Exercises in Geometry II

University of Bonn, Summer Semester 2018 Dozent: PD Dr. Fernando Galaz-Garcia

Assistant: Saskia Roos

Sheet 7

Rheinische Friedrich-Wilhelms-Universität Bonn

1. Local diffeomorphism between compact manifolds [4 points]

Show that any local diffeomorphism between compact connected manifolds is a covering map.

2. Local diffeomorphism and completeness [4 points]

Let $f: M_1 \to M_2$ be a local diffeomorphism of a manifold M_1 onto a Riemannian manifold M_2 .

- a) Introduce a Riemannian metric on M_1 such that f is a local isometry.
- b) Show by an example that if M_2 is complete, M_1 does not need to be complete.

3. Riemannian submersion [4 points]

Let $f: (\tilde{M}, \tilde{g}) \to (M, g)$ be a surjective submersion between two Riemannian manifolds. For any $y \in M$ the closed preimage $f^{-1}(y) =: \tilde{M}_y$ is called the *fiber* over y. Each fiber \tilde{M}_y is a closed, embedded submanifold by the implicit function theorem.

At each $x \in M$ the tangent space T_xM decomposes into an orthogonal direct sum

$$T_x \tilde{M} = H_x \oplus V_x,$$

where $V_x := \ker(f_*)$ is the vertical space and $H_x := V_x^{\perp}$ is the horizontal space. The submersion $f: (\tilde{M}, \tilde{g}) \to (M, g)$ is a Riemannian submersion if $\tilde{g}(X, Y) = g(f_*X, f_*Y)$ whenever X and Y are horizontal.

- a) Show that any vector field W on \tilde{M} can be written uniquely as $W = W^H + W^V$, where W^H is horizontal, W^V is vertical, and W^H and W^V are smooth.
- b) If X is a vector field on M, show that there is a unique smooth vector field \tilde{X} on \tilde{M} , called the *horizontal lift of* X, that is f-related to X, i.e. $f_*X_q = X_{f(q)}$ for each $q \in \tilde{M}$.

4. Bonnet's theorem [4 points]

Let M be a complete, connected Riemannian manifold all of whose sectional curvatures are bounded below by a positive constant $\frac{1}{R^2} > 0$.

a) Show that the diameter is less than or equal to πR .

Hint: Assume the contrary, i.e. assume that there is a minimizing geodesic γ of length bigger than πR and show that there is a proper normal vector field V along γ such that I(V,V) < 0 (Exercise 1 from sheet 4 could help).

- b) Conclude that M is compact.
- c) Let $\pi: (\tilde{M}, \tilde{g}) \to (M, g)$ be the Riemannian universal cover of (M, g). Show that this cover is finite, i.e. for any $p \in M$ the preimage $\pi^{-1}(p)$ consists of finitely many points.

Due on Monday, June 25.

Homepage of the lecture: https://www.math.uni-bonn.de/people/galazg/