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Defaults cluster (Moody’s rated US issuers)
Defaults of US Issuers Rated by Moody's
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Trailing 12 month default rate (Moody’s US)
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CDX.NA.XO 5-yr credit swap index spread
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Multi-name derivatives

• Trading of default dependence in a portfolio of names

– Firm sensitivity to common factors

– Feedback of events

• Path-dependent contingent claims on portfolio defaults and losses

– Default process N counts defaults:

Nt =
∑

i

1{τ i≤t}

– Loss process L records financial loss due to defaults:

Lt =
∑

i

Li1{τ i≤t}
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Default process

N(t)
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Loss process

L(t)
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Loss process and index swap
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Index swap

• Default leg: stream of payments that cover the losses as they occur

Dt = e−r(T−t)Et[LT ]− Lt + r

∫ T

t

e−r(s−t)Et[Ls] ds

• Premium leg: stream of payments that are proportional to the total

notional on the names that have survived; with S the spread

Pt(S) = S
∑

tm≥t

e−r(tm−t)
(
1− 1

n
Et[Ntm

]
)

• A top down estimate of the index spread St at time t is the

solution S = St to the equation Dt = Pt(S)

– Depends only on expected losses and defaults at future dates
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Tranching the loss
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Tranche loss Ut = (Lt −KL)+ − (Lt −KU)+

Portfolio
Loss L(t)

Tranche
loss

K_L K_U

Tranche
notional



Pricing Credit From The Top Down With Time-Changed Poisson Processes 12

Tranche swap

• Default leg: stream of payments that cover the tranche loss

Dt = e−r(T−t)Et[UT ]− Ut + r

∫ T

t

e−r(s−t)Et[Us] ds

• Premium leg: stream of payments that are proportional to the

tranche notional less the tranche loss; with S the spread

Pt(S) = S
∑

tm≥t

e−r(tm−t)
(
K − Et[Utm ]

)

– Extension to include upfront payment

• A top down estimate of the tranche spread St at time t is the

solution S = St to the equation Dt = Pt(S)

– Depends only on the values of call options on L
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Top down approach

• Reduced form modeling of underlying process J = (L,N)>

– Events arrive with intensity λ that responds to arrivals

– Distribution ν governs random loss at default

• Multi-name products are contingent claims on J

– Basic building block is the call Et[(Js − c)+]

– Closed form or transform based techniques

• Random thinning allocates λ to the portfolio constituents

– Hedging of single name exposures
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Related literature

• Intensity based top down approach: Brigo, Pallavicini and

Torresetti (2006), Davis and Lo (2001), Ding, Giesecke and

Tomecek (2006), Errais, Giesecke and Goldberg (2006), Giesecke

and Goldberg (2005), Giesecke and Tomecek (2005), Halperin

(2006), Longstaff and Rajan (2006)

• Forward top down approach: Schönbucher (2005), Sidenius,

Piterbarg and Andersen (2005)

• Intensity based bottom up approach: Duffie and Garleanu

(2001), Frey and Backhaus (2004), Jarrow and Yu (2001)
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Basic example: Hawkes process

• Defaults are self-affecting with intensity

λt = λ∞ +
∫ t

0

d(t− s)dLs

– λ∞ > 0 constant first-to-default intensity

– d(t) = δe−κt deterministic response function; δ ≥ 0 and κ ≥ 0

• The Hawkes intensity has dynamics

dλt = κ(λ∞ − λt) dt + δ dLt

• Negative correlation between default and recovery rates

• Classical examples: Poisson process δ = 0, birth process κ = 0
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Sample path of Hawkes intensity
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Defaults cluster
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Conditional transform

• The loss at default is independent of N and has distribution ν

• The conditional transform of J = (L,N)> is given by

Et[eu·Js ] = ea(u,t,s)+b(u,t,s)λt+u·Jt

where a(t) = a(u, t, s) and b(t) = b(u, t, s) satisfy the ODEs

∂tb(t) = κb(t)− ψ(δb(t), u) + 1

∂ta(t) = −κλ∞b(t)

with boundary conditions a(s) = b(s) = 0 and

ψ(c, u) = eu·(0,1)>
∫

R+

e(c+u·(1,0)>)zdν(z)



Pricing Credit From The Top Down With Time-Changed Poisson Processes 19

1-yr Poisson arrivals: κ = δ = 0
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1-yr birth arrivals: κ = 0, λ∞ = 5
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1-yr Hawkes arrivals: λ∞ = 5, δ = 1
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Index spreads for the Hawkes process

• Need conditional expected losses and defaults at future dates

• Differentiate the transform of J with respect to u and evaluate the

derivative at u = (0, 0)>:

Et[y · Js] = A(t, s) + B(t, s)λt + y · Jt

where the coefficient functions satisfy the ODEs

∂tB(t) = (κ− δν̄)B(t)− y · (ν̄, 1)>

∂tA(t) = −κλ∞B(t)

with boundary conditions A(s) = B(s) = 0, where ν̄ =
∫

zdν(z)

• Closed form expressions for Et[Ns] and Et[Ls] and index spreads
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5-yr index: δ = 1, ν̄ = 0.7
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5-yr index: δ = 1, ν̄ = 0.7
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Tranche spreads for the Hawkes process

• Need values of call options on L maturing at future dates

• The conditional density ft(·, s) of Ls at time t is obtained by

inverting the transform and we calculate

Et[(Ls − c)+] =
∫ ∞

c

(x− c)ft(x, s)dx

• Alternatives

– Express transform of option price in terms of transform of Ls,

see Carr and Madan (1999) and Lee (2005)

– Decompose the option payoff into Ls1{Ls≥c} and c1{Ls≥c}, see

Duffie, Pan and Singleton (2000)
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5-yr tranche: δ = λ∞ = 1, ν̄ = 0.7
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5-yr tranche: λ∞ = κ = 1, ν̄ = 0.7
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5-yr tranche: λ∞ = κ = δ = 1, ν̄ = 0.7
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Calibrating λ∞, κ, δ and ν to HY CDX6 5-yr
index and tranche spreads (6/1/2006)

Bid Ask Type Calibration

0-10% 81.5% 82.0% Upfront 82.1%

10-15% 45.5% 46.0% Upfront 46.6%

15-25% 408 418 Running 406

25-35% 78 82 Running 90

Index 332 332 Running 332
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Affine point process

• A vector point process J is called affine if its intensity λ is an affine

function of a risk factor vector X that satisfies

dXt = µ(Xt)dt + σ(Xt)dWt + dZt + ζdJt

– W is a standard Brownian motion

– Z is a point process with intensity h(X)

– µ, σσ> and h are affine functions

– ζ is a diagonal matrix

• The components of J share common event times and at each event

time the jump size vector is drawn from a fixed distribution
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Affine point process: self-affecting examples

• Hawkes process: between events, the intensity drifts deterministically

toward λ∞:

dλt = κ(λ∞ − λt) dt + δ dLt

• Between events, the intensity drifts stochastically toward λ∞:

dλt = κ(λ∞ − λt) dt + σ
√

λt dWt + δ dLt

• Adding shocks governed by a point process Z:

dλt = κ(λ∞ − λt) dt + σ
√

λt dWt + dZt + δ dLt
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Affine point process: transform

• Let ρ be a non-negative process with affine dependence on X:

ρ(x, t) = R0(t) + R1(t) · x

for deterministic functions R0(t) and R1(t)

– Short rate (correlation between interest and default rate)

• Under technical conditions, the discounted conditional transform

Et[e−
∫ s

t
ρ(Xv,v)dveu·Js ] = eα(u,t,s)+β(u,t,s)·Xt+u·Jt

where the coefficient functions satisfy the Riccati-ODEs
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APP as time-changed Poisson process

• The fundamental model is a standard Poisson process N0

– Intensity is equal to 1

– Inter-arrival times are independent and Exp(1)

• Default process is obtained by time-changing the Poisson process:

N = N0
A where At =

∫ t

0

λsds

– Analogous to modeling the price process of an underlying by a

time-changed Brownian motion in equity derivatives

– Converse to Meyer’s (1971) time change theorem

– Worked out in Giesecke and Tomecek (2005)
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Time change
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Time change and transform

• Under mild conditions on A,

Et[euNs ] = euNtLu
t,s(1− eu)

where Lu
t,s is the conditional “Laplace transform” of As −At under

the complex valued measure defined by the density

euN+A(1−eu)

see Carr and Wu (2004)

• Under this measure, the compensator of the default process is euA

• Modeling strategies

– Choose time change A whose Laplace transform is convenient

– Time change a point process whose distribution is known
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Time-changed birth process

• Start with a self-affecting birth process N0, whose intensity is

c + δN0 and whose distribution is negative binomial

• Apply an independent time change with density ν to get a

self-affecting process with intensity dynamics

dλt = (c + δNt−)dνt + νt−δdNt

• For Rt = Nt + c/δ, we have

Pt[Ns −Nt = k] =
Γ(Rt + k)
Γ(Rt)k!

k∑
m=0

(
k

m

)
(−1)mLt,s(δ(m + Rt))

where Lt,s is the Laplace transform of the time change applied to

the birth process N0
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Time-changed birth process: example

• We let the default process Nn = N ∧ n with distribution Pt,s(k)

• Suppose the default losses are i.i.d. and have a gamma distribution

with shape parameter m valued in the positive integers and scale

parameter θ > 0

• For a = (c− Lt)/θ and Γ(·, ·) the incomplete Gamma function

Et[(Ls − c)+] =
n−Nn

t∑

k=0

θPt,s(k)
(mk)!

(e−aamk+1 − (a−mk)Γ(mk + 1, a))

• Closed form pricing for a broad class of processes that descend

from the birth process

• Tranche options require a single numerical integration, see Ding,

Giesecke and Tomecek (2006)
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Hedging: random thinning

• Models for the constituent names are required to hedge the

exposure to single name spread changes and defaults

• We need to attribute a fraction of the portfolio credit risk to a

constituent name

• Given a portfolio model λ, there is a thinning process Y i such that

Qt[t < τ i ≤ s] =
∫ s

t

Et[Y i
v λv] dv

• The value Y i
t is the conditional probability that name i defaults

next, given that a default is imminent

• Each constituent model incorporates the default dependence among

all names
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Hedging: random thinning

• The model default probability can be calculated explicitly for affine

and time-changed birth process models

• Calibrate a parametric thinning vector (Y 1, . . . , Y n) from the swap

curves of the constituent names

– Choose the parameters of each Y i to match the default

probability functions implied by the single name swap curves

– The fit of the portfolio intensity model λ to the multi-name

market remains intact

• Estimate single name hedge ratios by bumping the input spread
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Summary

• Self-affecting top down models incorporate salient market wide

effects that are difficult to model from the bottom up

• The top down perspective supports closed form or semi-analytic

transform based pricing, hedging and calibration of derivatives on

the loss process

• Top down models are fit directly to multi-name information such as

market spreads of indexes and tranches

• Top down models specify the joint evolution of aggregate and

constituent losses in relation to the information revealed over time
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