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1. Jacobi fields along geodesics [4 points]

Let (M, g) be a Riemannian manifold with constant sectional curvature C and let γ be a
unit speed geodesic in M .
Show that the normal Jacobi fields along γ vanishing at t = 0 are precisely the vector
fields

J(t) = u(t)E(t),

where E is any parallel normal vector field along γ, and u(t) is given by
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2. Taylor series of Riemannian metrics [4 points]

Let (M, g) be a Riemannian manifold and fix a point p ∈M . Show that the second order
Taylor series of g is
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in Riemannian normal coordinates (x1, . . . , xn) centered at p.

Hint: Consider a radial geodesic γ(t) = (tv1, . . . , tvn) and a Jacobi field J(t) = tW i∂i
along γ. Compute the first four t-derivatives of |J(t)|2 at t = 0 in two different ways using
the Jacobi equation.

3. Conjugate points [4 points]

Let (M, g) be a complete Riemannian manifold and let SM := {(x, v) ∈ TM : ‖v‖ = 1}
denote the unit tangent bundle. Given (x, v) ∈ SM , we let γv be the the geodesic with
γv(0) = x and γ̇v(0) = v. For all (x, v) ∈ SM we define con(v) ∈ (0,∞] to be the first
t > 0 such that γv(t) is a conjugate point to γ(0). Show that con(−γ̇v(con(v))) = con(v)
holds for all (x, v) ∈ SM .

4. Jacobi fields on manifolds with non-positive sectional curvature [4 points]

Let (M, g) be a Riemannian manifold with non-positive sectional curvature.

a ) Let J be a Jacobi field along a differentiable curve γ : [a, b]→M . Show that f(t) :=
‖J(t)‖2 is a convex function, i.e. f ′′(t) ≥ 0 for all t.



b ) Conclude from a) that M has no conjugate points.
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