Exercises in Geometry II

University of Bonn, Summer Semester 2018 Dozent: PD Dr. Fernando Galaz-Garcia

Assistant: Saskia Roos

Sheet 5

Rheinische Friedrich-Wilhelms-Universität Bonn

1. First variation of arc length [4 points]

Let $\gamma:[a,b]\to M$ be a unit speed curve in a Riemannian manifold (M,g). Further, let Γ be a proper variation of γ with variation field V, i.e. $\frac{d}{ds}\big|_{s=0}\Gamma_s=V$. Show that

$$\frac{d}{ds}\Big|_{s=0} L(\Gamma_s) = -\int_a^b \langle V, D_t \dot{\gamma} \rangle dt - \sum_{i=1}^{k-1} \langle V(a_i), \Delta_i \dot{\gamma} \rangle,$$

where $\Delta_i \dot{\gamma} = \dot{\gamma}(a_i^+) - \dot{\gamma}(a_i^-)$ is the "jump" in the tangent vector field $\dot{\gamma}$ at a_i .

2. Unit speed curves [4 points]

Let $\gamma: I \to M$ be a smooth unit speed curve.

- a) Show that $D_t\dot{\gamma}(t)$ is orthogonal to $\dot{\gamma}(t)$ for all $t \in I$.
- b) Let Γ be a proper variation of γ such that for all s, Γ_s is a reparametrization of γ . Show that the first variation of $L(\Gamma_s)$ vanishes.

3. First variation of arc length for non-proper variations [4 points]

Generalize the first variation formula from Exercise 1 to the case of a variation that is not proper.

4. Distance to a submanifold [4 points]

Let N be a closed, embedded submanifold of a Riemannian manifold (M, g). For any point $p \in M \setminus N$, we define the distance from p to N to be

$$d(p,N) \coloneqq \inf\{d(p,x) : x \in N\}.$$

Now let $q \in N$ be a point such that d(p,q) = d(p,N) and let γ be any minimizing geodesic from p to q. Show that γ intersects N orthogonally. Hint: Use Exercise 3.

5. Manifolds with constant negative sectional curvature [4 points]

Let M be a Riemannian manifold with constant sectional curvature equal to -b, for some b>0. Recall from Exercise Sheet 4, Exercise 4, that M has no conjugate points. Let $\gamma:[0,l]\to M$ be a unit speed geodesic and let $v\in T_{\gamma(l)}M$ such that $\langle v,\dot{\gamma}(l)\rangle=0$ and |v|=1.

Show that the Jacobi field J along γ with J(0) = 0 and J(l) = v is given by

$$J(t) = \frac{\sinh(t\sqrt{b})}{\sinh(l\sqrt{b})}w(t),$$

where w(t) is the parallel transport along γ of the vector

$$w(0) = \frac{u_0}{|u_0|},$$

$$u_0 = (d \exp_{\gamma(0)})_{l\dot{\gamma}(0)}^{-1}(v),$$

and where u_0 is considered as a vector in $T_{\gamma(0)}M$ by the identification $T_{\gamma(0)} \cong T_{l\dot{\gamma}(0)}(T_{\gamma(0)}M)$. Hint: Use Exercise 1 from Exercise Sheet 4. Further, you can use that any Jacobi field J_1 along γ with $J_1(0) = 0$ and $\dot{J}_1(0) = w(0)$ satisfies

$$J_1(l) = (d \exp_{\gamma(0)})_{l\dot{\gamma}(0)}(lw(0)).$$

Now express J in terms of J_1 using the condition J(l) = v, the definition of u_0 and 1 = ||v||.

6. Locally but not globally isometric [4 points]

Give an example of two compact Riemannian manifolds without boundary and constant sectional curvature that are locally isometric but not isometric.

Due on Monday, June 4.

Homepage of the lecture: https://www.math.uni-bonn.de/people/galazg/