Note that the map ϑ̃ defined here restricts to the map ϑ̃ defined in Theorem 4.1.1. To give
the precise statement, let C̃k(C) ι

↪−−→ C̃k(A) denote the inclusion, where the complex plane
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is wrapped around the annulus A. Now, the definitions of the maps ϑ̃ and rad immediately
yield

Proposition 4.8.2. The map ϑ̃ restricts to the action of the little cubes operad on parallel
slit domains (compare Theorem 4.1.1). To be precise, the diagram

C̃k(A)×Parm1
g1,1 × · · · ×Parmkgk,1 Radg̃(m̃+ 1, 1)

C̃k(C)×Parm1
g1,1 × · · · ×Parmkgk,1 Parm̃g̃,1

ϑ̃

ϑ̃

ι× id rad

commutes, where, as above, g̃ =
∑k
i=1 gi and m̃ =

∑k
i=1mi.

With the homology cross product, we obtain

Proposition 4.8.3. The map ϑ̃ yields a family of homology operations

ϑ̃∗ : Hs(C̃k(A))⊗Ht1(Parm1
g1,1)⊗ · · · ⊗Htk(Parmkgk,1) −−→ Hs+t̃(Radg̃(m̃+ 1, 1)) ,

where g̃ =
∑k
i=1 gi, m̃ =

∑k
i=1mi and t̃ =

∑k
i=1 ti.

For later uses, it is a good idea to imagine what the map ϑ̃ looks like on surfaces, compare
Figure 4.34. At the bottom of the picture, we see the boundary curves of three surfaces with

++ + −−−

Figure 4.34.: An excerpt of the map ϑ̃ applied to three surfaces.

punctures and each one boundary curve. Since the map ϑ̃ at first applies the radialization
map to each of these surfaces, there are pairs of pants glued to each boundary curve, with
one leg an outgoing and one leg an incoming boundary curve. Secondly, we need to carry
over the meaning of the configuration space for the surfaces. Recalling the definition of
ϑ̃ on slit pictures, we see that a configuration in C̃k(A) determines an order in which to
insert the k parallel slit pictures into the annulus. During the insertion of a new parallel
slit picture L , it also determines an already placed slit domain L′ and inserts the new
picture into one of its outgoing boundary curves. On the corresponding surfaces F and F ′,
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this outgoing boundary curve of F ′ is hence glued to the incoming boundary curve of F .
So Figure 4.34 shows an excerpt of one possibility how ϑ̃ acts with the surfaces. It is not
neccessarily the new outgoing boundary curve arising by radialization that is glued with
some incoming boundary curve.
We can easily generalize the map ϑ̃ by inserting parallel slit pictures into n annuli instead

of one.

Definition 4.8.4. Write nA = A1 t . . . t An for the disjoint union of n annuli in the
complex plane. There is a map

ϑ̃ : C̃k(nA)×Parm1
g1,1 × · · · ×Parmkgk,1 −−→ Radg̃(m̃+ n, n)

given by placing k parallel slit pictures into n annuli using the same method as above. By
this, we have g̃ =

∑k
k=1 gi and m̃ =

∑k
i=1mi.

Here, the regions where parallel slit pictures are inserted can lie on different annuli, but
each slit picture is placed completely into a single annulus. Thus, the resulting radial slit
picture is not connected for n > 1, and it is even possible that one annulus stays empty.
The parameters of the target space of this generalized map ϑ̃ are obvious. In Proposition
4.8.11, we will use this map to describe how parallel slit pictures can also be placed into
radial slit pictures and not only into empty annuli. Thus, we also need to generalize the
above proposition to

Proposition 4.8.5. Let A = A1 t . . . t An be the disjoint of n complex annuli. Then, the
generalized map ϑ̃ restricts to a similarly generalized action of the little cubes operad on
parallel slit domains. To be precise, the diagram

C̃k(nA)×Parm1
g1,1 × · · · ×Parmkgk,1 Radg̃(m̃+ n, 1)

C̃k(nC)×Parm1
g1,1 × · · · ×Parmkgk,1 Parm̃g̃,n

ϑ̃

ϑ̃

ι× id rad

commutes, where g̃ =
∑k
i=1 gi and m̃ =

∑k
i=1mi.

4.8.2. Par as a Module over Rad

We will now develop an operation that makes the homology ofPar(n) =
∐
g,mPar a module

over the homology of Rad(n) =
∐
g,mRadg(m,n).

Therefore, let L ∈ Par and A ∈ Rad be two slit pictures with n(L) = n(A). We want to
merge L and A into a radial slit picture on n new annuli Ã1, . . . , Ãn. For a visualization
of the following description, see Figure 4.35. Consider a fixed annulus Ãk and seperate it
equally into an inner and an outer ring. Put the kth level of the parallel slit picture x into
the inner ring of Ãk like via the radialization map, extending the slits to the outer boundary
of the annulus. We obtain a new distinguished outgoing boundary curve that arises during
radialization, marked red in the picture. Starting at the real horizontal line, we insert the
kth level of the radial slit picture y into the outer ring of the annulus, threading in the slits
into the distinguished cycle similarly as in Subsection 4.8.1.
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Figure 4.35.: Three regions of an annulus, into which three parallel slit pictures are placed,
and how slits have to be threaded in.

Definition 4.8.6. The above procedure defines a a map

ρ : Rad(n)×Par(n) −−→ Rad(n) , (A,L) 7−−→ ρ(A,L) = A.L .

We also denote the map ρ with a low dot since it will turn out that it is a module
operation in the sense of operads. Before we show that, we take a closer look at the map
ρ itself.

Proposition 4.8.7. For A ∈ Radg1(m1, n) and L ∈ Parm2
g2,n, we have A.L ∈ Radg̃(m̃, n)

with g̃ = g1 + g2 + n− 1 and m̃ = m1 +m2.

Proof. By construction, the radial slit picture A.L has n incoming boundary curves. Since
the n incoming boundary curves of A are glued to the n outgoing boundary curves that
arise due to radialization, we have

m̃ = (m2 + n)− n+m1 = m1 +m2 .

Using the formulas for h for each of the three spaces involved, we obtain

g̃ = g1 + g2 + n− 1 .

In Figure 4.36, one can see that the genus increases by one for each two neighboring
incoming boundary curves of A. Note that here, it is always the new outgoing boundary
curves of L arising from radialization that are glued together with the incoming boundary
curves of A.

Proposition 4.8.8. Let n > 0. There is a right module structure

H∗(Rad(n))⊗H∗(Par(n)) −−→ H∗(Rad(n))

induced by an action of the litte cubes operade.
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Figure 4.36.: The operation ρ on surfaces.

Proof. We define the right module structure by the composition

H∗(Rad(n))⊗H∗(Par(n)) ⊗−−−→ H∗(Rad(n)×Par(n)) ρ∗−−−→ H∗(Rad(n)) .

The map ρ is induced by a little cubes operade in the following way. We can restrict the
map θ̃ of Proposition 4.8.1 for k = 1 to the point z = −1 in the configuration space C̃1(A)
in order to choose the position for inserting one level of a parallel slit picture into one
annulus A. We can apply this to a parallel slit picture on n levels by treating the levels
seperately. It is also possible to do this if there is already a radial slit picture residing on
the annuli since we can thread in the slits of the parallel slit picture.
It remains to verify that, for L1, L2 ∈ Par(n) and A ∈ Rad(n), we have A.(L1 · L2) '

(A.L1).L2. Using the definition of ρ on the surfaces resulting from glueing the slit pictures,
it is not difficult to see that this formula if fulfilled. Now we can compose the induced map
ρ∗ with the homology cross product in order to obtain the desired operation.

4.8.3. Formulas

In this subsection, we will see several formulas relating all the maps and operations we have
seen so far.
First, we obtain another property of the radialization map from Section 2.7.2. The

radialization map may not be multiplicative with respect to the radial multiplication (see
4.5.7). However, it is compatible with the operation ρ defined in Subsection 4.8.2.

Proposition 4.8.9. The radialization map is compatible with the operation ρ and the
parallel multiplication, i.e., for L1, L2 ∈ Par(n), we have

rad(L1 · L2) ' rad(L1).L2 .

Proof. See Figure 4.37 for a proof. Here, L1 is colored green and L2 blue. The first picture
shows the radial slit picture rad(L1).L2. Note that the slits of L1 are threaded in into a
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single outgoing boundary curve of rad(L2). We can reverse this threading process in order
to move all slits of L1 into a connected part of the annulus. This happens in the second
picture. From the radial slit picture shown there, the slits only have to be rotated around
the annulus, and their lengths have to be changed, and then we arrive at the third radial
slit picture, rad(L1 · L2).

Figure 4.37.: Proof of Proposition 4.8.9.

Next, we obtain another little formula that relates radialization and the operation ρ with
the composition of radial slit pictures defined in Section 4.6.

Proposition 4.8.10. Denote the map swapping the two factors of a product by t. The
diagram

Rad••g1 (n, n)×Parmg2,n Radg(m,n)••g1+g2+n−1(m+ n, n)

Rad••g1 (n, n)×Rad••g2 (m+ n, n) Rad••g2 (m+ n, n)×Rad••g1 (n, n)

id× rad

ρ

t

�πn

commutes, where the partial pairing πn pairs the kth incoming boundary curve of the second
factor with the outgoing boundary curves of the first factor arising from the kth boundary
curve by radialization.

Proof. Recall how the operation ρ is defined on surfaces F ∈M••g1 (n, n) and F ′ ∈Mm
g2,n, see

Figure 4.36. The surface F ′ is at first radialized, i.e. each puncture is transformed into an
outgoing boundary, and onto each boundary curve, a pair of pants with one incoming and
one outgoing boundary curve is glued. Now the kth new outgoing boundary curve arising
from the kth boundary curve of F ′ is glued together with the kth incoming boundary curve
of F . But this is exactly what the map �πn ◦ t ◦ (id× rad) does.

Note that we need to restrict to these parameters in order to state the preceeding formula.
The number of incoming boundary curves of the radial and the parallel slit picture in this
formula have to coincide since this is required by the operation ρ. Furthermore, the number
of outgoing boundary curves of the radial slit picture needs to equal the same number due
to the composition map.
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We can use this proposition to show that, in some special cases, we can relate the operad
structure on Par with the radial composition map by the operation of Par on Rad. The
next corollary will state that the diagram

Rad•• × C̃k(nC)×Park Rad•• ×Par

Rad••

Rad•• × C̃k(nA)×Park Rad•• ×Rad••

id×ϑ̃

id×ι× id

ρ

id× rad

id×ϑ̃

� ◦ t

commutes up to homotopy, whenever it makes sense to write down the compositions of
the participating maps. We will come to state a more formal version of this diagram. But
without all the indices, it is easier to see that the left square consists of the commutative
diagram in Proposition 4.8.5 and the triangle of the commutative diagram in Proposition
4.8.10.
Furthermore, we can already interpret the diagram in this simple version. There are two

canonical ways to emplace parallel slit pictures into a given radial slit picture in order to
obtain another radial slit picture via little cubes operads. Firstly, by composing the parallel
map θ̃ given by operads on the parallel slit pictures with the operation ρ of Par on Rad;
secondly, by using the radial map θ̃ given by operads followed by the radial composition.
According to the diagram, these processes coincide whenever they are comparable. We now
formalize the diagram in

Corollary 4.8.11. Let πk and t as in the preceeding proposition. The diagram

Rad••g (n, n)× C̃k(nC)× (Parm1
g1,1 × . . .×Parmkgk,1) Rad••g (n, n)×Parm

′
g′,n

Rad••g+g′+n−1(m′ + n, n)

Rad••g (n, n)× C̃k(nA)× (Parm1
g1,1 × . . .×Parmkgk,1) Rad••g (n, n)×Rad••g′ (m′ + n, n)

id×ϑ̃

id×ι× id

ρ

id×ϑ̃

�πk◦t

commutes up to homotopy. Here, we have m′ =
∑k
i=1mi and g′ =

∑k
i=1 gi.

Proposition 4.8.12. Let A be a parallel slit picture on n levels, B a radial cell with
n(A) = n(B) = n. Then the parallel slit pictures α(A · par(B)) and par(rad(A) B)
coincide.

Proof. Consider the product rad(A) B and its parallelization par(rad(A) B), see
Figure 4.38. Comparing this with Figure 4.39, we see that par(rad(A) B) results from
α(A · par(B)) by moving the lowest green slit upwards a little, which means that the two
slit pictures agree.
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Figure 4.38.: The radial / parallel slit pictures rad(A) B and par(rad(A) B).

A

B

A

B

Figure 4.39.: The parallel slit pictures A · par(B) and α(A · par(B)).

Proposition 4.8.13. Let A be a parallel slit domain on n levels, B a radial slit domain
with n(A) = n(B) = n. Then the radial slit domains rad(A) B and rad(A · par(B))
coincide.

Proof. Comparing Figures 4.40 and 4.41, we see that we can transform rad(A ·par(B)) into
rad(A) B by rotating all slits a little.
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Figure 4.40.: The radial slit pictures rad(A) and rad(A) B.

A

B

A

B

Figure 4.41.: The slit pictures A · parB and rad(A · parB).

118



5. On the Computational Complexity

This chapter serves as a brief review on nearby complexity concerns. The first section
explains why computation require much space even for small valued for h — which is
h = 2g − 2 + m + n + r in the parallel case and h = 2g − 2 + m + n in the radial case —
whereas the second section explains why computations require much time.

5.1. An Estimation of the Number of Cells of E(h,m; 1)

In this section, we concentrate on combinatorial cells on exatcly one level, i.e. n = 1 and
r = (1). Recalling definitions 2.3.5 and 2.8.6, the combinatorial type of a non-degenerate
cell Σ in the Ehrenfried complex is a finite word Σ = (τq | . . . | τ1) of transpositions τk ∈ Sp

with

every element 1 ≤ k ≤ p is permuted non-trivially by at least one transposition (Σ1)
ht(τq) ≥ . . . ≥ ht(τ1). (Σ2)

Let us denote the sum of all Ehrenfried complexes by

E =
⊕
g,m

E(h,m; 1) .

Clearly, this sum is finite in each bidegree (p, q). More precisely:

Proposition 5.1.1. The number of cells of Ep,q is

A(p, q) = dim(Ep,q) =
p−1∑
k=1

ap,k · kq−1 , (5.1)

where the coefficients ap,k are

a2,1 = 1 (5.2)
ap,k = 0 for p ≤ k (5.3)

ap,k = − p− 1
p− 1− k (ap−2,k + 2ap−1,k) for 1 ≤ k ≤ p− 2 (5.4)

ap,p−1 = −
p−2∑
k=1

ap,k for 3 ≤ p . (5.5)

Before going into the proof, we provide an essential remark and list some values of A(p, q)
in Figure 5.1.
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Corollary 5.1.2. The number of cells of Ep,q depends polynomially on p and exponentially
on q and the number of cells of the radial Ehrenfried complex in bidegree (p, q) is

Bp,q = Ap,q +Ap+1,q .

Proof. The first statement is evident. Let us take a look at the number of cells Bp,q in the
radial Ehrenfried complex. Recall that its basis is given by all radial cells Σ = (τq | . . . , | τ1),
where all τi are transpositions on the symbols {0, . . . , p} subject to the conditions (Σ1) and
(Σ2) from above. Thus, in radial bidegree (p, q), we have all the parallel cells of bidegree
(p, q), and for all parallel cells Σ of bidegree (p+ 1, q) the 0th face d0(Σ).

Remark 5.1.3. Since, for fixed g and m, the parallel Ehrenfried complex consists of cells
with q = 2g +m transpositions, but the radial of cells with q = 2g +m− 1 transpositions,
the preceding corollaries recommend to use the radial model for homology computations
instead of the parallel one.

A(p, q) q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7 q = 8
p = 2 1 1 1 1 1 1 1 1
p = 3 0 4 12 28 60 124 252 508
p = 4 0 3 36 183 720 2523 8316 26463
p = 5 0 0 40 496 3560 20240 101640 474096
p = 6 0 0 15 655 9150 84950 639765 4256805
p = 7 0 0 0 420 13356 211296 2408616 22738716
p = 8 0 0 0 105 11200 329434 5858832 79210803
p = 9 0 0 0 0 5040 326368 9572256 189588288
p = 10 0 0 0 0 945 200025 10639755 320787891
p = 11 0 0 0 0 0 69300 7957180 388089460
p = 12 0 0 0 0 0 10395 3839220 334326685
p = 13 0 0 0 0 0 0 1081080 200600400
p = 14 0 0 0 0 0 0 135135 79774695
p = 15 0 0 0 0 0 0 0 18918900
p = 16 0 0 0 0 0 0 0 2027025

Figure 5.1.: The number of cells of Ep,q for small p and q.

We deduce Proposition 5.1.1 from the following oberservation.

Lemma 5.1.4. The numbers A(p, q) fulfill

A(1, q) = 0 (5.6)
A(2, q) = 1 (5.7)
A(p, q) = (p− 1)

(
A(p− 2, q − 1) + 2A(p− 1, q − 1) +A(p, q − 1)

)
for p > 2 (5.8)

A(p, q) = 0 for p > 2q . (5.9)
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Proof. Properties (5.6), (5.7) and (5.9) are consequences of (Σ1). The following Figure 5.2
destincts the possible cases of appending a cell by one transposition and therefore proofs
the remaining property (5.8).
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Figure 5.2.: The possible cases of appending a monotonous cell by one transposition.

Proof of Proposition 5.1.1. We are going to prove proposition 5.1.1 by induction on p. The
base cases p = 1 and p = 2 are immediate by (5.6) and (5.7).
To deduce the induction step, we start with (5.8)

A(p, q) = (p− 1)
(
A(p− 2, q − 1) + 2A(p− 1, q − 1) +A(p, q − 1)

)
which is by the induction hypotheses (5.1) and (5.3)

= (p− 1)

p−2∑
k=1

ap−2,k · kq−2 + 2
p−2∑
k=1

ap−1,k · kq−2 + A(p, q − 1)


= (p− 1)

p−2∑
k=1

ap−2,k · (p− 1)0kq−2 + 2
p−2∑
k=1

ap−1,k · (p− 1)0kq−2 + A(p, q − 1)

 .

Fix 1 ≤ k ≤ p− 2 in the above equation and use lemma 5.1.4 to substitute A(p, l) succes-
sively. We obtain

(p− 1)(ap−2,k + 2ap−1,k)
q−2∑
l=0

(p− 1)lkq−2−l .
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Using (a− b)
∑q−2
k=0 a

k · bq−2−k = aq−1 − bq−1 yields

= (p− 1)(ap−2,k + 2ap−1,k)
(p− 1)q−1 − kq−1

p− 1− k

= − p− 1
p− 1− k (ap−2,k + 2ap−1,k) · kq−1 + p− 1

p− 1− k (ap−2,k + 2ap−1,k) · (p− 1)q−1 .

The left hand side is the coefficient of kq−1 and the right hand side is a summand of the
coefficient of (p− 1)q−1, hence

ap,k = − p− 1
p− 1− k (ap−2,k + 2ap−1,k) and ap,p−1 = −

p−2∑
k=1

ap,k .

But ap,k = 0 for k ≥ p is also clear.

5.2. Comparison of Computational Approaches
In this section, we will see arguments that emphasize further why computing the homology
of the moduli spaces is such a hard problem. Besides, we argue why we chose our strategies
for the computations.
Review our computational approach for determining the homology ofMm

g,n andM•g(m,n)
for n = 1 with rational and finite fields coefficients. We construct the parallel or radial
Ehrenfried complex (see Section 2.8) with its filtration by cluster sizes (compare Chapter 3).
Thereby, the bases of the Ehrenfried complex are ordered in such a way that the differentials
have a certain block form, see Subsection 3.3. At this point, there are many ways to derive
the homological data. We diagonalize the differentials via parallelized Gaussian elimination
while exploiting the special structure of the matrices due to the cluster filtration. In the
preceding section, we saw that the modules of the Ehrenfried complex are extremely large,
so we have to diagonalize its differentials as efficient as possible.
The study of manifolds via Morse Theory is well-known. In [For02], Forman proposes a

discrete analogon for semisimplicial complexes with respect to arbitrary coefficients. Here
a large discrete Morseflow yields a small, homotopy equivalent subcomplex. Unfortunately,
finding an optimum Morse flow is generally NP-hard due to Joswig and Pfetsch (compare
[JP06]). In practice, a simple greedy algorithm will produce a Morse flow not far away from
an optimum solution. The construction of the associated smaller complex is the most time
consuming process. It is (in terms of complexity theory) slightly faster than the state of the
art SNF algorithms that do not make use of concurrency. It is slower than the Gaussian
elimination algorithm. For calculations with coefficients in Z or Z/pkZ, we recommend
Jäger’s parallelized algorithm based on the Smith normal form.
For coefficients in a field, diagonalizing even reduces to determining the rank. We imag-

ined that there are numerical ways of improving our techniques. However, due to Beuchler
(see [Beu14]), numerical algorithms for rank determination do not fit our requirements.
These algorithms are in general unstable, i.e. they do not compute the rank exactly. They
become more stable the smaller the kernel of the matrix is. But in our case, the kernels of
the huge matrices are about half of their size. Hence, we cannot rely on such algorithms
at all.
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Beuchler recommended using preconditioning algorithms on our matrices instead, e.g.
the nested dissection methods presented in [GL81, Chapter 8]. Such algorithms are applied
before the actual computation in order to bring the matrix into a form that makes diago-
nalizing easier. Thus, rows or columns are reordered such that there are less row or column
operations neccessary, or such that the entries of the matrix do not become too big during
the computation. For instance, our application of the cluster spectral sequence can be seen
as a preconditioning method that exploits the special shape of the matrix. Hence, we do
not use any further preconditioning.
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6. The Software Project

Based on the foundations presented in this thesis, we provide a computer program for
determining the homology of the moduli spaces Mm

g,1 and M•g(m, 1). Our software project
aims at several goals. Above all, we put a lot of effort into optimizing the performance
of our program since in Section 5.1, we see that our homology computations demand an
economical use of memory and running time. Secondly, our objective is to present software
which can easily be adapted to future methods of homology computations. Therefore,
we designed well documented program code with a modularized structure that allows to
exchange, improve or extend the different aspects of the homology computation smoothly.
For instance, our program can readily be extended to computing the homology of Mm

g,n and
M•g(m,n) for arbitrary n.
The project is split into two almost independent units. The library libhomology offers

an extendible framework for generic homology computations applied to chain complexes
and certain types of spectral sequences that collapse at the second page. We propose
coefficient ring, matrix types and algorithms for diagonalizing matrices.
We provide an implementation for rational and finite fields coefficients together with

matrices that are diagonalized using parallelized Gaussian elemination. For coefficients in
the field F2, we create an own coefficient type based on the observation that they can be
stored in a single bit. This results in vast improvements concerning memory and runtime,
see also Section 6.1.
Recall that the homology of Mm

g,1 respectively M•g(m, 1) equals the cohomology of the
parallel respectively radial Ehrenfried complex E(h,m; 1) respectively E(h,m, 1) (compare
Section 2.8). Since our program can deal with both cases, we shall denote by E the radial
or parallel Ehrenfried complex during this chapter. Thus, the program kappa generates E
and computes some of its properties. Most importantly, we use our library libhomology
to derive its cohomology. Thereby, we filter the Ehrenfried complex by the number of
clusters (compare Chapter 3) in order to reduce the size of the differentials that have to be
diagonalized. This again causes an enormous reduction of memory usage, which especially
is useful in the case of rational coefficients that consume a lot of memory. The effect upon
the running time is also highly positive since diagonalizing has cubic complexity and thus
several small matrices are faster to diagonalize than a single huge matrix.
In order to get a better feeling for E, we also offer the possibility to compute character-

istics of its differentials as the number of non-zero entries or the number of blocks.
We chose the programming language C++11 to realize this project since it is one of the

prefered programming languages for mathematical projects, and since the new standard
together with some additional libraries suits our needs perfectly. The C++11 standard
allows us to parallelize all time consuming steps of our project easily such that we can
exhaust the full hardware architecture of the computer. We make use of the GNU mul-
tiple precision arithmetic library [GMP] for operations on signed integers, rational
numbers, and floating-point numbers and of the boost C++ libraries [boost], which is
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a set of portable libraries that offer high-quality solutions to standard problems as basic
linear algebra, graph theory or file compression.
We are starting this chapter in Subsection 6.1 with an overview on the performance gain

of our programming techniques in order to motivate our work. Afterwards, we will explain
the library libhomology (see Section 6.2) and the program kappa (see Section 6.3) in
detail. Additionally, we hand out advise about how to compile our computer programs (see
Section 6.4). Finally, we present our results, i.e., the homology groups and cluster spectral
sequences we have computed (compare Section 6.5).

6.1. Runtime and Memory Improvements

Recall that the enormous size of the Ehrenfried complex forces us to take care of the runtime
and memory consumption of our computer program (compare Section 5.1). Via some
example calculations, we show how we have improved the performance of our computer
program step by step.
Consider the moduli spaces M1

3,1 and M3(m,n). The E0 term of the corresponding
cluster spectral sequence on the parallel Ehrenfried complex looks as follows:

g = 3, m = 1: Parallel E0
p,l for F2

p l 1 2 3 4 5 6 7

2 1
3 252
4 7563 18
5 81360 2010
6 424920 48855 195
7 1141056 469938 13230
8 1305876 2069844 247898 1540
9 3593880 1810368 70476
10 4737360 915390 8715
11 3702820 258720
12 1765335 31878
13 477906
14 56628

We were not able to calculate the entire homology of M1
3,1 via this spectral sequence since

there are a lot of modules with several million of basis elements, exeeding our possibilities
concerning runtime and memory. But we can use the radial Ehrenfried complex cluster
spectral sequence for our calculations instead due to Proposition 2.7.1. This reduces the
dimensions of the modules of the E0 page enourmously:
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g = 3, m = 1: Radial E0
p,l for F2

p l 1 2 3 4 5 6 7

1 1
2 82 1
3 1212 91
4 7200 1652 9
5 20400 12890 500
6 23760 49380 7706 60
7 77924 48104 2310
8 111588 25676 294
9 91384 7497

10 44850 945
11 12375
12 1485

The biggest module on the first page for the radial case has dimension 111588, and
not dimension 4737360 as in the parallel case. Using all our strategies to improve the
performance of our program, we can now determine the homology of M1

3,1 and M3(m,n)
within less than half an hour. In each row of the following table, we see running time
and maximum memory consumption of one run of our computer program with different
improvement techniques.

Runtime and Memory Results for g = 3, m = 1
Radial CSS Bool # Threads Runtime [h:min:sec] Max. Memory Used [MB]

x x x tw = 8, tr = 4 0 : 27 : 43 7056
x x x tw = 11, tr = 1 0 : 39 : 03 7071
x x x t = 1 1 : 37 : 49 7031
x x tw = 8, tr = 4 1 : 25 : 39 10819
x x tw = 8, tr = 4 18 : 36 : 22 92857

x x tw = 8, tr = 4 / /

Thereby, a cross marks whether

• we use the radial Ehrenfried complex or the parallel one,

• we filter this by cluster sizes,

• we use our special implementation of boolean coefficients (compare Subsubsection
6.2.4),

and we specify whether we run the program single threaded (t = 1) or parallel, and if
parallel, how many threads we use as working threads (tw) and as remaining threads (tr).
For an explanation of the meaning of these threads, see Subsubsection 6.2.6.
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We see that the most significant effect on both runtime and memory consumption arises
by implementing boolean coefficients in a clever way – the runtime decreases by a factor
40 and memory by a factor 13. Using this implementation of boolean coefficients, an-
other important step to improve performance is to filter the Ehrenfried complex by cluster
sizes, which yields another factor 3 of runtime and a factor 1.5 of memory consumption
improvement. Unfortunately, parallelizing the program with 12 threads does not gain an-
other factor 12 concerning runtime since diagonalizing is not smoothly parallelizable. Still,
another factor 2.5 of runtime improvement, when only the jobs of the so-called working
threads are distributed, and even a factor of 3.6, when also the so-called remaining work is
distributed, results in valuable reduction of running time.

6.2. The Library Libhomology
With libhomology we provide an expandable framework for all kinds of homology com-
putations. In our context, it is used as the foundation of the program kappa (see Section
6.3). In the following we explain use and essential details of its classes.
The template class ChainComplex is the core of libhomology. Here we think of a chain

complex as a finite sequence of compatible matrices Dn satisfying Dn−1Dn = 0 which we
call differential. We do not mention bases. Given a ChainComplex, our goal is to determine
its homology. Therefore one needs an implementation of the coefficient ring CoefficientT
(see Subsection 6.2.2) and the matrix type MatrixT (see Subsection 6.2.3) of the differ-
entials. The class HomologyT (see Subsection 6.2.7) specifies the scope of homological
information one wants to extract. These should be derived using the class DiagonalizerT
(see Subsection 6.2.5) which diagonalizes matrices by applying row or column operations.
The implementations of the classes ChainComplex, MatrixT, DiagonalizerT and HomologyT

are interdependent, so we recommend to skim over the details on the first reading.

6.2.1. The Class ChainComplex
We start with the description of the members of the template class
template < class CoefficientT ,

class MatrixT ,
class DiagonalizerT ,
class HomologyT >

class ChainComplex;

A ChainComplex is a finite sequence of differentials which we represent by
std::map < int32_t , MatrixT > differential;

It is reasonable to define the following pass-through methods. You access the nthdifferential
by calling
MatrixT& operator []( const int32_t n );

or its const counter part
const MatrixT& at( const int32_t n ) const;

You can test whether the nthdifferential is defined by checking whether
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size_t count( const int32_t n ) const;

evaluates to zero. The nthdifferential is deleted by the following method.
void erase( const int32_t n );

All homology modules are computed by calling
HomologyT homology ();

In order to compute the nthhomology, one calls
HomologyT homology( const int32_t n );

If you are interested in the kernel and torsion parts of the nth differential, you should call
HomologyT compute_kernel_and_torsion( int32_t n );

These operations consume by far the most time and we recommend using a parallelized
diagonalization process (compare Subsection 6.2.6).
The DiagonalizerT in use, is accessed via

DiagonalizerT& get_diagonalizer ();
const DiagonalizerT& get_diagonalizer () const;

In order to derive the homology of the moduli spaces, we have to handle very large
differentials (compare Section 5.1). Thus we work with a single differential at a time,
which is accessed via
// Access the current differential.

MatrixT& get_current_differential ();
const MatrixT& get_current_differential () const;

// Erases the current differential.
void erase ();

// Access the coefficient of the current differential.
CoefficientT& operator () ( const uint32_t row , const uint32_t col );

// Return number of rows resp. columns of the current differential
size_t num_rows () const;
size_t num_cols () const;

6.2.2. The Type CoefficientT
The coefficient ring must be represented by a class that meets the requirements discussed
in Subsubsection 6.2.2.1.

6.2.2.1. Obligatory Operations for CoefficientT

Clearly, one has to provide the basic ring operations.
CoefficientT& operator= ( const CoefficientT& ); // Assignment
bool operator ==( const CoefficientT& ) const; // Comparison
bool operator !=( const CoefficientT&, const CoefficientT& );
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CoefficientT operator - () const; // Negation
CoefficientT& operator +=( const CoefficientT& ); // Addition
CoefficientT operator+ ( const CoefficientT&, const CoefficientT& );
CoefficientT& operator -=( const CoefficientT& ); // Subtraction
CoefficientT operator - ( const CoefficientT&, const CoefficientT& );
CoefficientT& operator *=( const CoefficientT& ); // Multiplication
CoefficientT operator* ( const CoefficientT&, const CoefficientT& );

If the coefficients form a field, we suggest to implement the division operators.
CoefficientT& operator /=( const CoefficientT& );
CoefficientT operator/ ( const CoefficientT&, const CoefficientT& );

The integers are initial in the category of rings, thus it is reasonable to implement the
following methods.
CoefficientT& operator= ( const int ); // Assignement
bool operator ==( const int ) const; // Comparision
CoefficientT operator* ( const CoefficientT&, const int ); // Multiplication

In our project kappa, we intend to save differentials so you should provide a method
that stores a CoefficientT (See Subsection 6.2.8).

6.2.2.2. Coefficients in the Rationals and the Integers Mod m

We offer the classes Q respectively Zm that represent coefficients in Q respectively Z/mZ:
The class Q is defined via the following typedef.
typedef mpq_class Q;

The class mpq_class itself is the C++ variant of the GMP type mpq_t. Before using the
class Zm, you have to call the static member function
static void set_modulus(const uint8_t p, const uint8_t e = 1);

that defines m = pe. Omitting the call will throw a segmentation fault which is the result
of a division by zero. The following self-explaining member functions might be useful.
static void const print_modulus ();
static void const print_inversetable ();
static bool is_field ();

6.2.3. The Type MatrixT

6.2.3.1. Existing Template Classes

Before writing your own MatrixT you may want to have a look at the ublas library
provided by boost. They offer several matrix templates for sparse and dense matrices as
well as BLAS implementations for numerical computations. Moreover, our libhomology
provides the template class
template < class CoefficientT >
class MatrixField;
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for exact computations with matrix coefficients in a given field. In the following, we present
an overview of the requirements any implementation of MatrixT has to fulfill, whereas in
Subsection 6.2.4 we treat more specialized implementations.

6.2.3.2. Requirements on MatrixT

Your implementation of MatrixT has to meet some requirements. These are inspired by
the boost ublas library as we make heavy use of it to compactify implementation details.
We denote the coefficients of the matrix by CoefficientT. A MatrixT is created as follows:
MatrixT ( size_t number_rows , size_t number_cols );

The coefficient in the ith row and the jth column is accessed by calling
CoefficientT& operator ()( size_t i, size_t j );

The number of rows is
size_t size1() const;

and the number of columns is
size_t size2() const;

As we intend to save differentials in our project kappa, you should provide a method
that stores a MatrixT (See Subsection 6.2.8).

6.2.3.3. Optional Requirements on MatrixT

If you provide your own MatrixT with coefficients in a field, you may want to use our class
DiagonalizerField (see Subsection 6.2.6) to compute rank and torsion of your matrices.
In order to do so, you have to provide the member function
void row_operation( size_t row_1 , size_t row_2 , size_t col );

that applies a row operation on the matrix, i.e. adds the appropriate multiple of row_1 to
row_2 in order to erase the entry (row_2, col) of the matrix. Our implementation makes
use of multithreading, therefore you have to be careful with race conditions. You have to
ensure that row operations for fixed row_1 and col with varying row_2 can be applied
concurrently.

6.2.4. Special Implementations of MatrixField
6.2.4.1. MatrixField for Coefficients in F2

For coefficients in the field F2, our implementation provides siginificant improvements con-
cerning memory and execution duration, see Section 6.1. Using well-known techniques, we
store multiple entries of a row in a single data entity. Note that, since the only invertible
element in F2 is 1, a row operation corresponds to the bitwise XOR-instruction.
Using these insights, we provide an implementation called MatrixBool. It behaves al-

most like MatrixField but has a few technical limitations (which are unavoidable as these
are direct consequences of the enormous performance gain). E.g. for a matrix of type
MatrixBool, it is not possible to access its coefficients by reference.
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bool operator () ( const size_t i, const size_t j );
bool at ( const size_t i, const size_t j ) const;

Observe that for our purpose, it suffices to add 1 to a given entry which is provided by the
method
void add_entry( const size_t i, const size_t j );

It should be easy to equip MatrixBool with more member functions if needed.

6.2.4.2. MatrixField for the Cluster Spectral Sequence

In order to exploit the cluster spectral squence, we provide the adapted version MatrixFieldCSS
of MatrixField and also MatrixBoolCSS of MatrixBool. Here, one should think of a spec-
tral sequence that collapses at the second page as a subdivision of the differentials: The
bases are ordered in a way such that the transposed differential D consists of a diagonal of
block matrices d0 which respect the filtration degree and below a single second diagonal of
block matrices which decrease the filtration degree by one.

D =


d1 d0

d1 d0

d1 d0

. . .


Such a matrix is diagonalized as follows. We construct the first line given by d1 and d0 in
the top left corner. Then we apply row operations to d0 until its image is determined and
then apply row operations to the remaning rows of d1 until the image of the first row is
fully understood. Afterwards, we may forget the matrix d1 in the top left corner, construct
the matrix d1 of the next line and apply the needed row operations that are due to the
matrix d0 from above. Now we forget the entire first line, construct the next matrix d0 and
iterate this process.
During this procedure, we store at most two submatrices of D, namely one of type d0 and

one of type d1, so our implementation MatrixFieldCSS and MatrixBoolCSS does exactly
the same. We provide two ways to access the two submatrices d0 and d1. To use the first
approach, the method
void define_operations( const OperationType );

defines on which submatrix we are currently working, where OperationType is an enumera-
tion type and set to be main_and_secondary to access d0 or secondary to access d1. Now
one calls member functions of MatrixFieldCSS respectively MatrixBoolCSS which have
the same name as the member functions of MatrixField respectively MatrixBool. Let us
give a simple example by printing d0 and d1 to the screen.
M.define_operations( main_and_secondary );
std::cout << M; \\ prints d^0 to screen.

M.define_operations( secondary );
std::cout << M; \\ prints d^1 to screen.
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In the second approach, one calls a member method corresponding to d0 by adding the
prefix main_, whereas sec_ applies to d1. The following listing is an example for the
member functions size1 and size2.
size_t main_size1 () const; // Returns the number of rows of d^0.
size_t main_size2 () const; // Returns the number of columns of d^0.
size_t sec_size1 () const; // Returns the number of rows of d^1.
size_t sec_size2 () const; // Returns the number of columns of d^1.

A row operation on d0 clearly affects the submatrix d1 in the same line. In the algorithm
presented above, we apply only those operations to d1 that leave d0 unchanged. Therefore
we provide the following member functions.
void row_operation_main_and_secondary

( const size_t row_1 , const size_t row_2 , const size_t col );
void row_operation_secondary

( const size_t row_1 , const size_t row_2 , const size_t col );

6.2.5. The Type DiagonalizerT

Given a differential Cn
∂−−−→ Cn−1 of a chain complex, one wants to derive its kernel and

image in order to compute the homology of the chain complex. In our situation, we are given
a differential of the type MatrixT, so we want to apply a range of base changes to end up with
a matrix where reading off these informations is easy. These base changes depend heavily
on the coefficient ring. For field coefficients, one can apply Gaussian elimination, but for
integral coefficients, one has to work much harder. Some state of the art algorithms can be
found in [Jäg03] and [JW09]. We emphasize that this is the most time consuming operation
(see Chapter 5) and suggest to carry out an algorithm that makes use of concurrency.
The DiagonalizerT is a function object, so you have to provide the method

void operator ()( MatrixT& matrix );

that diagonalizes the given matrix. Afterwards, kernel and torsion of the matrix should be
available by the diagonalizer’s member functions
HomologyT :: KernT kern ();
HomologyT :: TorsT tors ();

where HomologyT is the class we use to store the homology of a chain complex (compare
Subsection 6.2.7).
Moreover, we are interested in the defect and the rank of the matrix, so you have to

provide the following two member functions.
uint32_t dfct ();
uint32_t rank ();

There are situations in which one wants to generate a chain complex without computing
homological data: The size of the differentials of the Ehrenfried complex (see Section 2.8) is
enourmous by Proposition 5.1, so it is impossible to compute the number of non-vanishing
entries per column by hand. Therefore we offer the template class
template < class MatrixT >
class DiagonalizerDummy;
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that does absolutely nothing, so you can use it together with HomologyDummy (see Sub-
subsection 6.2.7.2) as a template parameter for the template class ChainComplexT (see
Subsection 6.2.1).
In the following, we shall describe our implementations of the class DiagonalizerField.

6.2.6. The Class DiagonalizerField

The DiagonalizerField applies a slightly modified version of the Gaussian elimination
to a given matrix. Note that for computing the homology of a chain complex with field
coefficients, it is sufficient to determine the rank and defect of all its differentials. Thus, the
class DiagonalizerField merely transforms row operations upon the matrix in order to
determine its rank, but does not exchange columns in order to obtain a triangular matrix.
Since computing the rank is equivalent to diagonalizing for our purpose, we refer to this
process as diagonalizing nevertheless. After giving an overview on the usage of this class, we
will explain implementation details and runtime results of our parallelized diagonalization
algorithm.

6.2.6.1. Overview and Usage of DiagonalizerField

For field coefficients, we offer the following template class.
template < class CoefficientT >
class DiagonalizerField;

Here we assume that MatrixT is given by
typedef MatrixField < CoefficientT > MatrixT;

and it is trivial to alter the class definition in order to allow arbitrary matrices.
The member variable current_rank of the class DiagonalizerField keeps track of the

progress of an ongoing computation as it stores the number of linearly independent rows the
algorithm has already found. Operations on variables of the type atomic_uint are atomic,
i.e. reading, writing, incrementing and so forth is free of race conditions. We suggest to
make use of this feature as follows. You start two threads, one computes kernel and torsion
and the other monitors the progress.
ChainComplex < ... > complex;
// Define the differentials of matrix_complex.
// ...

atomic_uint& rank = diagonalizer.current_rank;
measure_duration = Clock (); // Measures duration.

// Set the value of state to 1 if and only if kernel and torsion are computed.
// This is done to terminate the ’monitoring thread ’.
atomic_uint state (0);

// Diagonalizing thread.
auto partial_homology_thread = std:: async( std:: launch ::async , [&]()
{

auto ret = complex.compute_current_kernel_and_torsion( p );
state = 1;
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return ret;
} );

// Monitoring thread.
auto monitor_thread = std:: async( std:: launch ::async , [&]()
{

while( state != 1 )
{

std::cout << "Diagonalization␣" << current_rank << "\r";
std:: this_thread :: sleep_for( std:: chrono :: milliseconds( 50 ) );

}
} );

The current progress is printed to screen and updated every 50 milliseconds till the com-
putation is done.

6.2.6.2. Implementation Details

Our key algorithm for computing the rank of a matrix via Gaussian elimination is given by
Algorithm 1: Rank Computation
Input: A matrix A = (aij) with coefficients in a field F
Output: The rank rk(A)

1 Let R be the set of rows of A
2 Set Rr := ∅ // Let Rr denote the set of rows contributing to the rank
3 foreach column c do
4 Let j ∈ R\Rr be a row index with ajc invertible in F
5 if No such j exists then
6 continue
7 Let S ⊂ R\Rr be the subset of rows s 6= j with asc invertible in F
8 if S 6= ∅ then
9 Set Rr := Rr ∪ {j}

10 foreach row s ∈ S do
11 Perform A.row_operation(j, s, c)

12 return |R|

Hereby, row_operation is the member function of the class MatrixType described in
Subsubsection 6.2.3.3.
A sequential version of this algorithm is implemented as the member function

uint32_t diag_field( MatrixType& matrix );

of DiagonalizerField. For the parallelized version, the method

uint32_t diag_field_parallelized( MatrixType& matrix );

is used. Since – at least for our matrices of type MatrixBool – a single row operation is per-
formed very fast, we do not use several threads to parallelize row operations, but subdivide
the set of row operations such that several row operations are performed simultaneously.
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We define two helper classes for parallelizing, which we will explain here roughly, using
the notation from Algorithm 1. The class JobQueue keeps track of all significant data used
in Algorithm 1. Obviously, a JobQueue has to know the
MatrixType & matrix;

which is supposed to be diagonalized, and the column
size_t col;

and row
size_t row_1;

that are currently considered, where, in the notation of Algorithm 1, we have col = c and
row_1 = r. Furthermore, the JobQueue maintains the
std:: vector rows_to_work_at;

which resembles the set S, and the
std:: vector remaining_rows;

consisting of the rows t not yet contributing to the rank for that the entry atc is not invertible
in F, i.e. of R\(Rr ∪ S). Since the JobQueue contains all the information necessary to
perform the required row operations for a given column c, only two tasks remain: updating
these data members when passing over from one column to the next and parallelizing the
row operations as well as the update.
For each thread used, we create an instantiation of the class Worker, which will not be

discussed in this thesis, to perform computations. Experiments showed that having two
different kinds of Workers is more efficient: Firstly, we define a family of Workers that actu-
ally perform the diagonalizing work. The JobQueue distributes the rows rows_to_work_at
among these Workers equally. Afterwards, each of these Workers considers all its assigned
rows s, performs the row operation upon s and marks whether s will also be in the set S
for the next column. This means that the already defined Workers update parts of the
arrays rows_to_work_at and remaining_rows, and that it remains to update these arrays
with respect to the set of remaining_rows. This is the task the other family of Workers
execute, where the remaining_rows are again distributed equally among the Workers by
the JobQueue.
The input parameters num_threads respectively num_remaining_threads define how

many threads are occupied for the first respectively second type of Workers, see also Sub-
section 6.3.1.

6.2.7. The Type HomologyT

In order to derive the homology of a chain complex, we compute all kernels and images of the
differentials, given by transposed transformation matrices. In our situation, we start with
a ChainComplex (see Subsection 6.2.1) that is essentially a finite series of matrices of the
type MatrixT (see Subsection 6.2.3). The function object DiagonalizerT (see Subsection
6.2.5) applies row and column operations until both kernel and image can be read off. This
data should then be communicated to HomologyT.
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6.2.7.1. Essential Members

The type HomologyT requires the following members. You have to provide the types
HomologyT::KernT respectively HomologyT::TorsT that store the kernel respectively the
image of a differential. This can be achieved by including the following two lines in the
public section of the class definition.
class HomologyT{
public:

typedef /* ... */ KernT;
typedef /* ... */ TorsT;

};

You have to define the following two constructors
HomologyT ();
HomologyT ( int32_t n, KernT& k, TorsT& t ); // Sets k and t at the spot n.

and member functions for storing kernels and images.
void set_kern ( int32_t , KernT& );
void set_tors ( int32_t , TorsT& );

Moreover, we want to print the homology to the screen, thus the class definition has to
include the following line.
friend std:: ostream& operator << ( std:: ostream& , const HomologyT& );

6.2.7.2. The Class HomologyDummy

As mentioned in Subsection 6.2.5, there are situations in which one wants to generate a
chain complex without computing homological data. For this purpose, we offer the class
class HomologyDummy

that does absolutely nothing, so you can use it together with DiagonalizerDummy (see
Subsection 6.2.5) as a template parameter for the template class ChainComplexT (see Sub-
section 6.2.1).

6.2.7.3. The Class HomologyField

Using field coefficients, the homology modules are all vector spaces. For those who are only
interested in the Betti numbers, we offer the class HomologyField. Here we store only the
dimensions of kernel and image. The class definition is essentially as follows, where the
member functions should be self-explaining.
class HomologyField{
public:

typedef int64_t KernT;
typedef int64_t TorsT;

HomologyField ();
HomologyField ( int32_t , KernT , TorsT );
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void set_kern ( int32_t , KernT );
void set_tors ( int32_t , TorsT );
KernT get_kern ( int32_t ) const;
TorsT get_tors ( int32_t ) const;
void erase_kern ( int32_t );
void erase_tors ( int32_t );
friend std:: ostream& operator << ( std:: ostream&, const HomologyField& );

private:
std::map < int32_t , int64_t > kern_rep;
std::map < int32_t , int64_t > tors_rep;

};

6.2.8. Serialization
The transformation of data and objects of a running computer program into storable in-
formation (which can be saved on a hard disk) is called serialization. In our project, we
want to generate basis elements and differentials to save them for later use, i.e. we want to
serialize them. Therefore, we provide the general purpose template functions
template < class StorableType >
void save_to_file_bz2

( StorableType& t, std:: string filename , bool print_duration=true );

and
template < class StorableType >
void load_from_file_bz2

( StorableType& t, std:: string filename , bool print_duration=true);

Both functions, use the bzip2 algorithm for fast file compresseion, so we produce much
smaller files.

6.2.8.1. Storable Types

A type can be handled by the above template functions, if it is defined by the C++11
standard (such as int or std::vector< char >) or the boost C++library. Otherwise
your class has to meet the following conditions. First of all, it has to be a friend of
boost::serialization::access, i.e. its class description includes the following line.
class my_class
{

...
friend class boost:: serialization :: access;
...

};

There are two ways of proceeding from here. Most commonly, the process of saving and
loading is the same. In this situation one defines the template member function
template < class Archive >
void serialize( Archive &ar , const unsigned int version );

whereas the template parameter Archive is filled in by boost (and you do not need to
know what it is). Now saving and loading is achieved via the binary operator & applied to
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ar and every member variable we want to save and load. In the example below, we tell the
serialization function, to save and load two out of three member variables.
class my_class
{

...
int keep_this;
int this_is_also_important;
int useless;

friend class boost:: serialization :: access;
template < class Archive >
void serialize( Archive &ar , const unsigned int )
{

ar & keep_this;
ar & this_is_also_important;

}
};

There are rare situations, in which a saving mechanism differs from its loading counter
part. Then one has to implement the function
template < class Archive >
void save( Archive & ar , const unsigned int version ) const;

and its counter part
template < class Archive >
void load( Archive & ar , const unsigned int version );

and one has to tell boost to use these two functions by calling the macro
BOOST_SERIALIZATION_SPLIT_MEMBER ()

afterwards. A simple example could look like this.
class my_class
{

...
int keep_this;
int this_is_also_important;
int useless;

friend class boost:: serialization :: access;
template < class Archive >
void save( Archive & ar , const unsigned int ) const
{

ar & keep_this & this_is_also_important;
}
template < class Archive >
void load( Archive & ar , const unsigned int )
{

ar & keep_this & this_is_also_important;
useless =0;

}
BOOST_SERIALIZATION_SPLIT_MEMBER ()

};

For more information one should consider the online manual of [boost].
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6.3. The Program Kappa

The program kappamainly uses the previously introduced libhomology (compare Section
6.2) and the theory developed in Chapter 2 in order to determine the homology of the
moduli spaces Mm

g,1 and M•g(m, 1). Thus, it computes the cohomology of the parallel or
radial Ehrenfried complex E, filtered by cluster sizes.
Recall that the homology of Mm

g,1 and M•g(m, 1) coincides for m > 0, see Proposition
2.7.1. For computing the homology of Mm

g,1 for fixed g and m, it is more efficient to use
the radial Ehrenfried complex rather than the parallel one, since its modules and thus
differentials are much smaller, see Section 5.1. However, for m = 0, we cannot use the
radial model, so we also offer the computation of the homology of Mm

g,1 via the parallel
model. Since we also determine the dimensions of the modules of the cluster spectral
sequence, computation with the parallel model produces new homological information for
m > 0.
A central class of our computer program is hence the class ClusterSpectralSequence,

see Subsection 6.3.3, which stores the parallel or radial Ehrenfried complex filtered by
cluster sizes.
Since the basis elements of E are monotonous tuples of transpositions, another important

class of the program kappa is the class Tuple (see Subsection 6.3.2), which represents such
a basis element and offers many functions that are applied to it during the generation of
the ClusterSpectralSequence.
With these foundations, we can offer the tool compute_css (see Subsection 6.3.1) for

computing the first three pages of the cluster spectral sequences corresponding to the
moduli spaces Mm

g,1 and M•g(m, 1) and especially their homology.
We also provide the tool compute_cache, which computes the bases and the differentials

of E and stores them in files via serialization. For most g and m, the computation of both
takes a lot of time, and it is thus functional to have the opportunity to store the data of E
for later uses.
For example, compute_cache can be used to examine the structure of the Ehrenfried

complex via the tools compute_statistics and print_basis. After compute_cache has
been performed, one can call compute_statistics to find out various properties of the
Ehrenfried complex E like the sizes of the differentials or their largest entry per column.
Alternatively, a call of print_basis outputs the basis of the Ehrenfried complex.
Since all these tools mentioned are organized in a similar way, we shall only describe the

tool compute_css in detail, see Subsection 6.3.1. Thereafter, we illustrate the above men-
tioned classes Tuple (compare Subsection 6.3.2) and ClusterSpectralSequence (compare
Subsection 6.3.3), which describe the Ehrenfried complex.

6.3.1. The Tool compute_css

The tool compute_css, which computes the homology of the moduli spaces Mm
g,1 and

M•g(m, 1) by deriving the second term of the corresponding cluster spectral sequence, is the
most important tool supported by the project kappa. In Subsubsection 6.3.1.1, we describe
how one operates this tool, while in Subsubsection 6.3.1.2, we explain its implementation.
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6.3.1.1. Usage

For the computation of the homology of the moduli space M•g(m, 1), one can use the
command
.\ compute_css -g arg -m arg (-q | -s arg)

Thereby,

• the parameter g is the genus of the moduli space,

• the parameter m is the number of punctures of the moduli space,

• one can either use the parameter q or the parameter s. If q is chosen – without any
argument – homology with rational coefficients will be computed. If the parameter s
is set to some positive prime, we will compute homology with coefficients in Z/sZ.

As the output of this command, one obtains a description of the E0, E1 and E2 term of the
cluster spectral sequence associated with M•g(m, 1), and can read off the homology from
the E2 page.
Recall that, for m > 0, the homology of the moduli space Mm

g,1 coincides with the
homology of the moduli space Mm

g,1 (compare Proposition 2.7.1). For determining the
homology of Mm

g,1 for m = 0 or the dimensions of the modules in the cluster spectral
sequence of Mm

g,1, one can set the optional parameter

• parallel

to true.
For instance, the call
./ compute_css -g 1 -m 3 -s 2

computes the homolgy of the moduli space M•1(3, 1) with Z/2Z coefficients, while the call
./ compute_css -g 1 -m 3 -q --parallel 1

determines the homolgy of the moduli space M1
3,1 with rational coefficients.

There are other optional parameters that improve the performance or handling of the
program.

• The optional parameter t is the number of threads that are allowed to be used for
parallelization, which is 1 by default.

• In addition, one can use the optional parameter num_remaining_threads to deter-
mine how exactly computations are parallelized. For a detailed explanation, see
6.2.6.2. The total number of threads used will then be

num_threads + num_remaining_threads,

and we recommend to use one third of the total number of threads as remaining
threads.
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• The optional parameters first_diff respectively last_diff are the minimal respec-
tively maximal p ∈ N for which the homology Hp(Mm

g,1) is supposed to be computed,
which are 0 respectively 2h by default.

If the command help is used or if the input is not valid, instructions for use will be
printed to the console.
During the computations, we offer intermediate results and progress bars as console

output. When the computation of the homology is finished, the file

compute_homology_(parameters)

created by the program contains all the intermediate and final results. Be aware that this
means that calls with the same parameters produce files with the same names and hence old
files are overwritten. The intermediate results give the oportunity to abort the computation
and continue it some other time, using the parameters first_diff and last_diff to select
certain homology groups.

6.3.1.2. Implementation Details

The computation of the cluster spectral sequence and the homology starts in the main
function of the file

main_compute_css.cpp

The input parameters described above are stored in the struct

SessionConfig;

which also tests whether the given configuration of parameters is valid, outputting the
correct usage to the console if not. Apart from the data members corresponding to the
input parameters, the struct SessionConfig contains the data member

SignConvention sgn_conv;

it can set on its own in dependence on the parameters for the coefficients. The SignConvention
parameter can have three different values, which indicate which signs have to be respected
in the computation of the differentials. This way, we avoid sign computations whenever
we can. We set the parameter to no_signs if we only compute the homology up to sign,
which is the case if we use coefficients in Z/2Z. If we have different coefficients and m
≥ 2, the moduli space Mm

g,1 is non-orientable and the sign convention is set to all_signs.
Otherwise, it equals no_orientation_sign.
At the begin of the computation, the constructor of ClusterSpectralSequenceT is called

with respect to the parameters provided above. Thereby, the bases (see Subsubsection
6.3.3.3) are generated, with basis elements sorted by their cluster number. In particular,
printing the E0-term to screen is readily done.
The main task is determining the first and second page of the cluster spectral sequence.

Recall Section 3.3, which discusses the matrix version of the cluster spectral sequence. The
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pth transposed transformation matrix of ∂E is a block matrix of the form
d1 d0

d1 d0

d1 d0

. . .

 ,

if we sort the basis elements by their number of clusters. The modules of the E1-term are
given by

ker(d0)/ im(d0) ,

whereas the modules of the E2-term are given by

ker(d1|ker(d0))/
(

im(d0) + im(d1|ker(d0))
)
.

Hence, it suffices to apply all row operations induced by the sub-matrices d0 and proceed
with the diagonalization process of the parts of the (altered) sub-matrices d1 that are in the
kernel of the (diagonalized) sub-matrices d0. In order to save execution time and memory,
our program operates on exactly one d0 and one d1 sub matrix at a time:
Algorithm 2: Computing E1 and E2

1 for p = 1 to 2h do
2 for l = 1 to p do
3 Construct d1

p,l and apply row operations of d0
p,l−1

4 Forget d0
p,l−1

5 Generate d0
p,l

6 Compute and save kernel and image of d0
p,l

7 Print the homological results to the screen
8 Save the diagonal of d0

p,l and detect superflous rows of d1
p,l

9 Compute and save the kernel and image of d1
p,l

10 Print the homological results to the screen
11 Forget d1

p,l

12 Print all three pages of the spectral sequence to the screen.

Here, we have h = 2g +m in the parallel case and h = 2g +m− 1 in the radial case.
During all computations, the function compute_css generates the previously mentioned

intermediate results printed out in the console and into the corresponding output file.
Furthermore, it measures the duration of the important steps of the computations and also
writes them into the console.

6.3.2. The Class Tuple

Recall that we aim to compute the cohomology of the parallel or radial Ehrenfried complex
E. A basis for the Ehrenfried complex is given by monotonous cells Σ = (τh | . . . | τ1)
satisfiying certain conditions, and the differential for E can be described by the map ∂E
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making the diagram
Ep Ep−1

Kp Kp−1

∂E

κ∼=
∂K

∼= π

commute, compare Definition 2.8.8. Hence, the core of the program kappa is the class
Tuple, which represents a tuple of h transpositions Σ = (τh | . . . | τ1) and thus especially
the basis elements of E. This class additionally provides several methods which are applied
to a basis element during the computation of the differential ∂E.
We are going to give an overview on its data members (Subsubsection 6.3.2.1), the

member functions needed to start working with a Tuple (Subsubsection 6.3.2.2) and the
functions that represent basic properties of a tuple (Subsubsection 6.3.2.3). Afterwards,
we explain the class methods computing the orientation sign (Subsubsection 6.3.2.5), the
horizontal differential (Subsubsection 6.3.2.4) and the implementation of the maps f and
Φ used to compute the isomorphism κ (Subsubsection 6.3.2.6) in detail.

6.3.2.1. Data Members

Since the class Tuple is supposed to represent cells Σ = (τh | . . . | τ1) of the Ehrenfried
complex E, let us briefly recall what this means. If Σ is a cell of the parallel Ehrenfried
complex (compare Definitions 2.3.5, 2.8), it satisfies the following properties:

(iP ) The transpositions τi act on the symbols 1, . . . , p.

(iiP ) The permutation σh has exactly m+ 1 cycles.

(iii) Each symbol 1, . . . , p is contained in at least one τi.

(iv) Σ is monotonous, i.e. ht(τh) ≥ . . . ≥ ht(τ1).

On the other hand, if Σ is a radial cell, it fulfills the same conditions, except for the first
two, which are replaced by

(iR) The transpositions τi act on the symbols 0, . . . , p,

(iiR) The permutation σh has exactly m cycles.

see also Definitions 2.5.2 and 2.8.8.
Let us now see how the cell Σ is represented by a Tuple. The transpositions τh, . . . , τ1

belonging to Σ are stored as the data member
std::vector < Transposition > rep;

where a Transposition is defined as a pair of unsigned integers. The unsigned integer p
is stored as another data member of the class Tuple, and there is also a boolean radial
indicating whether Σ is a radial cell or not (and thus a parallel cell). Depending on this
flag, there are other technical parameters to be set, e.g. the minimum symbol that may
occur in a transposition, see conditions (iP ) and (iR).
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Our convention for writing a cell Σ = (τh | . . . | τ1) is to store τi as rep[i-1] for 1 ≤ i ≤ h,
since by default, a vector starts with the index 0. To make the handling of Tuples more
intuitive, we offer methods to access the Transpositions in a more canonical way, see
Subsubsection 6.3.2.2. Another convention is that we always write Transpositions like
τi = (a b) with a > b in order to simplify the source code.
Since it is useful for the computation of the differential, another data member of the

class Tuple is an unsigned integer id indicating the index of a Tuple in its basis of the
Ehrenfried complex.

6.3.2.2. Class Methods To Get Started

We define two constructors for the class Tuple. Firstly, there is a constructor

Tuple( size_t h );

which initializes p with 0 and allocates memory for a Tuple of h Transpositions that are
supposed to be filled later. Secondly, the constructor

Tuple( uint32_t symbols , size_t h );

sets the data member p to be symbols and also allocates memory for the hmany Transpositions.
To create a Tuple Σ = (τh | . . . | τ1), one can call one of these constructors, and

afterwards initialize for each i = 1, . . . , h the ith Transposition τi using the non-const
operator

Transposition& operator []( size_t i );

It is also possible to use the const respectively non-const version of the method

Transposition& at( size_t i );

to access the Transposition τi of the tuple Σ for reading respectively writing.
During the generation of the differential ∂E, we use to mark Tuples as degenerate by

erasing its data member rep. To test whether a Tuple is non-degenerate, we hence define

operator bool ();

which returns true if and only if this Tuple is non-empty.
Using the methods

static void parallel_cell ();

respectively

static void radial_cell ();

one can mark whether a Tuple represents a parallel respectively radial cell.
Furthermore, we define canonical compare operators, overload the operator« to print

Tuples to screen and offer the possibility to save and load Tuples.
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6.3.2.3. Basic Properties of a Tuple

We provide various class methods for basic calculations with a Tuple, e.g. to verify whether
a Tuple represents an element of the Ehrenfried complex.
Since basis elements of E are required to be monotonous, we provide a method

bool monotonous ();

to test whether a Tuple is monotonous, i. e. whether, for all 1 ≤ i < h, we have ai < ai+1,
writing τi = (ai, bi) and τi+1 = (ai+1, bi+1) with ai > bi and ai+1 > bi+1.
The class method

int32_t norm ();

returns the norm of the given Tuple Σ = (τh | . . . | τ1), i. e. the sum of the norms of all τi,
i = 1, . . . , h. But since each τn is a Transposition, the norm of the Tuple is simply the
number of its transpositions h.
For the computation of the differential, we sometimes want to switch to the homogeneous

notation of Tuples. Therefore, we need methods
Permutation long_cycle ();

respectively
Permutation long_cycle_inv ();

returning the Permutation σ0 = (1 2 · · · p− 1 p) respectively its inverse, and
Permutation sigma_h ();

returning the Permutation σh = τhτh−1 . . . τ1σ0. Thereby, a Permutation is another class,
representing a permutation as a vector storing for each element its image under the per-
mutation.
Since all τi are Transpositions, we can simplify the computation of σh using the fol-

lowing
Algorithm 3: Computing σh
Input: A tuple Σ = (τh, . . . , τ1) in inhomogeneous notation
Output: The permutation σh

1 Permutation σinv := long_cycle_inv()
2 for i = 1 to h do
3 Write τi = (a, b)
4 Swap the elements σinv(a) and σinv(b)
5 for j = 1 to p do
6 Write k = σinv(j)
7 σh(k) := j

8 return σh

Proposition 6.3.1. The given algorithm computes σq correctly.

Proof. In line 1, we initialize the Permutation σinv with σ−1
0 . Note that, by definition of

σi, we have
σ−1
i = σ−1

i−1τi = σ−1
i−1(a, b)
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for 0 < i ≤ h. Thus, the Permutation σ−1
i maps a to σ−1

i−1(b), b to σ−1
i−1(a) and behaves

like σ−1
i−1 on all other elements. Hence, for each i = 1, . . . , h, we have σinv = σ−1

i after the
ith iteration of the first for loop.
The second for loop computes the inverse of σinv = σ−1

h , which is σh.

The algorithm for the computation of σh is also used with small adaptions in different
parts of the program.
The basis elements of E are supposed to have a distinguished number of punctures, i.e.

number of cycles of σh is m + 1 for parallel and m for radial cells. Therefore, we give an
algorithm to determine the cycle decomposition of a Permutation.
Algorithm 4: Cycle Decomposition
Input: A permutation π on a subset of {0, . . . , p}
Output: A decomposition of π into disjoint cycles

1 i := min{j ∈ {0, . . . , p} : j belongs to π, but not visited yet}
2 cur := i
3 Initialize a new cycle
4 repeat // Find the cycle containing i
5 Mark cur as visited
6 prev := cur
7 cur := π(prev)
8 cycle (prev) := cur
9 until cur equals i

10 Store the cycle
11 if all symbols in {0, . . . , p} visited or not belonging to π then
12 return the cycle decomposition
13 go to 1

Since each element in {0, . . . , p} belonging to the permutation π is considered as prev
exactly once, we can state

Proposition 6.3.2. The algorithm to determine the cycle decomposition of a permutation
works correctly.

Combining this with the previous Algorithm 3, we can now define the methods
uint32_t num_cycles () const;

yielding the number of cycles of σh, and
bool has_correct_num_cycles(size_t m) const;

checking whether the number of cycles fits the requirement of the parallel respectively radial
Ehrenfried complex.
Since we need to subdivide the cells of E according to their numbers of clusters, we

introduce the method
int32_t Tuple:: num_clusters () const;

This is another part of our computer program where we use the comfortability of the boost
library: Let Σ = (τh | . . . | τ1) be a cell represented by a Tuple. We construct a graph on
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the vertices 0, . . . , p, where an edge between a and b indicates that there is an i such that
τi = (a, b). Then, the number of connected components of this graph equals the number of
clusters of Σ, and boost offers a graph data structure and an algorithm to compute this
directly.

6.3.2.4. The Horizontal Face Operator

In order to construct the Ehrenfried complex E, the computer program has to be able to
apply the horizontal differential ∂′′ = ∂K to Tuples, compare Definition 2.8.8 and Section
2.6. So recall that, for a cell Σ, this differential is given by the alternating sum

∂′′j (Σ) =
p∑
j=0

(−1)jεj(Σ)d′′j (Σ) ,

where d′′j (Σ) is the jth horizontal face of Σ, i.e. the cell resulting from Σ by collapsing the
jth stripe of the slit domain, and εj(Σ) = ε′′j (Σ) is the additional sign introduced by the
orientation system. Note that, for parallel cells – but not for radial cells –, the 0th and pth
horizontal face is always degenerate.
Here, we will explain our implementation of the face operator d′′, and in Subsubsection

6.3.2.5, we will present the orientation sign.
In Proposition 2.3.10, we saw how to express the formula for the jth horizontal face in

the inhomogeneous notation, and in Corollary 2.8.12, we saw how to detect the cases when
the resulting face is degenerate. These statements result in the following
Algorithm 5: Computing the Horizontal Face
Input: A tuple Σ = (τh, . . . , τ1) in inhomogeneous notation, a symbol j ∈ {0, . . . , p}
Output: The horizontal face d′′j (Σ) or the assertion that d′′j (Σ) is degenerate

1 for i = 1 to h do
2 Write τi = (a, b)
3 Write k = σi−1(j)
4 if The transpositions τi and (j, k) are disjoint then
5 τ ′i := τi

6 else if τq = (j, k) or j = k then
7 return d′′j (τ) is degenerate
8 else
9 if k = a or k = b then

10 τ ′i := τi

11 else
12 if a 6= k then
13 τ ′i := (a, k)
14 else
15 τ ′i := (b, k)

16 Renormalize Σ′ = (τ ′h | . . . | τ ′1)
17 return Σ′
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Using the above mentioned theoretical foundations, we obtain

Proposition 6.3.3. The above algorithm computes the jth horizontal face of Σ.

Note that we can apply Algorithm 3 to compute σi for i = 0, . . . , h. We choose to handle
the case that τi and (j, k) are disjoint before the degenerate case at first because this is the
case that will occure most likely.
The algorithm enables us to define the method

Tuple d_hor( uint8_t j );

computing the jth horizontal face of this Tuple.

6.3.2.5. The Orientation Sign

Recalling the definition of the orientation sign εj(Σ) = ε′′j (Σ) introduced by Mehner (see
Section 2.6), we immediately obtain the following

Algorithm 6: Computing the Orientation Sign
Input: A tuple Σ = (τh, . . . , τ1) in inhomogeneous notation
Output: Orientation signs εj(Σ) for all j ∈ {0, . . . , p}

1 Decompose σh into m resp. m+ 1 disjoint cycles (α0)α1 . . . αm
2 Let ai be the minimum symbol of the cycle αi
3 Sort the cycles αi such that ai < ai+1 for all i
4 foreach cycle αi do
5 if αi = ai is a fixed point then
6 Set εai = 0
7 Let b be the second minimum cycle of αi
8 Let k ≥ i be the minimum integer with b < ak+1, or k = m, if this does not exist
9 Set εai = (−1)k−i

10 foreach c ∈ αi, c 6= ai do
11 Set εc = 1

Hereby, we again use Algorithm 3 to determine σh, and Algorithm 4 to decompose σh
into disjoint cycles. Note that, in the parallel case, a cell of E has m + 1 cycles, while in
the radial case, it has m cycles.
Storing the cycle decomposition of σh as a map of cycles stored with their smallest

element as a key, this algorithm is easily implemented. We obtain the method

std::map < uint8_t , int8_t > orientation_sign ();

returning a map of all orientation signs εj(σh), stored with j ∈ {1, . . . , p} as a key.
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6.3.2.6. Preparations for the Map κ

Having seen how the differential ∂K is implemented, recall once more that the differential
∂E of the Ehrenfried complex is given by the diagram

Ep Ep−1

Kp Kp−1

∂E

κ∼=
∂K

∼= π .

Note that the projection π onto the monotonous cells can be performed by simply checking
whether the Tuple is monotonous (see Subsection 6.3.2.3) and marking the Tuple as non-
valid, if not. It remains to define the isomorphism κ, which is given by

κ = Kh ◦ . . . ◦K1

with
Kq =

q∑
j=1

(−1)q−jΦq
j

and
Φq
j = fj ◦ . . . fq−1 .

Therefore, the class Tuple provides maps
bool f( uint32_t j );

and
bool phi( uint32_t q, uint32_t j );

which apply the maps fj respectively Φq
j to this Tuple and return true if and only if the

resulting Tuple is non-degenerate.
The method f is implemented as a huge case distinction concerning the symbols contained

in the transpositions τj , which is similar to the one in the computation of the horizontal
boundary. This provides the opportunity to handle each of the cases in constant time.
The function φ(q, j) iteratively calls the function f for j = 1, . . . , q − 1 according to the

definition of Φq
j . In each step, we test whether the norm of the Tuple decreases, and if so,

we abort the computation of Φ to avoid unneccassary computations.
The map κ itself is defined in the class ClusterSpectralSequence, compare Subsection

6.3.3.

6.3.3. The Class ClusterSpectralSequence
Having described how basis elements of the Ehrenfried complex E are represented by our
computer program, we will now explain how the cluster spectral sequence associated with
E is realized and how the methods provided by the class Tuple (compare Subsection 6.3.2)
are combined to compute its differentials. For these purposes, we introduce the class
ClusterSpectralSequence, which is a template class with the class type of the underlying
ChainComplex as a template parameter (compare Subsection 6.2.1).
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At first, we are going to describe the class CSSBasis in Subsection 6.3.3.1, which rep-
resents the basis of a single module of the cluster spectral sequence. Next, we describe
the data members of the ClusterSpectralSequence (Subsection 6.3.3.2), which are most
importantly a collection of bases of the modules of the Ehrenfried complex and a collection
of its differentials. Thereafter, we explain how the bases (see Subsubsection 6.3.3.3) and
the differentials (see Subsubsection 6.3.3.4) are generated, and what other methods are
provided by the class ClusterSpectralSequence (see Subsubsection 6.3.3.5).

6.3.3.1. CSSBasis

Just like the cluster spectral sequence associated with E consists of a finite number of
modules, our class ClusterSpectralSequence contains a finite number of CSSBases, which
are structs representing the bases of these modules.
Thus the only data member of the struct CSSBasis is the basis

BasisType basis;

Thereby, BasisType is a map storing all Tuples of this basis, sorted by cluster sizes.
For each cluster size l, we organize the corresponding Tuples in an std::unordered_set
with an appropriate hash function that makes it possible to search for basis elements in
amortized constant running time.
The struct CSSBasis provides the usual methods for saving and loading as well as the

functions

uint64_t size( int32_t l ) const;

returning the number of basis elements with exactly l clusters and

uint64_t total_size () const;

returning the total number of basis elements.
Since the computation of the differential (compare Subsubsection 6.3.3.4) requires a

unique identification of one basis element among the other basis elements of the same
cluster size of one CSSBasis, there is a method

int64_t id_of( Tuple& t );

returning the unique id of the given Tuple t. If t is not an element of this CSSBasis, we
return -1 to indicate the failure of the function.
The most important method of the struct CSSBasis is the function

uint32_t add_basis_element ( Tuple& t );

Using the method num_clusters of the class Tuple (see Subsubsection 6.3.2.3), it inserts
the Tuple t into the part of the basis corresponding to its number of clusters and sets the
id of t to the current number of basis elements with exactly l clusters. This means that
if one builds up a MonoBasis by successively adding basis elements, all basis elements can
be distinguished by their ids.
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6.3.3.2. Data Members

The class ClusterSpectralSequence represents the cluster spectral sequence assoicated
with the Ehrenfried complex. Hence, it contains a collection of CSSBases

std::map < uint32_t , CSSBasis > basis_complex;

where for each 0 ≤ p ≤ 2h, the basis elements of the Ehrenfried complex on the symbols
0, . . . , p are stored, and the data member

MatrixComplex diff_complex;

where at each time, the differential needed for computations is stored.
Note that MatrixComplex is a template parameter. Depending on the coffficients of

the homology one wants to compute, it can be chosen to be ClusterSpectralSequenceQ
or ClusterSpectralSequenceZm. For coefficients in the field F2, we highly recommend
to use ClusterSpectralSequenceBool for efficiency reasons. The genus g, the number
of punctures m and the number h of transpositions in a basis tuple associated with this
MonoComplex are also stored as data members. Furthermore, the data member

SignConvention sign_conv;

indicates which sign convention (see also Subsubsection 6.3.1.2) is used to compute the
homology of this MonoComplex, and the data member

size_t num_threads;

determines the number of threads using for the construction of the differentials.

6.3.3.3. Generating Bases

The first step to build up a ClusterSpectralSequence is to call the constructor

ClusterSpectralSequence( uint32_t genus ,
uint32_t num_punctures ,
SignConvention sgn ,
uint32_t num_working_threads ,
uint32_t num_remaining_threads );

For an explanation of the parameters num_working_threads and num_remaining_threads,
see Subsubsection 6.2.6.2. In the constructor, Diagonalizer is configured (compare Sub-
section 6.2.5), and the bases of all the modules belonging to the MonoComplex are initialized
via a recursive method we want to explain now.
Our aim is to enumerate all cells Σ = (τh | . . . | τ1) of bidegree (p, h) for all 0 ≤ p ≤ 2h

such that

(i) All τi are non-trivial transpositions on the symbols min, . . . , p.

(ii) Each symbol min, . . . , p is permuted non-trivially by at least one τi.

(iii) Σ is monotonous.
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Hereby, in the parallel case, min equals 1, and in the radial case, we want to enumerate all
cells for min = 0 or min = 1.
The enumeration of all these cells works recursively. Let Σ = (τk | . . . | τ1) be a cell

fulfilling the above conditions, but with bidegree (p, k) with k < h. Assume we want to find
all possibilities to extend such a cell Σ to a monotonous tuple Σ′ of k+ 1 transpositions by
inserting a transposition τk+1, perharps using more symbols. The following cases occur.

(i) We also use the symbols min, . . . , p for τk+1. Since Σ′ is supposed to be monotonous,
τk+1 needs to contain the symbol p. Hence we can set τk+1 := (p, i) with i ∈
{min, . . . , p− 1} chosen arbitrarily.

(ii) We insert a new row into our parallel slit domain and use the symbols min, . . . , p+ 1
for Σ′. By monotony, τk+1 has to contain the highest symbol p + 1. But now there
are two possibilities:
a) The new row is inserted as a (p+1)th row above the old rows. Hence the symbol

that is contained in τk+1 apart from p + 1 is one of the symbols that were
already used for the transpositions τ1, . . . , τk, and we can set τk+1 := (p + 1, i)
with i ∈ {min, . . . , p} chosen arbitrarily.

b) The new row is inserted as the ith row for some i ∈ {min, . . . , p} and the indices
of the old rows min, . . . , p are shifted up by one. Note that these indices are
also shifted up in the transpositions of Σ. By monotony and since all symbols
in {min, . . . , p} have to be covered, the new transposition has to be τk+1 :=
(p + 1, i), meaning that the symbol p + 1 is also used by at least one of the
transpositions τ1, . . . , τk, and that the symbol i is used by τk+1 only.

(iii) We insert two rows into our slit domain, using the symbols {min, . . . , p+2}. Thus the
symbols used by the new transposition τk+1 do not yet appear in Σ. Therefore τk+1
has to contain the symbol p+ 2 and some other symbol i ∈ {min, . . . , p+ 1}. Again,
the indices of the rows i+ 1, . . . , p have to be shifted up by 1 in the transpositions of
Σ.

We can use these observations to define the recursive method
void gen_bases( uint32_t k, uint32_t p, uint32_t min , Tuple& tuple );

This methods gets as input data a monotonous Tuple consisting of k transpositions which
contain each of the symbols min, . . . , p at least once, and the minimum symbol the trans-
positions may contain. Using the above case distinction, it calls itself recursively with the
appropriate parameters and stores all the transpositions with h transpositions detected
thereby in the corresponding basis, but only if they contain the required number of cycles.
Now we can describe the way the constructor of the CSS sets up its basis_complex.

Proposition 6.3.4. We can enumerate all basis elements of the parallel Ehrenfried complex
by defining the Tuple Σ = ((2, 1)) consisting of only one Transposition, and then calling
the recursive function gen_bases(1, 2, 1, Σ).
For enumerating all basis elements of the radial Ehrenfried complex, we additionally need

to call the recursive function gen_bases(1, 1, 0, Σ′) with Σ′ = ((1, 0)).
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Proof. Note that for a given Σ, the tranpositions arising from the different cases fulfill
the above conditions (i) - (iii), and that they are all distinct. If we consider two different
Tuples, the transpositions arising from the case distinction also cannot coincide since either
they have different numbers of transpositions or their starting sequence of transpositions
already differs. Especially, we don’t enumerate Tuples multiple times by the two initial
calls in the radial case since the first family of Tuples does not contain the symbol 0, and
the second family does.
Hence it suffices to show that all monotonous transpositions can be found by our al-

gorithm. By induction on the number of transpositions, we can assume that we have
already built up all monotonous tuples with k transpositions. Let Σ′ = (τk+1 | . . . | τ1)
be monotonous. Then τk+1 = (p + 1, i) with i ∈ {1, . . . , p} by monotony. The tuple
Σ := (τk | . . . | τ1) is also monotonous, but we might have to shift the indices i, . . . , p + 1
down by one if the symbol i is not contained in the transpositions τ1, . . . , τk. This yields
one of the tuples of k transpositions we have already found. By reverting the process just
described, we can rebuild Σ′ from Σ, and this case is covered by the above case distinc-
tion.

6.3.3.4. Generating Differentials

In Subsubsection 6.3.1.2, we explained how both the E1-term and E2-term are computed.
Recalling Chapter 2, the pth differential of the Ehrenfried complex is given by the compo-
sition π∂′′pκ. The member function
gen_d0( const int32_t p, const int32_t l );

generates the restriction of the pth differential ∂E to the cells of E with exactly l clusters.
Similarly, the method
gen_d1_stage_1( const int32_t p, const int32_t l );

generates the restriction of the pth differential ∂E from the cells with l clusters to the cells
with l − 1 clusters and applies all row operations to this restriction that come from the
sub-matrix d0 from above.
For runtime reasons, we thereby use yet another formula for the map κ.

Proposition 6.3.5. Let I ′ be the set of tuples of integers (th, . . . , t1) such that 0 ≤ tq < q.
Then the map

{0, . . . , h!− 1} −−→ I ′ with k 7−−→
(⌊

k

(q − 1)!

⌋
(mod q)

)
q

is a bijection.
Proof. We show that

(th, . . . , t1) 7−−→
h∑
q=2

tq · (q − 1)!

defines an inverse of the above map. Since both sets have the same cardinality, it suffices
to show that this map is a right inverse. For a fixed coordinate q ∈ {1, . . . , h}, we compute

h∑
q=2

tq · (q − 1)! =
h∑
q=r

tq · (q − 1)! +
r−1∑
q=2

tq · (q − 1)! .
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Using induction on r, we see that

r−1∑
q=2

tq · (q − 1)! < (r − 1)! ,

since for r = 1, the statement is true, and if we assume the statement for r − 1, we can
conclude

r∑
q=2

tq · (q − 1)! =
r−1∑
q=2

tq · (q − 1)! + tr(r − 1)!

< (r − 1)! + (r − 1)(r − 1)!
= r! .

From this, we get⌊∑h
q=2 tq · (q − 1)!

(r − 1)!

⌋
=

 h∑
q=r

tq ·
(q − 1)!
(r − 1)! +

r−1∑
q=2

tq ·
(q − 1)!
(r − 1)!

 =
h∑
q=r

tq ·
(q − 1)!
(r − 1)!

since the left sum is integral and the right sum vanishes after rounding down. Taking the
remaining term modulo r, we get tr as a result since all summands but the rth are zero
modulo r.

6.3.3.5. More Member Functions

We also offer class methods to print the basis_complex and the matrix_complex, and a
method
void erase_differential( int32_t p );

which deletes the pth differential and releases its memory. This function is defined because
we only want to keep a differential in the memory as long as we really need it due to storage
limitation.

6.4. Remarks on Compiling
Our software projects were developed and tested on Debian 7, Ubuntu 12.04 LTS and
Open SUSE 13.1. If you use a different operating system, your compiler has to support
the full C++11 standard. We suggest to use the C++ compiler of the Gnu Compiler
Collection.

6.4.1. Installing the Required Software

Using an operating system based on Debian, it should suffice to install the software and
libraries from the official repositories.
sudo apt -get install \

build -essential g++ libboost -all -dev libgmp -dev libbz2 -dev
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We document the source code with the Doxygen-syntax. Thus we can generate a docu-
mentation using the program doxygen. It is installed as follows.
sudo apt -get install doxygen doxygen -gui doxygen -latex

6.4.2. Building the Projects
Using the provided makefile, the executables are built as follows.
make compute_cache
make compute_css
make compute_statistics
make print_basis

Moreover, you can create your own executables (with a given name say my_program) by
creating a corresponding .cpp file in the subfolder ./kappa with the prefix main_ (e.g. you
create ./kappa/main_my_program.cpp). Calling make with the name of your project will
create an executable with this name.

6.4.3. More Remarks
Using doxygen you can generate a documentation of the source code as follows.
make doc

The documentation itself can be found in the subdirectory ./doc in the corresponding
project.
The libraries, executables and documentation can be cleaned up as always. The generated

results are kept.
make clean

6.5. Results
As discussed above, our program computes the cluster spectral sequence of a given Ehren-
fried complex, i.e. we compute the cohomology of the associated moduli space. In this
section, we list the results our computer program provides. Hereby, we distinct the parallel
and radial case. We compute the cluster spectral sequence with respect to coefficients R
being either the rationals Q or the field F2. Given parameters g and m, we provide several
tables with entries dimRE

s
p,l for

(i) s equals 0, 1 or 2,

(ii) p the homological degree and

(iii) l the cluster number.

The rightmost column of each table notes dimR
∑
lE

s
p,l. For s = 2, we thus provide the

dimensions of the homology of the moduli spaces dimRH2h−p(M;R), where h = 2g+m in
the parallel case and h = 2g +m− 1 in the radial case.
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6.5.1. The Parallel Case

6.5.1.1. Genus g = 0 and Punctures m = 0, . . . , 6

For g = 0 and n = 1, the moduli space Mm
g,1 is the classifying space of the braid group on

m strings. Its homology is understood. Moreover, it is easy to see that degree and cluster
number agrees for any cell, so the cluster spectral squence does not give any new insights.
We list our computations anyways.

The case g = 0, m = 1 and h = 1 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 dim

2 1 1

E1
p,l for F2 and Q

p l 1 2 dim

2 1 1

E2
p,l for F2 and Q

p l 1 2 dimRH2−p(M1
0,1;R)

2 1 1

The case g = 0, m = 2 and h = 2 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 dim

3 2 2
4 2 2

E1
p,l for F2 and Q

p l 1 2 dim

3 2 2
4 2 2
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E2
p,l for F2 and Q

p l 1 2 dimRH4−p(M2
0,1;R)

3 1 1
4 1 1

The case g = 0, m = 3 and h = 3 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 dim

4 5 5
5 10 10
6 5 5

E1
p,l for F2 and Q

p l 1 2 3 dim

4 5 5
5 10 10
6 5 5

E2
p,l for F2 and Q

p l 1 2 3 dimRH6−p(M3
0,1;R)

4 0 0
5 1 1
6 1 1

The case g = 0, m = 4 and h = 4 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 dim

5 14 14
6 42 42
7 42 42
8 14 14
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E1
p,l for F2 and Q

p l 1 2 3 4 dim

5 14 14
6 42 42
7 42 42
8 14 14

E2
p,l for Q

p l 1 2 3 4 dimQH8−p(M4
0,1;Q)

5 0 0
6 0 0
7 1 1
8 1 1

E2
p,l for F2

p l 1 2 3 4 dimF2 H8−p(M4
0,1;F2)

5 1 1
6 1 1
7 1 1
8 1 1

The case g = 0, m = 5 and h = 5 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 dim

6 42 42
7 168 168
8 252 252
9 168 168

10 42 42
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E1
p,l for F2 and Q

p l 1 2 3 4 5 dim

6 42 42
7 168 168
8 252 252
9 168 168
10 42 42

E2
p,l for Q

p l 1 2 3 4 5 dimQH10−p(M5
0,1;Q)

6 0 0
7 0 0
8 0 0
9 1 1

10 1 1

E2
p,l for F2

p l 1 2 3 4 5 dimF2 H10−p(M5
0,1;F2)

6 0 0
7 1 1
8 1 1
9 1 1
10 1 1

The case g = 0, m = 6 and h = 6 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 6 dim

7 132 132
8 660 660
9 1320 1320

10 1320 1320
11 660 660
12 132 132
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E1
p,l for F2 and Q

p l 1 2 3 4 5 6 dim

7 132 132
8 660 660
9 1320 1320
10 1320 1320
11 660 660
12 132 132

E2
p,l for Q

p l 1 2 3 4 5 6 dimQH12−p(M6
0,1;Q)

7 0 0
8 0 0
9 0 0

10 0 0
11 1 1
12 1 1

E2
p,l for F2

p l 1 2 3 4 5 6 dimF2 H12−p(M6
0,1;F2)

7 0 0
8 1 1
9 2 2

10 1 1
11 1 1
12 1 1

6.5.1.2. Genus g = 1 and Punctures m = 0, . . . , 6

The case g = 1, m = 0 and h = 2 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 dim

2 1 1
3 2 2
4 1 1
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E1
p,l for F2 and Q

p l 1 2 dim

2 0 0
3 1 1
4 1 1

E2
p,l for F2 and Q

p l 1 2 dimRH4−p(M0
1,1;R)

2 0 0
3 1 1
4 1 1

The case g = 1, m = 1 and h = 3 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 dim

2 1 1
3 12 12
4 25 6 31
5 30 30
6 10 10

E1
p,l for Q

p l 1 2 3 dim

2 0 0
3 0 0
4 14 0 14
5 24 24
6 10 10
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E2
p,l for Q

p l 1 2 3 dimQH6−p(M1
1,1;Q)

2 0 0
3 0 0
4 0 0 0
5 1 1
6 1 1

E1
p,l for F2

p l 1 2 3 dim

2 0 0
3 1 1
4 15 0 15
5 24 24
6 10 10

E2
p,l for F2

p l 1 2 3 dimF2 H6−p(M1
1,1;F2)

2 0 0
3 1 1
4 1 0 1
5 1 1
6 1 1

The case g = 1, m = 2 and h = 4 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 dim

3 10 10
4 96 4 100
5 210 100 310
6 400 30 430
7 280 280
8 70 70
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E1
p,l for Q

p l 1 2 3 4 dim

3 0 0
4 0 0 0
5 124 0 124
6 304 0 304
7 250 250
8 70 70

E2
p,l for Q

p l 1 2 3 4 dimQH8−p(M2
1,1;Q)

3 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 1 1
8 1 1

E1
p,l for F2

p l 1 2 3 4 dim

3 0 0
4 3 0 3
5 127 3 130
6 307 0 307
7 250 250
8 70 70

E2
p,l for F2

p l 1 2 3 4 dimF2 H8−p(M2
1,1;F2)

3 0 0
4 1 0 1
5 2 1 3
6 3 0 3
7 2 2
8 1 1
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The case g = 1, m = 3 and h = 5 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 dim

4 70 70
5 640 60 700
6 1470 1035 15 2520
7 3850 360 4210
8 4130 140 4270
9 2100 2100
10 420 420

E1
p,l for Q

p l 1 2 3 4 5 dim

4 0 0
5 1 0 1
6 901 0 0 901
7 2875 0 2875
8 3515 0 3515
9 1960 1960

10 420 420

E2
p,l for Q

p l 1 2 3 4 5 dimQH10−p(M3
1,1;Q)

4 0 0
5 1 0 1
6 2 0 0 2
7 1 0 1
8 0 0 0
9 1 1
10 1 1
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E1
p,l for F2

p l 1 2 3 4 5 dim

4 0 0
5 10 0 10
6 910 20 0 930
7 2895 10 3905
8 3525 0 3525
9 1960 1960
10 420 420

E2
p,l for F2

p l 1 2 3 4 5 dimF2 H10−p(M3
1,1;F2)

4 0 0
5 1 0 1
6 2 2 0 4
7 4 1 5
8 3 0 3
9 2 2
10 1 1

The case g = 1, m = 4 and h = 6 with coefficients in F2:

E0
p,l for F2

p l 1 2 3 4 5 6 dim

5 420 420
6 3840 570 4410
7 9240 8526 294 18060
8 30898 7896 56 38850
9 44772 3528 48300
10 34440 630 35070
11 13860 13860
12 2310 2310
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E1
p,l for F2

p l 1 2 3 4 5 6 dim

5 0 0
6 36 0 36
7 5856 105 0 5961
8 23047 105 0 23152
9 37275 35 37310

10 31003 0 31003
11 13230 13230
12 2310 2310

E2
p,l for F2

p l 1 2 3 4 5 6 dimF2 H12−p(M4
1,1;F2)

5 0 0
6 2 0 2
7 3 2 0 5
8 6 2 0 8
9 7 1 8

10 4 0 4
11 2 2
12 1 1

The case g = 1, m = 5 and h = 7 with coefficients in F2:

E0
p,l for F2

p l 1 2 3 4 5 6 7 dim

6 2310 2310
7 21504 4368 25872
8 54054 61208 3472 118734
9 220500 76608 1344 298452

10 403200 51660 210 455070
11 415800 18480 434280
12 251790 2772 254562
13 84084 84084
14 12012 12012
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E1
p,l for F2

p l 1 2 3 4 5 6 7 dim

6 0 0
7 129 0 129
8 34989 507 0 35496
9 164167 756 0 164923
10 330820 504 0 331324
11 365988 126 366114
12 233646 0 233646
13 81312 81312
14 12012 12012

E2
p,l for F2

p l 1 2 3 4 5 6 7 dimF2 H14−p(M5
1,1;F2)

6 0 0
7 2 0 2
8 3 4 0 7
9 7 3 0 10

10 8 2 0 10
11 7 1 8
12 4 0 4
13 2 2
14 1 1

The case g = 1, m = 6 and h = 8 with coefficients in F2: For p ≥ 10, the differentials
of Ep,l could not be constructed or diagonalized due to memory and / or time limitations.
The first and second page is therefore incomplete.
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E0
p,l for F2

p l 1 2 3 4 5 6 7 8 dim

7 12012 12012
8 114688 29456 144144
9 300300 400464 31968 732732

10 1448760 634500 18840 2102100
11 3203640 574200 5940 3783780
12 4146780 308880 792 4456452
13 3354780 92664 3447444
14 1681680 12012 1693692
15 480480 480480
16 120120 60060 180180

E1
p,l for F2

p l 1 2 3 4 5 6 7 8 dim

7 0 0
8 470 0 470
9 198096 2330 0 200426

...

E2
p,l for F2

p l 1 2 3 4 5 6 7 8 dimF2 H16−p(M6
1,1;F2)

7 0 0
8 2 0 2
9 4 5 0 9

...

6.5.1.3. Genus g = 2 and Punctures m = 0, 1

The case g = 2, m = 0 and h = 4 with coefficients in F2 and Q:
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E0
p,l for F2 and Q

p l 1 2 3 4 dim

2 1 1
3 18 18
4 78 5 83
5 112 60 172
6 168 15 183
7 98 98
8 21 21

E1
p,l for Q

p l 1 2 3 4 dim

2 0 0
3 0 0
4 0 0 0
5 51 0 51
6 113 0 113
7 83 83
8 21 21

E2
p,l for Q

p l 1 2 3 4 dimQH8−p(M0
2,1;Q)

2 0 0
3 0 0
4 0 0 0
5 1 0 1
6 0 0 0
7 0 0
8 1 1
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E1
p,l for F2

p l 1 2 3 4 dim

2 0 0
3 1 1
4 2 0 2
5 52 0 52
6 113 0 113
7 83 83
8 21 21

E2
p,l for F2

p l 1 2 3 4 dimF2 H8−p(M0
2,1;F2)

2 0 0
3 1 1
4 2 0 2
5 3 0 3
6 2 0 2
7 1 1
8 1 1

The case g = 2, m = 1 and h = 5 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 dim

2 1 1
3 60 60
4 638 12 650
5 2480 380 2860
6 3528 2985 75 6588
7 7238 1470 8708
8 6398 280 6678
9 2772 2772
10 483 483
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E1
p,l for Q

p l 1 2 3 4 5 dim

2 0 0
3 0 0
4 1 0 1
5 1 0 1
6 1627 0 0 1627
7 4621 0 4621
8 5003 0 5003
9 2492 2492

10 483 483

E2
p,l for Q

p l 1 2 3 4 5 dimQH10−p(M1
2,1;Q)

2 0 0
3 0 0
4 1 0 1
5 1 0 1
6 0 0 0 0
7 2 0 2
8 1 0 1
9 0 0

10 1 1

E1
p,l for F2

p l 1 2 3 4 5 dim

2 0 0
3 0 0
4 3 0 3
5 15 3 18
6 1639 20 0 1659
7 4638 5 4643
8 5008 5008
9 2492 2492

10 483 483
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E2
p,l for F2

p l 1 2 3 4 5 dimF2 H10−p(M1
2,1;F2)

2 0 0
3 0 0
4 1 0 1
5 2 1 3
6 1 3 0 4
7 4 1 5
8 3 0 3
9 1 1

10 1 1

6.5.1.4. Genus g = 3 and Punctures m = 0, 1

The case g = 3, m = 0 and h = 6 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 6 dim

2 1 1
3 82 82
4 1212 9 1221
5 7200 440 7640
6 20400 5690 60 26150
7 23760 28980 2016 54756
8 54164 19124 294 73582
9 57424 6552 63976

10 33960 945 34905
11 10890 10890
12 1485 1485
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E1
p,l for Q

p l 1 2 3 4 5 6 dim

2 0 0
3 1 1
4 0 0 0
5 0 0 0
6 1 0 1
7 9429 0 0 9429
8 30443 0 0 30443
9 40256 0 40256

10 27702 0 27702
11 9945 9945
12 1485 1485

E2
p,l for Q

p l 1 2 3 4 5 6 dimQH12−p(M0
3,1;Q)

2 0 0
3 1 1
4 0 0 0
5 0 0 0
6 1 0 1
7 1 0 0 1
8 0 0 0 0
9 1 0 1
10 1 0 1
11 0 0
12 1 1
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E1
p,l for F2

p l 1 2 3 4 5 6 dim

2 0 0
3 1 1
4 1 0 1
5 10 0 10
6 33 11 44
7 9452 49 5 9501
8 30481 20 0 30501
9 40271 0 40271
10 27702 0 27702
11 9945 9945
12 1485 1485

E2
p,l for F2

p l 1 2 3 4 5 6 dimF2 H12−p(M0
3,1;F2)

2 0 0
3 1 1
4 1 0 1
5 4 0 4
6 4 1 5
7 1 2 1 4
8 2 2 0 4
9 4 0 4

10 2 0 2
11 0 0
12 1 1

The case g = 3, m = 1 and h = 7 with coefficients in F2: For p ≥ 7, the differentials
of Ep,l could not be constructed or diagonalized due to memory and / or time limitations.
The first and second page is therefore incomplete.
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E0
p,l for F2

p l 1 2 3 4 5 6 7 dim

2 1 1
3 252 252
4 7563 18 7581
5 81360 2010 83370
6 424920 48855 195 473970
7 1141056 469938 13230 1624224
8 1305876 2069844 247898 1540 3625158
9 3593880 1810368 70476 5474724
10 4737360 915390 8715 5661465
11 3702820 258720 3961540
12 1765335 31878 1797213
13 477906 477906
14 56628 56628

E1
p,l for F2

p l 1 2 3 4 5 6 7 dim

2 0 0
3 0 0
4 3 0 3
5 8 3 11
6 128 5 0 133

...

E2
p,l for F2

p l 1 2 3 4 5 6 7 dimF2 H14−p(M1
3,1;F2)

2 0 0
3 0 0
4 1 0 1
5 5 3 8
6 6 2 0 8

...
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6.5.2. The Radial Case
Again note that in the radial case, we have h = 2g + m − 1. For our techniques to work,
we need to require m > 0.

6.5.2.1. Genus g = 0 and Punctures m = 1, . . . , 6

The case g = 0, m = 1 and h = 0 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 dim

0 1 1

E1
p,l for F2 and Q

p l 1 2 dim

0 1 1

E2
p,l for F2 and Q

p l 1 2 dimRH2−p(M0(1, 1);R)

0 1 1

The case g = 0, m = 2 and h = 1 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 dim

1 1 1
2 1 1

E1
p,l for F2 and Q

p l 1 2 dim

1 1 1
2 1 1

E2
p,l for F2 and Q

p l 1 2 dimRH2−p(M0(2, 1);R)

1 1 1
2 1 1
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The case g = 0, m = 3 and h = 2 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 dim

2 2 2
3 4 4
4 2 2

E1
p,l for F2 and Q

p l 1 2 3 dim

2 2 2
3 4 4
4 2 2

E2
p,l for F2 and Q

p l 1 2 3 dimRH4−p(M0(3, 1);R)

2 0
3 1 1
4 1 1

The case g = 0, m = 4 and h = 3 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 dim

3 5 5
4 15 15
5 15 15
6 5 5

E1
p,l for F2 and Q

p l 1 2 3 4 dim

3 5 5
4 15 15
5 15 15
6 5 5
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E2
p,l for Q

p l 1 2 3 4 dimQH6−p(M0(4, 1);Q)

3 0 0
4 0 0
5 1 1
6 1 1

E2
p,l for F2

p l 1 2 3 4 dimF2 H6−p(M0(4, 1);F2)

3 1 1
4 1 1
5 1 1
6 1 1

The case g = 0, m = 5 and h = 4 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 dim

4 14 14
5 56 56
6 84 84
7 56 56
8 14 14

E1
p,l for F2 and Q

p l 1 2 3 4 5 dim

4 14 14
5 56 56
6 84 84
7 56 56
8 14 14
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E2
p,l for Q

p l 1 2 3 4 5 dimQH8−p(M0(5, 1);Q)

4 0 0
5 0 0
6 0 0
7 1 1
8 1 1

E2
p,l for F2

p l 1 2 3 4 5 dimF2 H8−p(M0(5, 1);F2)

4 0 0
5 1 1
6 1 1
7 1 1
8 1 1

The case g = 0, m = 6 and h = 5 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 6 dim

5 42 42
6 210 210
7 420 420
8 420 420
9 210 210

10 42 42

E1
p,l for F2 and Q

p l 1 2 3 4 5 6 dim

5 42 42
6 210 210
7 420 420
8 420 420
9 210 210

10 42 42
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E2
p,l for Q

p l 1 2 3 4 5 6 dimQH10−p(M0(6, 1);Q)

5 0 0
6 0 0
7 0 0
8 0 0
9 1 1

10 1 1

E2
p,l for F2

p l 1 2 3 4 5 6 dimF2 H10−p(M0(6, 1);F2)

5 0 0
6 1 1
7 2 2
8 1 1
9 1 1

10 1 1

The case g = 0, m = 7 and h = 6 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 6 7 dim

6 132 132
7 792 792
8 1980 1980
9 2640 2640
10 1980 1980
11 792 792
12 132 132
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E0
p,l for F2 and Q

p l 1 2 3 4 5 6 7 dim

6 132 132
7 792 792
8 1980 1980
9 2640 2640

10 1980 1980
11 792 792
12 132 132

E2
p,l for Q

p l 1 2 3 4 5 6 7 dimQH12−p(M0(7, 1);Q)

6
7
8
9
10
11 1 1
12 1 1

E2
p,l for F2

p l 1 2 3 4 5 6 7 dimF2 H12−p(M0(7, 1);F2)

6
7
8 1 1
9 2 2

10 1 1
11 1 1
12 1 1

The case g = 0, m = 8 and h = 7 with coefficients in F2 and Q:
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E0
p,l for F2 and Q

p l 1 2 3 4 5 6 7 8 dim

7 429 429
8 3003 3003
9 9009 9009
10 15015 15015
11 15015 15015
12 9009 9009
13 3003 3003
14 429 429

E1
p,l for F2 and Q

p l 1 2 3 4 5 6 7 8 dim

7 429 429
8 3003 3003
9 9009 9009
10 15015 15015
11 15015 15015
12 9009 9009
13 3003 3003
14 429 429

E2
p,l for Q

p l 1 2 3 4 5 6 7 8 dimQH14−p(M0(8, 1);Q)

7 0 0
8 0 0
9 0 0

10 0 0
11 0 0
12 0 0
13 1 1
14 1 1
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E2
p,l for F2

p l 1 2 3 4 5 6 7 8 dimQH14−p(M0(8, 1);Q)

7 1 1
8 1 1
9 1 1
10 2 2
11 2 2
12 1 1
13 1 1
14 1 1

6.5.2.2. Genus g = 1 and Punctures m = 1, . . . , 6

The case g = 1, m = 1 and h = 2 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 dim

1 1 1
2 2 1 3
3 3 3
4 1 1

E1
p,l for Q

p l 1 2 3 dim

1 0
2 1 1
3 2 2
4 1 1

E2
p,l for Q

p l 1 2 3 dimQH4−p(M1(1, 1);Q)

1 0
2 0
3 1 1
4 1 1
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E1
p,l for F2

p l 1 2 3 dim

1 1 1
2 2 2
3 2 2
4 1 1

E2
p,l for F2

p l 1 2 3 dimF2 H4−p(M1(1, 1);F2)

1 1 1
2 1 1
3 1 1
4 1 1

The case g = 1, m = 2 and h = 3 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 dim

1 1 1
2 12 1 13
3 25 18 33
4 55 6 61
5 40 40
6 10 10

E1
p,l for Q

p l 1 2 3 4 dim

1
2
3 14 14
4 38 38
5 34 34
6 10 10
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E2
p,l for Q

p l 1 2 3 4 dimQH6−p(M1(2, 1);Q)

1 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 1 1
6 1 1

E1
p,l for F2

p l 1 2 3 4 dim

1
2 1 1
3 15 1 16
4 39 39
5 34 34
6 10 10

E2
p,l for F2

p l 1 2 3 4 dimF2 H6−p(M1(2, 1);F2)

1 0 0
2 1 0 1
3 2 1 3
4 3 0 3
5 2 2
6 1 1

The case g = 1, m = 3 and h = 4 with coefficients in F2 and Q:
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E0
p,l for F2 and Q

p l 1 2 3 4 5 dim

2 10 10
3 96 14 110
4 210 196 4 410
5 610 130 740
6 680 30 710
7 350 350
8 70 70

E1
p,l for Q

p l 1 2 3 4 5 dim

2 0 10
3 1 0 1
4 125 0 0 125
5 428 0 428
6 554 0 554
7 320 320
8 70 70

E2
p,l for Q

p l 1 2 3 4 5 dimQH8−p(M1(3, 1);Q)

2 0 0
3 1 0 1
4 2 0 0 2
5 1 0 1
6 0 0 0
7 1 1
8 1 1
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E1
p,l for F2

p l 1 2 3 4 5 dim

2 0 0
3 3 0 3
4 127 6 0 133
5 434 3 437
6 557 0 557
7 320 320
8 70 70

E2
p,l for F2

p l 1 2 3 4 5 dimF2 H8−p(M1(3, 1);F2)

2 0 0
3 1 0 1
4 2 2 0 4
5 4 1 5
6 3 0 3
7 2 2
8 1 1

The case g = 1, m = 4 and h = 5 with coefficients in Q and F2:

E0
p,l for Q and F2

p l 1 2 3 4 5 6 dim

3 70 70
4 640 130 770
5 1470 1675 75 3220
6 5320 1665 15 7000
7 7980 770 8750
8 6230 140 6370
9 2520 2520

10 420 420
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E1
p,l for Q

p l 1 2 3 4 5 6 dim

3 0 0
4 1 0 1
5 901 1 0 902
6 3776 0 0 3776
7 6390 0 6390
8 5475 0 5475
9 2380 2380

10 420 420

E2
p,l for Q

p l 1 2 3 4 5 6 dimQH10−p(M1(4, 1);Q)

3 0 0
4 1 0 1
5 1 1 0 2
6 3 0 0 3
7 2 0 2
8 0 0 0
9 1 1

10 1 1

E1
p,l for F2

p l 1 2 3 4 5 6 dim

3 0 0
4 11 0 11
5 911 30 0 941
6 3805 30 0 3835
7 6420 10 6430
8 5485 0 5485
9 2380 2380

10 420 420
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E2
p,l for F2

p l 1 2 3 4 5 6 dimF2 H10−p(M1(4, 1);F2)

3 0 0
4 2 0 2
5 3 2 0 5
6 6 2 0 8
7 7 1 8
8 4 0 4
9 2 2

10 1 1

The case g = 1, m = 5 and h = 6 with coefficients in Q and F2: For rational coefficients
and p ≥ 9, the differentials of Ep,l could not be constructed or diagonalized due to memory
and / or time limitations. The first and second page with rational coefficients is therefore
incomplete.

E0
p,l for Q and F2

p l 1 2 3 4 5 6 7 dim

4 420 420
5 3840 990 4830
6 9240 12366 864 22470
7 40138 16422 350 56910
8 75670 11424 56 87150
9 79212 4158 83370
10 48300 630 48930
11 16170 16170
12 2310 2310

E1
p,l for Q

p l 1 2 3 4 5 6 7 dim

4 0 0
5 2 0 2
6 5822 6 0 5828
7 40138 3 0 40141
8 60115 0 ? 60115 + ?
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E2
p,l for Q

p l 1 2 3 4 5 6 7 dimQH12−p(M1(5, 1);Q)

4 0 0
5 0 0 0
6 0 2 0 2
7 3 1 0 4
8 0 0 ? ?

E1
p,l for F2

p l 1 2 3 4 5 6 7 dim

4 0 420
5 36 0 4830
6 5856 141 0 22470
7 28903 210 0 56910
8 60322 140 56 87150
9 68278 4158 83370

10 48300 630 48930
11 16170 16170
12 2310 2310

E2
p,l for F2

p l 1 2 3 4 5 6 7 dimQH12−p(M1(5, 1);Q)

4 0 0
5 2 0 2
6 3 4 0 7
7 7 3 0 10
8 8 2 0 10
9 7 1 8

10 4 0 4
11 2 2
12 1 1

The case g = 1, m = 6 and h = 7 with coefficients in F2:
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E0
p,l for F2

p l 1 2 3 4 5 6 7 8 dim

5 2310 2310
6 21504 6678 28182
7 54054 82712 7840 144606
8 274554 137816 4816 417186
9 623700 128268 1554 753522

10 819000 70140 210 889350
11 667590 21252 688842
12 335874 2772 338646
13 96096 96096
14 0 12012 12012

E1
p,l for F2

p l 1 2 3 4 5 6 7 8 dim

5 0 0
6 129 0 129
7 34989 636 0 35625
8 199156 1263 0 200419
9 494987 1260 0 496247

10 696808 630 0 697438
11 599634 126 599760
12 314958 0 314958
13 93324 93324
14 0 12012 12012
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E2
p,l for F2

p l 1 2 3 4 5 6 7 8 dimF2 H14−p(M1(6, 1);F2)

5 0 0
6 2 0 2
7 4 5 0 9
8 10 5 0 15
9 12 3 0 15

10 11 2 0 13
11 8 1 9
12 4 0 4
13 2 2
14 0 1 1

6.5.2.3. Genus g = 2 and Punctures m = 1, . . . , 4

The case g = 2, m = 1 and h = 4 with coefficients in F2 and Q:

E0
p,l for F2 and Q

p l 1 2 3 4 5 dim

1 1 1
2 18 1 19
3 78 23 101
4 112 138 5 255
5 280 75 355
6 266 15 281
7 119 119
8 21 21

E1
p,l for F2 and Q

p l 1 2 3 4 5 dim

1 0 0
2 1 0 1
3 1 0 1
4 51 0 0 51
5 164 0 164
6 196 0 196
7 104 104
8 21 21
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E2
p,l for Q

p l 1 2 3 4 5 dimQH8−p(M2(1, 1);Q)

1 0 0
2 1 0 1
3 1 0 1
4 0 0 0 0
5 2 0 2
6 1 0 1
7 0 0
8 1 1

E1
p,l for F2

p l 1 2 3 4 5 dim

1 0 0
2 1 0 1
3 2 1 0 3
4 52 2 0 54
5 165 0 165
6 196 0 196
7 104 104
8 21 21

E2
p,l for F2

p l 1 2 3 4 5 dimF2 H8−p(M2(1, 1);F2)

1 0 0
2 1 0 1
3 2 1 0 3
4 2 2 0 4
5 5 0 5
6 3 0 3
7 1 1
8 1 1

The case g = 2, m = 2 and h = 5 with coefficients in F2 and Q:
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E0
p,l for F2 and Q

p l 1 2 3 4 5 6 dim

1 1 1
2 60 1 61
3 638 72 710
4 2480 1018 12 3510
5 3528 5465 455 9448
6 10766 4455 75 15296
7 13636 1750 15386
8 9170 280 9450
9 3255 3255

10 483 483

E1
p,l for Q

p l 1 2 3 4 5 6 dim

1 0 0
2 0 0 0
3 0 0 0
4 1 1 0 2
5 1628 1 0 1629
6 6248 0 0 6248
7 9624 0 9624
8 7495 0 7495
9 2975 2975
10 483 483
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E2
p,l for Q

p l 1 2 3 4 5 6 dimQH10−p(M2(2, 1);Q)

1 0 0
2 0 0 0
3 0 0 0
4 1 1 0 2
5 1 1 0 2
6 1 0 0 1
7 3 0 3
8 1 0 1
9 0 0
10 1 1

E1
p,l for F2

p l 1 2 3 4 5 6 dim

1 0 0
2 1 0 1
3 6 0 6
4 19 6 0 25
5 1641 35 3 1679
6 6277 25 0 6302
7 9646 5 9646
8 7500 0 7500
9 2975 2975

10 483 483
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E2
p,l for F2

p l 1 2 3 4 5 6 dimF2 H10−p(M2(2, 1);F2)

1 0 0
2 1 0 1
3 4 0 4
4 7 2 0 9
5 5 5 1 11
6 7 3 0 10
7 8 1 9
8 5 0 5
9 2 2

10 1 1

The case g = 2, m = 3 and h = 6 with coefficients in F2:

E0
p,l for F2

p l 1 2 3 4 5 6 7 dim

2 42 42
3 1296 48 1344
4 11580 1896 6 13482
5 43200 22680 690 66570
6 61908 115230 15510 90 192738
7 224070 125510 5110 354690
8 354774 73640 700 429114
9 318192 23310 341502

10 169470 3150 172620
11 50358 50358
12 6468 6468
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E1
p,l for F2

p l 1 2 3 4 5 6 7 dim

2 0 0
3 1 0 1
4 14 1 0 15
5 155 34 0 189
6 29176 516 31 0 29725
7 130155 642 10 130807
8 244701 350 0 245051
9 249912 70 249982
10 146930 0 146930
11 47208 47208
12 6468 6468

E2
p,l for F2

p l 1 2 3 4 5 6 7 dimF2 H12−p(M2(3, 1);F2)

2 0 0
3 1 0 1
4 4 1 0 5
5 8 5 0 13
6 5 12 3 0 20
7 8 9 1 18
8 8 5 0 13
9 9 1 10

10 5 0 5
11 2 2
12 1 1

The case g = 2, m = 4 and h = 7 with coefficients in F2: For p ≥ 8, the differentials
of Ep,l could not be constructed or diagonalized due to memory and / or time limitations.
The first and second page is therefore incomplete.
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E0
p,l for F2

p l 1 2 3 4 5 6 7 8 dim

3 735 735
4 18000 1005 19005
5 149490 31965 300 181755
6 551040 352560 18375 30 922005
7 801801 1739500 326760 4970 2873031
8 3369807 2377900 162750 560 5911017
9 6408591 1860390 44310 8313291
10 7185465 878850 5250 8069565
11 5098170 235620 5333790
12 2269806 27720 2297526
13 582582 582582
14 66066 66066

E1
p,l for F2

p l 1 2 3 4 5 6 7 8 dim

3 0 0
4 3 0 3
5 55 6 0 61
6 1426 170 3 0 1599

E2
p,l for F2

p l 1 2 3 4 5 6 7 8 dimF2 H14−p(M2(4, 1);F2)

3 0 0
4 1 0 1
5 11 2 0 13
6 19 9 1 0 29

6.5.2.4. Genus g = 3 and Punctures m = 1

The case g = 3, m = 1 and h = 6 with coefficients in F2:
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E0
p,l for F2

p l 1 2 3 4 5 6 7 dim

1 1 1
2 82 1 83
3 1212 91 1303
4 7200 1652 9 8861
5 20400 12890 500 33790
6 23760 49380 7706 60 80906
7 77927 48104 2310 128341
8 111588 25676 294 137558
9 91384 7497 98881
10 44850 945 45795
11 12375 12375
12 1485 1485

E1
p,l for F2

p l 1 2 3 4 5 6 7 dim

1 0 0
2 1 0 1
3 5 1 6
4 12 1 0 13
5 34 21 0 55
6 9455 82 16 0 9553
7 39933 69 5 40007
8 70752 20 0 70772
9 67973 0 67973
10 37647 0 37647
11 11430 11430
12 1485 1485
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E2
p,l for F2

p l 1 2 3 4 5 6 7 dimF2 H12−p(M3(1, 1);F2)

1 0 0
2 1 0 1
3 5 1 6
4 7 1 0 8
5 7 5 0 12
6 7 6 1 0 14
7 7 2 1 10
8 3 2 0 5
9 4 0 4
10 3 0 3
11 0 0
12 1 1
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Appendix

A. The Symmetric Groups S∆ as Semisimplicial Set
In order to provide a compact notation, we introduce the symmetric groups as semisimplicial
set S∆. The simplicial category (which is used to define simplicial sets) is ∆. Its face
maps are denoted by

d∆
i : {0, . . . , n} −−→ {0, . . . , n+ 1} i.e. d∆

i (c) =
{
c c < i

c+ 1 c ≥ i
,

and its degeneracy maps by

s∆
i : {0, . . . , n+ 1} −−→ {0, . . . , n} i.e. s∆

i (c) =
{
c c ≤ i
c− 1 c > i

.

The semisimplicial category ∆semi ⊂ ∆ is a faithful subcategory. It consists of the same
objects, contains all face maps d∆ and misses all degeneracy maps s∆.

Definition A.1. The group of bijections of a set S is the symmetric group with respect
to S and is denoted by SS = Aut(S). For n a non-negative integer, it is convenient to
identify n with {0, . . . , n}. Consequently, the nth symmetric group Sn is the group of
all bijections of the set {0, . . . , n}. The subgroup Aut({1, . . . , n}) is denoted by S×n .

Definition A.2. The support of a permutation α is the set of non-fixed points, i.e.

supp(α) = {k | α(k) 6= k}.

The support of permutations α1, . . . , αn is

supp(α1, . . . , αn) = supp(α1) ∪ . . . ∪ supp(αn) .

Definition A.3. Let n > 0 and 0 ≤ i ≤ n. The ith face

Di : Sn −−� Sn−1

is defined as follows. Consider a permutation α ∈ Sn and alter it by skipping i, which
results in a permutation on {0, . . . , n− 1} up to renormalization:

Diα = s∆
i ◦

(
α · (i α−1(i))

)
◦ d∆

i .

Remark A.4. Each Di is a surjective map of sets, but not a homomorphism of groups.
The semisimplicial identities

DiDj = Dj−1Di for i < j

are readily verified.
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Definition A.5. The symmetric groups define a semisimplicial set S∆ with S∆
n = Sn and

face maps Di as above.

Definition A.6. Let n ≥ 0 and 0 ≤ i ≤ n. The ith pseudo degeneracy

Si : Sn ↪−−→ Sn+1

is defined as follows. Consider a permutation α ∈ Sn and recognize it as permutation on
{0, . . . , n+ 1} via shifting all j > i up by one:

(Siα)(c) =
{
i c = i

d∆
i ◦ α ◦ s∆

i c 6= i
.

Remark A.7. Each Si is a monomorphism of groups because s∆
i d

∆
i = id{0,...,n}

The face and pseudo degeneracy maps fulfill all but one simplicial identity. In particular
they do not make S∆ a simplicial set.

Proposition A.8. The following identities are fulfilled

DiDj = Dj−1Di for i < j

SiSj = SjSi−1 for i > j

DiSj =


Sj−1Di for i < j

id for i = j

SjDi−1 for i > j + 1

but

DiSj 6= id for i = j + 1 .

Proof. The identities are readily verified and (Di+1Si)(τ) = 1Sn holds for any transposition
τ = (c i).

Lemma A.9. Let π be a permutation on π ∈ Sp and 0 ≤ j ≤ p. Then we have

N(Dj(π)) =
{
N(π) j fix point of π
N(π)− 1 otherwise

,

where N denotes the word length norm.

Proof. Recall that we can express the norm of π as N(π) = p − cyc(π), where cyc(π)
denotes the number of cycles of π, also considering fixed points as cycles. Now, if j is a
fixed point of π, we have

N(Dj(π)) = (p− 1)− cyc(Dj(π))
= (p− 1)− (cyc(π)− 1)
= N(π)
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since Dj(π) consists of the same cycles as π (up to renormalization), except that the fixed
point j is not contained in Dj(π) anymore. If j is not a fixed point of π, it is removed from
its cycle by Dj , but the number of cycles remains the same. Thus, in this case, we have

N(Dj(π)) = (p− 1)− cyc(Dj(π))
= (p− 1)− cyc(π)
= N(π)− 1 .

B. A Brief Review on Factorable Groups
Definition B.1. Let α ∈ Sp be a non-trivial permutation. The height of α is the largest
symbol in the support of α, i.e.

ht(τ) = max supp(α) .

Definition B.2. Let G ⊂ Sp be the generating set consisting of all transpositions and the
trivial permutation 1Sp . The factorization map is

η : Sp −−→ Sp ×G , α 7−−→ (α, α′)

with
η(1) = (1, 1)

and, for α 6= 1,

α = αα′ and α′ = (c α−1(c)) for c = ht(α) .

Remark B.3. For α 6= 1, the height of α is permuted non-trivially by α′ and a fixed point
of α.
Theorem ([Vis10, Theorem 5.2.1]). The factorization map η makes the symmetric group
Sp factorable: Denoting the multiplication by µ : Sp×Sp −−→ Sp in the diagram below, the
upper right composition of maps preserves the norm if and only if the lower left composition
does. In this case, the diagram commutes.

Sp ×Sp Sp ×Sp ×Sp Sp ×Sp Sp ×Sp ×Sp

Sp Sp ×Sp

µ

η × id id×µ id×η

µ× id

η

It is handy to reformulate the above diagram as follows. We start off with 2 strings
which represent the left respectively right factor of Sp ×Sp. The composition of maps is
now visualised by splitting a string into two parts if η is applied, respectively by joining
two strings if µ is applied. We obtain the following Figure.
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Symbol Index

1 The unit of the little cubes operad
(
C̃k(C)

)
k≥0. – Page 77

or j The map mueta multiplies two permutations and factors their product
via the factorization map η afterwards. – Definition 2.8.4

∗ or ∗
j The dual of or j – Definition 2.9.13

� The radial composition of surfaces respectively radial slit domains – Def-
initions 4.6.2 and 4.6.3

�πk The radial composition of surfaces respectively radial slit domains w.r.t.
a partial pairing πk – Definitions 4.6.2 and 4.6.3

# The Pontryagin product – Definition / Corollary 4.1.5

∼CL The equivalence relation used to count the clusters of a given cell. –
Definition 3.1.1

A An annulus A ⊂ C in the complex plane

α The map α adds n new punctures to a parallel cell on r = n levels. –
Definition 4.4.2

(ah : . . . : a0) A coboundary trace of a cell Σ. – Definition 2.9.2

a.Σ The coboundary of Σ corresponding to a. – Definition 2.9.5

nA The disjoint union of n annuli in the complex plane. – Page 112

B•(S×p ) The bar resolution of the symmertric group. – Page 55

Bsupp(Σ) This set is canonically identified with the set of basic coboundary traces
of Σ. – Lemma 2.9.21

Btrace(Σ) The set of basic coboundary traces of Σ. – Lemma 2.9.21

C+
k A (not distinguishable) outgoing boundary curve in a Riemann surface

F ∈M•g(m,n). – Section 2.1

C−k The kth incoming boundary curve in a Riemann surface F ∈ M•g(m,n).
– Section 2.1

C The complex plane.

cfi(Σ) The set of all ith cofaces of a given cell Σ – Definition 2.9.1

207



C̃k(C) resp. Ck(C) The ordered respectively unordered configuration space of the complex
plane. – Page 77

C+ The set of outgoing boundary curves in a Riemann surface F ∈M•g(m,n).
– Section 2.1

C− The set of incoming boundary curves in a Riemann surface F ∈M•g(m,n).
– Section 2.1

C̃k(A) The ordered configuration space of the annulus A ⊂ C. – Page 109

c(Σ) The cluster number of a given cell Σ. – Definition 3.1.1

c+ resp. c− The arcs of a boundary curve of a surface, which correspond to the top
respectively bottom of a slit picture – Page 84

∂E The boundary operator of the Ehrenfried complex – Definition 2.8.8

∂K The boundary operator of the complex K. – Definition / Theorem 2.8.1

∆ The simplicial category, with face maps d∆
i and degeneracy maps s∆

i . –
Page 203

∆semi The semisimplicial category with face maps d∆
i . – Page 203

d′′i (Σ) The ith horizontal face of a parallel cell Σ – Definition 2.3.9

d′′i (Σ) The ith horizontal face of a radial cell Σ – Subsection 2.5.3

d′j(Σ) The jth vertical face of a parallel cell Σ – Definition 2.3.8

d′j(Σ) The jth vertical face of a radial cell Σ – Subsection 2.5.3

d∆
i The ith simplicial face map. – Page 203

Di The ith face map of the symmetric groups S∆. – Definition A.3

E The Ehrenfried complex associated with (P, P ′) or (R,R′) – Sections 2.1
and 2.8

E(h,m) The Ehrenfried complex associated with (R,R′) for fixed g, n and m. –
Section 2.8

E(h,m; r1, . . . , rn) The Ehrenfried complex associated with (P, P ′) for fixed g, n, m and
(r1, . . . , rn). – Section 2.8

η The factorization map which makes the symmetric groups factorable. –
Definition B.2

E0
k,c(P) The cluster spectral sequence of the double complex. – Proposition 3.2.1

E0
p,c(E) The cluster spectral sequence of the Ehrenfried complex. – Proposition

3.2.1
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ex The expansion map – Proposition 2.9.26

F A topological or Riemann surface.

FcE The cluster filtration of the Ehrenfried complex. – Definition 3.1.5

FcP The cluster filtration of the double complex P. – Definition 3.1.3

FpBq The norm filtration of the bar resolution of the symmertric group. – Page
55

Γ•g(m,n) The mapping class group with respect to M•g(m,n).

Γmg,n The mapping class group with respect to Mm
g,n.

g The genus of a surface or a slit domain.

g(Σ) The genus of a parallel cell Σ. – Remark 2.3.7

g(Σ) The genus of a radial cell Σ. – Remark 2.5.7

Hmg,n[(r1, . . . , rn)] The bundle of potential functions over Mm
g,n. – Section 2.2

H•g(m,n) The bundle of potential functions over M•g(m,n). – Section 2.4

ht The height of a permutation, i.e. the largest symbol which is permutated
non-trivially. – Definition B.1

H The Hilbert uniformization. – Sections 2.1, 2.3.4 and 2.5.4

J.Σ = jε1
1 . · · · .j

εt
t .Σ The iterated coboundary of Σ where all jk are basic coboundary traces.

– Definition 2.9.24

jε In order to classify the cells of the Ehrenfried complex, we need a more
handy notation for basic coboundary traces. – Notation 2.9.22

κ The homomorphism kappa encodes the base change from K• to the
Ehrenfried complex. – Definition 2.8.5

κ∗ The dual of κ – Subsection 2.9.2

κ∗J The summand κ∗J = ∗
j1 ◦ . . . ◦

∗
jk

with J = (j1, . . . , jk). – Definition
2.9.13

κI The summand κI = i1 ◦ . . .◦ ik with I = (i1, . . . , ik). – Definition 2.8.10

K• The top row of the first page of the spectral sequence associated with
the vertical homology of the double complex P/P ′ respectively R/R′. –
Definition / Theorem 2.8.1

K0 The critical graph of a given potential function u – Page 22

Λ∗h Parametrizes the κ∗-squences of length h. – Definition 2.9.13
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Λh Parametrizes the κ-squences of length h. – Definition 2.8.10

M••g (m,n) The moduli space of Riemann surfaces with genus g,m outgoing and n in-
coming boundary curve, where on each outgoing and incoming boundary
curve one point is marked. – Definition 4.6.1

Mm
g,n ' BΓmg,n The moduli space of Riemann surfaces of genus g with m punctures and

n boundary curves.

M•g(m,n) The moduli space of Riemann surfaces with genus g, m outgoing bound-
ary curves and n marked incoming boundary curves.

µ Either the product in the symmetric group or the product of two slit
domains. – Definition 4.1.2

µ � A selected glueing construction – Subsubsection 4.2.3

µ �∗ A selected homology operation – Definition / Proposition 4.2.4

µ� A selected glueing construction – Subsubsection 4.2.2

µ�∗ A selected homology operation – Definition / Proposition 4.2.3

µcs A selected glueing construction – Subsubsection 4.2.4

µcs∗ A selected homology operation – Definition / Proposition 4.2.11

Radial multiplication map – Definition 4.5.1

m The number of punctures respectively outgoing boundary curves of a
surface or slit domain.

m(Σ) The number of punctures of a parallel cell Σ. – Definition 2.3.6

m(Σ) The number of punctures of a radial cell Σ. – Definition 2.5.4

N [S×p ] The spectral sequence associated with the norm filtration called norm
complex – Page 55

ncyc(Σ) The number of cycles of a parallel cell Σ. – Definition 2.3.6

ncyc(Σ) The number of cycles of a radial cell Σ. – Definition 2.5.4

n The number of (incomming) boundary curves of a surface of slit domain.

N(Σ) The norm of a parallel cell Σ. – Definition 2.3.6

N(Σ) The norm of a radial cell Σ. – Definition 2.5.4

n(Σ) The number of boundaries of a parallel cell Σ. – Definition 2.3.6

n(Σ) The number of boundaries of a radial cell Σ. – Definition 2.5.4
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O Orientation system of the manifold Hmg,n[(r1, . . . , rn)] or H•g(m,n). – Sec-
tion 2.6

⊗ The natural map ⊗ : Hp(B;R) ⊗ Hq(F ;R) −−→ Hp+q(X;R) being the
homology cross product for trivial bundles. – Definition 4.3.1

(P, P ′) The parallel slit complex. – Sections 2.1 and 2.3

[p] = {01, 11, . . . , p1, . . . , 0r, 1r, . . . , pr} A partition of p into r levels. – Definition 2.3.1

P = {P1, . . . , Pm} The set of punctures in a Riemann surface F ∈Mm
g,n. – Section 2.1

P = {P1, . . . , Pn} The set of marked points on the n incoming boundary curves in a Rie-
mann surface F ∈M•g(m,n). – Section 2.1

Pow The power set operator – Proposition 2.9.26

Par A shorthand for Par =
∐
g,m,(r1,...,rn) Parmg,n[(r1, . . . , rn)]. – Page 89

Par1 A shorthand for
∐
g,mParmg,1. – Page 77

Parn[(r1, . . . , rn)] A shorthand for Parn[(r1, . . . , rn)] =
∐
g,mParmg,n[(r1, . . . , rn)]. – Page

87

Parmg,n A shorthand for Parmg,n[(1)]. – Page 77

Parmg,n[(r1, . . . , rn)] The space of parallel slit domains. – Sections 2.1 and 2.3

P•,• The abbriviation P•,•(h,m, ; r1, . . . , rn) = (P/P ′)•,• with P•,• = P•,•(h,m, ; r1,
. . . , rn). – Page 73

punc(Σ) The symbols of the m cycles of Σ corresponding to the punctures. –
Definition 4.3.5

Q = (Q1, . . . , Qn) The enumerated points at which the non-vanishing tangent vectors X
are attached. – Section 2.1

Q0 and Q1 Dyer–Lashof operations of degree 0 and 1 – Definition 4.1.9

(R,R′) The radial slit complex. – Sections 2.1 and 2.5

Radg(m,n) The space of radial slit domains. – Sections 2.1 and 2.5

Rad(n) A shorthand for Rad(n) =
∐
g,mRadg(m,n). – Page 109

Rad••g (m,n) The space of radial slit domains with marked points also on the outgoing
boundary curves. – Definition 4.6.1

< The real part of a complex valued function.

RΣ The set of relevant κ∗-sequences. – Definition 2.9.17

Sk The k-dimensional sphere.
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S The set of stagnation points of a given potential function u – Page 22

Σ = (σq, . . . , σ0) A parallel cell written in homogeneous notation – Definition 2.3.2

Σ = (σq, . . . , σ0) A radial cell written in homogeneous notation – Definition 2.5.1

Σ = (τq | . . . | τ1) A parallel cell written in inhomogeneous notation – Definition 2.3.5

Σ = (τq | . . . | τ1) A radial cell written in inhomogeneous notation – 2.5.3

supp(α) The support of a permutation α. – Definition A.2

S∆ The symmetric groups S∆. – Definition A.5

Sn The nth symmetric group is Sn = Aut({0, . . . , n}). – Definition A.1

S×n A shorthand for S×n = Aut({1, . . . , n}) ⊂ Sn. – Definition A.1

S A critical point of a given potential function u – Page 22

s∆
i The ith simplicial degeneracy map. – Page 203

Si The ith pseudo degeneracy map of the symmetric groupsS∆. – Definition
A.6

(ϑ̃E)∗ The homology operation induced by ϑ̃E . – Definition 4.3.4

(ϑ̃F )∗ The homology operation induced by ϑ̃F . – Definition 4.3.3

(ϑ̃T )∗ The homology operation induced by ϑ̃T . – Definition 4.3.2

θ Equips
(
C̃k(C)

)
k≥0 with the structure of a little cubes operad. – Page 77

Thinmg,n[(r1, . . . , rn)] The set of thin cells – Definition 2.9.25

ϑ̃ The action of the little cubes operad. – Theorem 4.1.1

ϑ̃∗ The homology operation induced by ϑ̃ – Definition 4.1.3

ϑ̃F A map inserting a pair of slits. – Page 94

ϑ̃T A map inserting a pair of slits. – Page 95

ϑ̃T A map inserting a pair of slits. – Page 93

ϑ The action of the little cubes operad by the equivariant action of the
symmetric group. – Theorem 4.1.1

T (Σ) The homology operation T of Σ in terms of the dual Ehrenfried complex.
– Definition 4.3.7

Ti(Σ) The set of all ith coboundary traces of a given cell Σ. – Definition 2.9.2

tr The transfer map. – Page 93
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u A potential function defined on a Riemann surface. – Page 22

ṽ0 and ṽ1 The selected generators of H0(C̃2) and H1(C̃2) – Definition 4.1.4

V The so-called Visy complex. – Page 56

w̃0 and w̃1 The selected chains in C̃2 which map to the selected generators ofH0(C2(C))
and H1(C2(C)) – Definition 4.1.8

X = (X1, . . . , Xn) The enumerated non-vanishing tangent vectors. – Section 2.1
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Index

basin, 23

cell
basic expansion of a cell, 68
connected cell, 30
degenerate, 33, 43
expansion of a cell, 70
genus of a parallel cell, 31
genus of a radial cell, 43
horizontal face of a parallel cell, 32
horizontal face of a radial cell, 43
inner parallel cell, 28
inner radial cell, 39
monotonous cell, 56
non-degenerate, 33, 43
norm of a parallal cell, 30
norm of a radial cell, 41
number of boundaries of a parallel cell,

30
number of boundaries of a radial cell,

41
number of cycles of a parallel cell, 30
number of cycles of a radial cell, 41
number of punctures of a parallel cell,

30
number of punctures of a radial cell,

41
parallel cell in homogeneous notation,

28
parallel cell in inhomogeneous nota-

tion, 30
radial cell in homogeneous notation,

39
set of thin cells, 70
thin cell, 70
vertical face of a parallel cell, 31
vertical face of a radial cell, 43

cluster

cluster filtration of the double com-
plex, 74

cluster filtration of the Ehrenfried com-
plex, 74

cluster number, 73
cluster spectral sequence, 75
index cluster, 73

coboundary
basic coboundary trace, 68
coboundary of a cell, 61
coboundary trace, 61
set of coboundaries, 61
set of coboundary traces, 61

configuration space, 77
connected sum of parallel slit domains, 90
critical edge, 23
critical graph, 23

factorization map, 205
fibre bundle

q-dimensional fibre bundle, 92

Hilbert uniformization, 20

inhomogeneous notation, 41

kappa, 56
irrelevent kappa star sequence, 66
kappa sequence, 57
kappa star sequence, 65
relevant kappa star sequence, 66

levels
ascendingly ordered levels, 28

mueta, 56

norm complex, 55
norm filtration, 55
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operad, 77
little cubes operad, 77

operation
Browder operation, 81

operations
Dyer–Lashof operations, 81

orientation
with respect to a coefficient ring, 92

orientation system, 44

parallel slit complex, 33, 43
partition into levels, 28, 37
Pontryagin product, 80
potential function, 22

radial cell in homogeneous notation, 39
radial cell in inhomogeneous notation, 41
radial composition, 104, 105
radial composition w.r.t. a partial pair-

ing, 107
radial multiplication, 100
radial slit annulus, 39
radial slit picture, 37

simplicial
semisimplicial category, 203
simplicial category, 203
simplicial degeneracy map, 203
simplicial face map, 203

stagnation point, 22
set of stagnation points, 22

symbols of a puncture, 96
symmetric group, 203

bar resolution of the symmetric group,
55

degeneracy map, 204
face map, 203
height of a permutation, 205
support of permutations, 203
symmetric groups as semisimplicial set,

204

transfer, 93
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