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Abstract. We prove, under certain conditions on (α, β), that each Schwartz function f

such that f(±nα) = f̂(±nβ) = 0, ∀n ≥ 0 must vanish identically, complementing a series of

recent results involving uncertainty principles, such as the pointwise interpolation formulas

by Radchenko and Viazovska and the Meyer–Guinnand construction of self-dual crystaline

measures.

1. Introduction

Given an integrable function f : R→ C, we define its Fourier transform by

f̂(ξ) :=

∫
R
f(x)e2πix·ξ dx. (1)

Let us consider the following classical problem in Fourier analysis:

Question 1. Given a collection C of functions f : R→ C, what conditions can we impose

on two sets A, Â ⊂ R to ensure that the only function f ∈ C such that f(x) = 0 for every

x ∈ A and f̂(ξ) = 0 for every ξ ∈ Â is the zero function?

Inspired by the notion of Heisenberg uniqueness pairs introduced by Hedenmalm and

Montes-Rodŕıgues in [9], (see also [8, 11]), we refer to such pair of sets (A, Â) as a Fourier

uniqueness pair for C for a natural reason: the values of f(x) for x ∈ A and f̂(ξ) for ξ ∈ B
determine at most one function f ∈ C. For simplicity, when A = Â, we will say that A is a

Fourier uniqueness set for C.
Perhaps the most classical result which answers such a question is the celebrated Shannon–

Whittaker interpolation formula, which states that a function f ∈ L2(R) whose Fourier

transform f̂ is supported on the interval [−δ/2, δ/2] is given by the formula

f(x) =
∞∑

k=−∞
f(k/δ)sinc(δx− k),

where convergence holds both in the L2(R) sense and uniformly on the real line, and

sinc(x) = sin(πx)
πx . This means that the pair 1

δZ and R\[−δ/2, δ/2] forms a Fourier uniqueness

pair for the collection C = L2(R). More recently, Radchenko and Viazovska [15] obtained
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a related interpolation formula for Schwartz functions: there are even functions ak ∈ S(R)

such that, for any given even function f : R→ C that belongs to the Schwartz class S(R),

one has the following identity:

f(x) =

∞∑
k=0

f(
√
k)ak(x) +

∞∑
k=0

f̂(
√
k)âk(x), (2)

where the right-hand side converges absolutely. This interpolation result has as immediate

consequence: the set
√

Z+ of square roots of non-negative integers is a Fourier uniqueness

set for the collection of even1 Schwartz functions.

The two theorems we just presented to motivate our question are, in fact, also instances

of the intimate relationship between interpolation and summation formulas. Indeed, as

previously mentioned, the Shannon–Whittaker interpolation formula is directly related to

the Poisson summation formula ∑
m∈Z

f(m) =
∑
n∈Z

f̂(n),

and the result by Radchenko and Viazovska is, in fact, a by-product of the development of

several summation formulas, having relationship to modular forms and the sphere packing

problem (see, for instance, [5, 6, 16]). In fact, the lower bound for the Fourier analysis

problem corresponding to the sphere packing problem (see [3]) is directly related to the

Poisson summation formula for lattices: if Λ ⊂ Rn is a lattice with fundamental region

having volume 1, then ∑
λ∈Λ

f(λ) =
∑
λ∗∈Λ∗

f̂(λ∗),

where Λ∗ denotes the dual lattice of Λ. Also, in [4], the authors need a summation formula

stemming from an Eisenstein series E6, which implies, in particular, that for each radial

Schwartz function f : R12 → C, there exists constants cj > 0 such that

f(0)−
∑
j≥1

cjf(
√

2j) = −f̂(0) +
∑
j≥1

cj f̂(
√

2j).

These concepts seem to be all tethered to the notion of crystaline measures and self-duality,

as discussed in [12, 13, 14]. A crystaline measure is essentially a tempered distribution with

locally finite support whose Fourier transform has these same properties. For instance,

Poisson summation implies that

δZ = δ̂Z,

which shows that the usual delta distribution at the integers is not only a crystaline mea-

sure, but also a self-dual one with respect to the Fourier transform. Meyer then discusses

1In [15], the authors also have results for functions which are not even, but we chose to present this version
to keep technicalities to a minimum.
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other examples of crystaline measures with certain self-duality properties, and, similarly

to the strategy used by Radchenko and Viazovska, uses modular forms to construct ex-

plicity examples of non-zero crystaline measures µ supported in {±
√
k + a, k ∈ Z}, for

a ∈ {9, 24, 72}. It is interesting to point out that Meyer calls out the readers attention to

the highly unexplored problem of analyzing when there is a non-zero crystaline measure µ

such that both itself and its Fourier transform have support on a given locally finite set

{λk : k ∈ Z}.

Back to Fourier uniqueness pairs, while both the Shannon–Whittaker and Radchenko–

Viazovska results provide Fourier uniqueness pairs by means of interpolation identities, and

such explicit formulas are not always available and usually depend on special properties of

the sets involved, which are somewhat rigid. In the case of the Shannon–Whittaker formula,

the set 1
δZ plays an special role because of the Poisson summation formula. In the case

of the Radchenko–Viazovska interpolation, the set
√
Z+ becomes important due to special

properties of certain modular forms involved in their proofs. Perturbing these sets breaks

down the proofs of these theorems, and sometimes even the existence of such interpolation

formulas. Nevertheless, the Fourier uniqueness pair property is inherently less rigid as a

condition than an interpolation formula, which might lead to uniqueness results even in the

absence of possible interpolation formulas.

For instance, define a set Λ ⊂ R to be uniformly separated if there is a number δ =

δ(Λ) > 0 such that |λ − λ′| > δ whenever λ, λ′ ∈ Λ and λ 6= λ′. Given an uniformly

separated set Λ, we define its lower density and upper density, respectively, as the numbers

D−(Λ) = lim inf
R→∞

inf
x∈R

|Λ ∩ [x−R, x+R]|
2R

(3)

D+(Λ) = lim sup
R→∞

sup
x∈R

|Λ ∩ [x−R, x+R]|
2R

. (4)

And when these numbers coincide we call it the density of Λ. As a corollary of the work

of Beurling [1] and Kahane [10] about sampling sets, any pair Λ and R\[−2πδ, 2πδ] forms

uniqueness sets for L2(R) if Λ is uniformly separated and D−(Λ) > δ. This means: any

uniformly separated set that is more dense than 1
δZ produces a pair of uniqueness sets for

L2(R), and one can readily see that this condition, at least in terms of density, is essentially

sharp just by analysing subsets of 1
δZ.

.

Another instance of this density situation has to do with the aforementioned Heisenberg

uniqueness pairs. In [9], the authors study pairs of sets (Γ,Λ), where Γ ⊂ R2, which is

a finite disjoint union of smooth curves, and Λ ⊂ R2, which have the following property:

whenever a measure µ supported in Γ, which is absolutely continuous with respect to the
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arc length measure of Γ, has Fourier transform µ̂ equal to zero on the set Λ, then µ = 0. If

a pair (Γ,Λ) has this property, it is called a Heisenberg uniqueness pair. One of the main

results of [9] is the following: Let Γ = {(x, y) ∈ R2 : xy = 1} be the hyperbola, and Λα,β

be the lattice cross

(αZ× {0}) ∪ ({0} × βZ),

where α and β are positive numbers. Then (Γ,Λαβ) forms a Heisenberg uniqueness pair if

and only if αβ ≤ 1. This provides yet another example of the interplay between concentra-

tion and uniqueness properties: there is a threshold of concentration one needs to ask in

order to maintain the uniqueness property, and increasing the concentration does not affect

the uniqueness property.

By comparing the aforementioned interpolation theorems to the considerations in [14]

about crystaline measures, one is naturally lead towards the following modified version of

Meyer’s question: if a sequence is “more concentrated than
√
Z”, does it define a Fourier

uniqueness set? For which notion of “more concentrated” could such a result possibly hold?

We obtain partial progress towards this problem.

Theorem 1. Let 0 < α, β < 1 and f ∈ S(R). Then

(A) If f(± log(n+ 1))) = 0 and f(±nα) = 0 for every n ∈ N, then f ≡ 0.

(B) Let (α, β) ∈ A, where

A =

{
(α, β) ∈ [0, 1]2 : α+ β < 1, and either α < 1− β

1− α− β
or β < 1− α

1− α− β

}
.

If f(±nα) = 0 and f̂(±nβ) = 0 for every n ∈ N, then f ≡ 0.

Theorem 1 will follow by complex analytic considerations. We will prove that f and f̂

actually have better decay than usual Schwartz functions by using the fact that the sequence

of zeros of f and f̂ grows at a certain rate, as well as the information we can obtain about

the zeros of their derivatives. Once the decay is obtained, we prove either f or f̂ admits

an analytic extension of finite order, and conclude f is the zero function by invoking the

converse of Hadamard’s theorem about growth of zeros of an entire function of finite order.

It will also become clear from the proof that the condition on the exponents (α, β) on part

(ii) of theorem 1 is a barrier of our method. We postpone a more detailed discussion about

sharpness of our results to the final Section of this paper.

Lastly, in order to better compare our results with the ones in [14] and [15] we state the

diagonal case of Theorem 1.

Corollary 2. Let α < 1 −
√

2
2 . Then, if f ∈ S(R) is such that f(±nα) = f̂(±nα) = 0 for

each n ∈ N, it follows that f ≡ 0.



FOURIER UNIQUENESS FOR POWERS 5

Figure 1. In blue, the closure of the region A, with the line α+ β = 1 in black.

1.1. Organisation and notation. This article is organised as follows. In Section 2, we

mention a couple of basic ideas associating the denseness of zeros of a function and its

pointwise decay. In Section 3, we prove the first assertion in Theorem 1, and in Section

4 we work upon the ideas in the previous Section to prove the second part of Theorem 1.

Finally, in Section 5 we make remarks, mention some corollaries of our methods and state

conjectures based on the proofs presented.

Throughout this manuscript, we will use Vinogradov’s modified notation A . B or

A = O(B) to denote the existence of an absolute constant C > 0 such that A ≤ C · B.
If we allow C to explicitly depend upon a parameter τ, we will write A .τ B. In general,

C will denote an absolute constant that may change from line to line or from paragraph

to paragraph in the argument. Finally, we adopt (1) as our normalisation for the Fourier

transform.

2. Preliminaries

2.1. Zeros of Schwartz functions and decay. We begin by pointing out a few basic

calculus facts.

(I) First of all, by the mean value theorem, between two zeros of the k-th derivative of

a function, there is a zero of the (k+1)-th derivative. This means as long as there is

a sequence of zeros of f that converge to infinity, by a simple induction argument,

there is a sequence {a(k)
m }m∈N such that
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(I.i) 0 < a
(k)
m < a

(k)
m+1 and

lim
m→+∞

a(k)
m = +∞.

(I.ii) f (k)(a
(k)
m ) = 0, and for every m ∈ Z.

(I.iii) For allm ∈ N, it holds that [a
(k)
m+1, a

(k)
m ] is contained in the interval [am, am+k+1],

where {an} are the zeros of the function f. This, in particular, implies

|a(k)
m+1 − a

(k)
m | ≤ |am+k+1 − am|.

(II) One can built an analogous sequence with negative zeros of the k-th derivative of

f . Of course, the same can be done for [f̂ ](k).

Given a function g ∈ S(R), we will use the following notation

Ik(g) =

∫
R
|g(y)||y|k dy.

The integrals Ik(f) and Ik(f̂) will play an important role because of the following obser-

vation: whenever a point x lies in an interval of the form [a
(k)
m+1, a

(k)
m ], Fourier inversion

implies

|f (k)(x)| = |f (k)(x)− f(a(k)
m )|

=

∣∣∣∣∫
R
f̂(y)(2πiy)k[e2πiyx − e2πiya

(k)
m ] dy

∣∣∣∣
≤ (2π)k+1Ik+1(f̂)|x− a(k)

m |

≤ (2π)kIk+1(f̂)|a(k)
m+1 − a

(k)
m |.

(5)

This means that the rate at which the zeros of the derivatives accumulate at infinity provides

extra decay for each derivative itself. We will use this observation iteratively to improve

decay bounds on our functions.

2.2. Fourier transforms of functions with strong decay. In addition to connecting

location of zeros to decay of functions, we need to connect decay of a function to properties

of its Fourier transform. The next Lemma is going to be of crucial importance for us

throughout the proof.

Lemma 3. Let f ∈ S(R) be such that there exist two constants C > 0, A > 1 for which

|f(x)| . e−C|x|
A
, ∀x ∈ R. Then its Fourier transform f̂ can be extended to the whole

complex plane as an analytic function with order at most A
A−1 . That is, for all ε > 0,

|f̂(z)| .ε e|z|
A
A−1

+ε

.
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Proof. Let z = ξ + iη ∈ C. Without loss of generality, in what follows we assume that

Re(η) < 0. We simply write

f̂(z) =

∫
R
e2πiz·xf(x) dx.

By the decay property of f , it is easy to see that this integral is well-defined for each z ∈ C,
and Morera’s theorem tells us that this extension is, in fact, entire. For the assertion about

its order, we have the trivial bound

|f̂(z)| ≤
∫
R
e−2πηxe−C|x|

A
dx.

In order to prove that the expression on the right hand side above is .ε e|z|
A
A−1

+ε

, we split

the real line as

R = Aη ∪Bη ∪ Cη,

where

Aη =

{
x ∈ R :

∣∣∣∣∣x−
(

2π|η|
CA

)1/(A−1)
∣∣∣∣∣ ≤ KA

(
2π|η|
CA

)1/(A−1)
}
,

Bη =

{
x ∈ R : x > (KA + 1)

(
2π|η|
CA

)1/(A−1)
}
,

Cη =

{
x ∈ R : x < (1−KA)

(
2π|η|
CA

)1/(A−1)
}
,

and rewrite our integral as∫
R
e−2πηxe−C|x|

A
dx =

∫
Aη

e−2πηxe−C|x|
A

dx+

∫
Bη

e−2πηxe−C|x|
A

dx+

∫
Cη

e−2πηxe−C|x|
A

dx

=: I1 + I2 + I3.

On the interval over which we integrate in I1, −2πηx − C|x|A is at most (an absolute

constant depending on A times) |η|
A
A−1 . This holds because the center of the interval Aη is

the critical point of −2πηx−C|x|A where this function attains its maximum. As we know

that |Aη| .A |η|
1

A−1 , it follows that

|I1| . |η|
1

A−1 eCA|η|
A
A−1

. (6)

On either the interval defining I2 or on the one defining I3, we see that, for KA, C̃A > 0

large enough depending on A, it holds that

−2πηx− C|x|A ≤ −C̃A|x|A.
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Therefore,

|I2|+ |I3| .
∫ +∞

η
1

A−1

e−C
′
A|x|

A
dx . e−C

′′
A|η|

A
A−1

. (7)

As (6) dominates (7), we obtain that

|f̂(z)| .A |η|
1

A−1 eCA|η|
A
A−1

.

As polynomials factors in |η| decay slower than any exponential e|η|
ε
, we finish the proof of

the result, as |η| ≤ |z|. �

As an immediate corollary, we obtain the following statement, which will be particularly

useful in Section 3.

Corollary 4. Let f ∈ S(R) be such that, for each A > 1, there is a constant CA > 0 such

that |f(x)| .A e−CA|x|
A
, ∀x ∈ R. Then its Fourier transform can be extended to the whole

complex plane as an analytic function with order at most 1.

3. Proof of (A)

3.1. Obtaining decay for f . The first idea is to exploit the considerations in Section 2.1

to obtain decay for f. We must, however, obtain decay on the Fourier transform to somehow

improve the decay on f we obtain at each step. The following Lemma is the key ingredient

to this iteration scheme.

Lemma 5. Let f ∈ S(R), and assume that f(± log(n+ 1)) = 0 and f̂(±nα) = 0 for every

n ∈ N, where β ∈ (0, 1). Then, for |x| > log(k + 1) and |ξ| > (2j + 1)α, one has

|f(x)| ≤ k(2π)k((k + 1)!)3Ik(f̂)e−k|x| = τke
−k|x|,

|f̂(ξ)| ≤ (j + 1)!(22−απ)j+1αjIj(f)|ξ|j(
α−1
α ) = Ĉj |ξ|j(

α−1
α ).

(8)

Proof. We first prove the assertion about f̂ , as it will be also of interest to Lemma 6 in

the next section. Let ξ ≥ 0. First we consider n such that ξ ∈ [nα, (n+ 1)α]. This implies

nα−1 ≤ 21−αξ
α−1
α . By inequality (5), we have

|f̂(ξ)| ≤ |(n+ 1)α − nα|I1(f)

≤ 2παnα−1I1(f)

≤ 22−απαx
α−1
α I1(f).

(9)
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Now, by observation (I.i), as long as ξ > (2j + 1)α, we can conclude there is n ≥ j such

that ξ ∈ [a
(j)
n+1, a

(j)
n ] ⊂ [nα, (n+ j + 1)α]. This means nα−1 ≤ 21−αξ

α−1
α , and therefore

|[f̂ ](j)(ξ)| ≤ (2π)j |a(j)
n+1 − a

(j)
n |Ij+1(f)

≤ (2π)j+1|(n+ j + 1)α − nα|Ij+1(f)

≤ α(j + 2)(2π)j+1nα−1Ij+1(f)

≤ 21−αα(j + 2)(2π)j+1ξ
α−1
α Ij+1(f).

(10)

By the fundamental theorem of calculus and inequality (10) for j = 1, we have

|f̂(ξ)| = |f̂((n+ 1)α)− f̂(ξ)|

=

∣∣∣∣∣
∫ (n+1)α

ξ
[f̂ ]′(y) dy

∣∣∣∣∣
≤ 3 · 21−α · (2π)2αI2(f)|(n+ 1)α − nα|ξ

α−1
α

≤ 3 · 2 · (22−απ)2α2I2(f)ξ2(α−1
α ).

(11)

Inequality (11) exemplifies how one can use the concentration properties of the sequence

nα in order to obtain decay for f and f̂ . We can iterate these inequalities for higher order

derivatives and obtain better decay. For instance, if we apply the same reasoning as in (11)

for the first derivative, we obtain

|[f̂ ]′(ξ)| = |[f̂ ]′(a
(1)
n+1)− [f̂ ]′(ξ)|

=

∣∣∣∣∣
∫ a

(1)
n+1

ξ
[f̂ ]′′(y) dy

∣∣∣∣∣
≤ 4 · 3 · (22−απ)3α2I3(f)ξ2(α−1

α ).

(12)

If we combine this new extra decay for [f̂ ]′ with the fundamental theorem of calculus, as in

(11), we obtain for ξ > 2 that

|f̂(ξ)| ≤ 4 · 3 · 2 · (22−απ)4α3I3(f)ξ3(α−1
α ). (13)

By induction, one can iterate this process and obtain decay of the order of ξj(
α−1
α ) for

ξ > (2j + 1)α, More precisely,

|f̂(ξ)| ≤ (j + 1)!(22−απ)j+1αjIj(f)ξj(
α−1
α ). (14)

Applying the same analysis for negative ξ yields the desired result for f̂ . In order to obtain

the asserted bound for f, we run the same scheme of proof, paying attention to the fact

that, if {b(k)
m }m∈Z denotes the sequence of zeros of f, in the sense of Section 4.1, then
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[b
(k)
m , b

(k)
m+1] ⊂ [log(m+ 1), log(m+ k + 2)], and

|b(k)
m − b

(k)
m+1| ≤ log(1 +

k + 1

m+ 1
) ≤ k + 1

m+ 1
≤ (k + 1)2 · e− log(m+k+1).

If x ≥ 0 belongs to the interval [b
(k)
m , b

(k)
m+1], then the expression above is bounded by

(k + 1)2e−x. We leave out the details to the iteration procedure, for they essentially only

replicate equations (11)–(14). �

We now describe, in a concise way, the iteration scheme to be undertaken. Since f ∈
S(R), there is a constant D > 0 such that

|f̂(ξ)| ≤ D.

Hence

Ik(f̂) ≤ D
∫
|ξ|≤(1+j)α

|ξ|kdξ + Ĉj

∫
|ξ|≤(1+j)α

|ξ|k+j(α−1
α )dξ

≤ 2D
1

k + 1
(1 + j)α(k+1) + Ĉj

1

k + j
(
α−1
α

)
+ 1

(1 + j)k+j(α−1
α )+1,

as long as we choose j ≥ (k+2)α
1−α . Choosing j = j(k) ∼ (k+2)α

1−α implies

Ik(f̂) ≤ 2D
1

k + 1
(1 +

(k + 2)α

1− α
)α(k+1) + Ĉj

1

2k + 2
(1 +

(k + 2)α

1− α
)−1

≤ Aα
(
kα(k+1)−1 + Ĉj

1

k2

)
= Aα

(
kα(k+1)−1 + (j + 1)!(22−απ)j+1αjIj(f)

1

k2

)
.

(15)

We also observe that (8) for k = 1 implies

Ij(f) ≤ C(f)

∫
R
e−|x||x|j dx .f j!. (16)

Putting together (15), (16) together with (8), we obtain that

|f(x)| ≤ k(2π)k((k + 1)!)3Ik(f̂)e−k|x|

≤ k(2π)k((k + 1)!)3Aα

(
kα(k+1)−1 + (j + 1)!(2πα)jIj(f)

1

k2

)
e−k|x|

≤ eO(k log k)−k|x|,

(17)

for |x| ≥ log(k + 1), where by O(k log k) we denote an expression that is bounded by

Cαk log(k + 1), for some constant depending on α. Equation (17) implies, as k ≤ e|x| − 1
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can be chosen arbitrarily, that for each A� 1, there is cA > 0 such that

|f(x)| .f,A e−cA|x|
A
. (18)

3.2. Viewing f̂ as an entire function. The final part of the argument uses complex

analysis to derive a contradiction. In fact, by Corollary 4, f̂ is an entire function of order

at most 1. The converse to Hadamard’s factorisation theorem then predicts that the sum

of inverses of zeros of f̂ raised to 1 + ε should converge, no matter which value of ε > 0 we

choose. But we know that {±nα}n≥0 is contained in the set of zeros of f̂ , therefore∑
n≥0

1

n(1+ε)α
< +∞.

This is a clear contradiction, as long as α < 1. The contradiction came from assuming that

f̂ 6≡ 0, and thus we have proved the first part of Theorem 1.

4. Proof of (B)

4.1. Obtaining simultaneous decay. The first key step of the proof is obtaining enough

decay on f̂ in order extend f as an analytic function. One of the key estimate for that will

be an iteration scheme of inequality (5), which is the content of the next Lemmas

Lemma 6. Let f ∈ S(R) and assume that f(±(n)α) = 0 and f̂(±nβ) = 0 for every n ∈ N,

where 0 < α, β < 1. Then, for |x| > (k + 1)α and |ξ| > (j + 1)β, one has

|f(x)| ≤ (k + 1)!(22−απ)k+1αkIk(f̂)|x|k(
α−1
α ) = Ck|x|k(

α−1
α )

|f̂(ξ)| ≤ (j + 1)!(22−βπ)j+1βjIj(f)|ξ|j
(
β−1
β

)
= Ĉj |ξ|

j
(
β−1
β

)
.

The proof of this Lemma is identical to that of Lemma 5, and we therefore skip it. Lemma

6 means that one can get very good decay for f(x) for large values of x by sacrificing the

potentially big constant

Ck = (k + 1)!(22−απ)k+1αkIk(f̂) = BkIk(f̂).

The number Bk is easy to estimate by using Stirling’s formula. Indeed

Bk ≤ Ce−(k+1)+(k+3/2) log(k+1)+k log(2πα)

≤ cαek log k+(log(2πα)+1)k+ 3
2

log k
(19)

Meanwhile, the number Ik(f̂), although finite, might grow at an undesirable rate. Our next

step is to control the integral Ik(f).
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Lemma 7. Let f ∈ S(R) and assume that f(±nα) = 0 and f̂(±nβ) = 0 for every n ∈ N,

where 0 < α+ β < 1. Then there exists τ = τ(α, β) > 0 such that

Ik(f) .f,α,β e
−τk log k+O(k).

Proof. From previous considerations, we know that it holds that

Ik(f̂) ≤ 2D
1

k + 1
(1 +

(k + 2)β

1− β
)β(k+1) + Ĉj

1

2k + 2
(1 +

(k + 2)β

1− β
)−1

≤ Aβ
(
kβ(k+1)−1 + Ĉj

1

k2

)
,

(20)

where |f̂ | ≤ D pointwise. We can now apply the same inequality to Ik(f), and obtain

Ik(f) ≤ Aα
(
kα(k+1)−1 + Cĵ

1

k2

)
, (21)

where ĵ = ĵ(k) ∼ (k+2)α
1−α . Keeping in mind that

Ck = (k + 1)!(22−απ)k+1αkIk(f̂) = BkIk(f̂)

Ĉj = (j + 1)!(22−βπ)j+1βjIj(f) = B̂jIj(f),

one can iterate inequalities (15) and (21). This means

Ik(f) ≤ Aα
(
kα(k+1)−1 +Bĵ(k)

1

k2
Iĵ(k)(f̂)

)
≤ Aα

(
kα(k+1)−1 +Bĵ(k)

1

k2
Aβ

(
ĵ(k)

β(ĵ(k)+1)−1
+ Ĉj(ĵ(k))

1

(ĵ(k))2

))

= Aα

(
kα(k+1)−1 +Bĵ(k)

1

k2
Aβ

(
ĵ(k)

β(ĵ(k)+1)−1
+
B̂j(ĵ(k))

(ĵ(k))2
Ij(ĵ(k))(f)

))
.

This chain of inequalities amounts to the following inequality

Ik(f) ≤ G(k) +H(k)Ij(ĵ(k))(f), (22)

where

G(k) = Aα,β(kα(k+1)−1 +Bĵ(k)

1

k2
ĵ(k)

β(ĵ(k)+1)−1
)

H(k) = Aα,β
Bĵ(k)B̂j(ĵ(k))

k2ĵ(k)2
.

(23)

An observation in order is that

ρ(k) = j(ĵ(k)) ∼
(

α
1−α

)(
β

1−β

)
k,
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and

γ =
(

α
1−α

)(
β

1−β

)
< 1 ⇔ α+ β < 1.

Since we assumed that α+ β < 1, it implies γ < 1 and inequality (22) roughly translates

Ik(f) ≤ G(k) +H(k)Iγk(f), (24)

and by iterating one gets

Ik(f) ≤
m−1∑
l=0

[
G(γlk)

l−1∏
s=0

H(γsk)

]
+H(γm−1k) · · ·H(γk)H(k)Iγmk(f). (25)

In order for our bounds to behave nicely, we assume at this point that Aα,β = 1 in (23),

which is possible simply by dividing f by Aα,β at the cost of an extra constant depending

only on α and β on the desired bounds. We estimate G using (19)

G(k) .α e
α(k+1) log k + e(1+β) α

1−αk log k+O(k)

≤ eλk log k+E(k),

where

λ = (1 + β)
α

1− α
,

and E(k) = O(k). Now we estimate H in the same fashion

H(k) =
Bĵ(k)B̂j(ĵ(k))

k2ĵ(k)2

.α e
( α
1−α )k log k+O(k)eγk log k+O(k)

≤ eδk log k+E(k),

where

δ =
α

1− α
+ γ =

α

(1− α)(1− β)
,

and F (k) = O(k). This means

l−1∏
s=0

H(γs−1k) ≤ e
∑l−1
s=1[δγsk log γsk+E(γsk)]

≤ eδ
1−γl
1−γ k log k+E0(k)
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and therefore

Ik(f) ≤

[
m−1∑
l=0

G(γlk)

l−1∏
s=0

H(γsk)

]
+H(γm−1k) · · ·H(γk)H(k)Iγmk(f)

≤

[
m−1∑
l=0

eλγ
lk log k+F (γlk)e

δ 1−γl
1−γ k log k+E0(k)

]
+ e

δ 1−γm
1−γ k log k+E0(k)

Iγmk(f)

≤ me(λ+δ) 1
1−γ k log k+F0(k)

+ e
δ 1
1−γ k log k+E0(k)

Iγmk(f).

(26)

Now, if we choose m ∼ − logγ k, and for simplicity assume I1(f) = 1, we have 2

Ik(f) ≤ e
λ+δ
1−γ k log k+O(k)

.

The proof of the Lemma is then complete by taking τ = λ+δ
1−γ . This choice is going to be

important for us later on. �

One direct consequence of Lemma 7 is that we obtain an explicit decay for f̂ of the form

|f̂(ξ)| ≤ e(1+λ+δ
1−γ )k log k+O(k)|ξ|k

(
β−1
β

)

= e
(1+λ+δ

1−γ )k log k+
(
β−1
β

)
k log |ξ|+O(k)

,

(27)

whenever (1 + 2k)β ≤ |ξ|. Now, if one chooses k ∼ |ξ|
1
ε , the exponent in (27) becomes[

1

ε

(
1 +

λ+ δ

1− γ

)
log |ξ|+

(
β − 1

β

)
log |ξ|

]
|ξ|

1
ε +O(|ξ|

1
ε ).

As long as

1

ε

(
1 +

λ+ δ

1− γ

)
<

1− β
β

,

or equivalently

ε >

(
1 +

λ+ δ

1− γ

)
β

1− β

=
1− α− β + (2− β2)α

1− α− β
β

1− β

=
1 + α− β(1 + αβ)

1− α− β
· β

1− β
,

(28)

we can conclude that, for some 0 < θ < 1,

|f̂(ξ)| .f e−(1−θ)|ξ|
1
ε , (29)

2Up to this point, we have neglected the error terms (E, F etc), but their sums with argument γlk are
clearly still going to be O(k).
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where θ > 0 is small, and (28) is obviously true for some admissible large ε, i.e, some

number such that (1 + 2k)β < |ξ| ∼ kε. We next connect this exponential decay we have

achieved to the magnitude of Ik(f).

Lemma 8. Let f ∈ S(R) such that

|f(x)| ≤ Cfe−(1−θ)|x|
1
δ . (30)

Then it holds that Ik(f) .f,δ,θ Γ(δ(k + 1)).

Proof. By (30), it follows that

Ik(f) .
∫
R
e−(1−θ)|x|

1
δ |x|kdx.

By the change variables x tε

(1−θ)ε , we have∫
R
e−|x|

1
ε |x|kdx =

2ε

(1− θ)k(ε+1)

∫ ∞
0

e−ttε(k+1)−1dt =
2ε

(1− θ)k(ε+1)
Γ(ε(k + 1)),

which directly implies the assertion of the Lemma. �

4.2. Optimizing the exponent. It is important to point out that up to this point the

only imposed condition on the pair (α, β) is that α + β < 1. This means that whenever f

is a Schwartz function such that f(±nα) = 0 and f̂(±nβ) = 0, then inequality (29) holds

for some small θ and ε satisfying (28). We now describe an iteration procedure to improve

the decay obtained in the previous subsection, at the cost of extra constraints on the pair

(α, β).

Let ε(f̂) denote the infimum of all ε > 0 obtained previously, such that (29) holds. That

is, we let

ε(f̂) =
β(1 + λ+δ

1−γ )

1− β
.

Define ε(f) in the same fashion, exchanging the roles of α and β. The process that follows

is a way to progressively decrease the magnitude of either ε(f) or ε(f̂).

It follows from Lemma 8 that

|f̂(x)| ≤ e(1+ε(f))k log k+
(
β−1
β

)
k log |ξ|+O(k)

.

Define then the sequences (an, bn)n∈Z of exponents associated to f, f̂ to be

b0 = ε(f̂), a0 = ε(f),

bn = (1 + an)
β

1− β
, an+1 = (1 + bn)

α

1− α
.

(31)
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Repeating the argument undertaken in Section 4.1, it holds that, for any ε > 0,

|f(x)| .f,ε e−Cn|x|
1

an+ε
,

|f̂(ξ)| .f,ε e−C̃n|ξ|
1

bn+ε
,

as long as the conditions bn > β and an > α are met for all n ≥ 0. We let, respectively to

the definitions above,

θ1(α, β) =
α

(1− α)(1− β)
,

θ2(α, β) =
β

(1− α)(1− β)
.

A computation shows that we actually have

an+1 = θ1 + γan,

bn+1 = θ2 + γbn. (32)

As γ < 1, we see that both (an)n≥0 and (bn)n≥0 are convergent sequences, with limit

L1(α, β) = lim
n→∞

an =
α

1− α− β
,

L2(α, β) = lim
n→∞

bn =
β

1− α− β
.

This implies that, for all ε > 0,

|f(x)| .f,ε e−C|x|
1

L1(α,β)+ε ,

|f̂(ξ)| .f,ε e−C̃|ξ|
1

L2(α,β)+ε .

(33)

Notice that, if ε(f) > L1(α, β) and ε(f̂) > L2(α, β), then both sequences an, bn are de-

creasing, and (33) is the best exponential decay we could expect for f, f̂ . Notice that the

condition (28) gives us that ε(f̂) > L2(α, β) as desired, which proves that the iteration

scheme presented achieves, in fact, a better exponential decay for f, f̂ than the original

one.

Remark 1. If we let Sνµ(R) denote the Gelfand-Shilov space of Schwartz functions ϕ such

that

sup
x∈R
|ϕ(x)eh|x|

1/ν |, sup
ξ∈R
|ϕ̂(ξ)ek|ξ|

1/ν | < +∞
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for some k, h > 0, then we have actually proved that f ∈ S̃νµ(R) := ∪ν0>ν,µ0>µSν0µ0(R),

where ν = L1(α, β) and µ = L2(α, β). These function spaces are originally defined through

specific decay properties of the Schwartz seminorms ϕ 7→ ‖xα∂βϕ‖∞, and the equivalence

to the higher-order decay statement above is proved through the seminorm decay. This

procedure is in many ways analogous to the one undertaken here to obtain that f ∈ Sνµ(R),

and the relationship between our proof and these function spaces was recently brought to our

attention. For more information on Gelfand-Shilov spaces, see, for instance, [2, 7] and the

references therein.

4.3. Analytic continuation. We wish to derive a contradiction from the fact that f 6≡ 0.

In order to do it, we prove that either f or f̂ can be analytically extended with control on

its order depending only on min{L1(α, β), L2(α, β)}. Without loss of generality, let α ≤ β.
Therefore, L1(α, β) < L2(α, β) and, in case β ≤ 1−2α, then L1(α, β) < 1, and this contains

the region A described in the introduction. We then appeal to Lemma 3, which enables us

to conclude that f̂ is extendable as an analytic function of order at most

1

1− L1(α, β)
.

By the converse to Hadamard’s factorisation theorem, we must have∑
n≥0

n
− β+ε

1−L1(α,β) < +∞,

for each ε > 0. Thus, we reach an immediate contradiction if

β < 1− L1(α, β).

As we supposed initially that α ≤ β, elementary calculations lead to the following observa-

tion: if (α, β) ∈ A, then each Schwartz function f such that f(±nα) = f̂(±nβ) = 0, ∀n ∈ N,
then f ≡ 0. This finishes the proof of Theorem 1.

5. Remarks and complements

5.1. Spacing between zeros and bounds for f . In Sections 2, 3 and 4, we have seen

how to obtain decay for a Schwartz function given we have information on the location of

the zeros of its derivatives. A main feature, in particular, of the proof in Section 4 was that

the sequence of zeros of the derivative f (k) satisfies a
(k)
n ∈ [nα, (n+ k+ 1)α], which enables

us to bound

|a(k)
n+1 − a

(k)
n | ≤ Cα(k + 1)|a(k)

n+1|
− 1−α

α , (34)

if n > k + 1. A careful look into the proofs undertaken above relates the exponent of k on

the left hand side above to the iteration scheme for optimizing the exponent performed in

Section 4.2. Indeed, if we were able to improve the factor on the right hand side of (34)
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from (k + 1) to (k + 1)ω, ω < 1, then the sequences an, bn above would take the form

b0 = ε(f̂), a0 = ε(f),

bn = (ω + an)
β

1− β
, an+1 = (ω + bn)

α

1− α
.

(35)

A simple computation shows that the limit of this new sequences is strictly smaller than

the one we obtained in Section 4.2. This yields, as a consequence, an improvement on the

set A of admissible exponents for Theorem 1, described in the introduction. For instance,

if (35) holds, then

lim
n→∞

an =
ωα(1 + (ω − 1)β)

1− α− β
,

lim
n→∞

bn =
ωβ(1 + (ω − 1)α)

1− α− β
.

If α ≤ β and ω satisfies the equation

ω(1 + (ω − 1)β) = 1− α− β,

then the argument in Section 4.3 produces a contradiction whenever α+β < 1, which would

be the biggest regime in which one expects a version of our main theorem to hold. This raises

the question whether the decay in (34) can be improved. Unfortunately, the answer to this

question is negative. Indeed, let a
(0)
n = nα as before. Consider {n ∈ N : nα ∈ [2j , 2j+1)} =

[nj , nj+1), and define the sequence {a(k)
n }, for n ∈ [nj , nj+1 − k) and 1

j+12k/α < k < 2j/α,

satisfying

a(k−1)
nj < a(k)

nj < (nj + 1)α,

a
(k−1)
n+1 >a(k)

n > max(a
(k−1)
n+1 − 2−10k(1−α)j/α, a(k−1)

n ).

(36)

This satisfies, in particular, the growth requirements on the sequence from Section 2.1.

For k > 2j/α, n ∈ [nj , nj+1), we let a
(k)
n be chosen arbitrarily satisfying (I.i) in the same

section. The definition implies, in particular, that a
(k)
nj+1 > a

(0)
nj+k+1−

∑
`≤k 2−10`(1−α)j/α >

(nj + k + 1)α − cα2−10(1−α)j/α. Therefore,

|a(k)
nj+1−a

(k)
nj | ≥ (nj +k+1)α− (nj +1)α−2−10(1−α)j/α ≥ αk · (nj +k+1)α−1−2−10(1−α)j/α.

As nj > 2j/α, the right hand side is controlled from below by a constand depending on α

times k2−
(1−α)j
α . As nj+1 ≤ 21/α2j/α, estimate (34) is sharp for k < 2j/α. Replicating the
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same argument for all j > 1 and concatenating the sequences together implies the desired

sharpness for all k ≥ 1.

Nevertheless, a question still remaining is whether a decay better than (34) can hold on

average. We have used this estimate on the gap between zeros of the k−th derivative to

obtain decay for f (k) pointwise. It could happen, though, that one obtains better decay av-

eraging over large intervals, rather than doing pointwise evaluation. This intuitive thought

is partially backed up by the fact that, for n ∈ [nj , nj+1 − k), the average gap

|a(k)
n+1 − a

(k)
n |

is of the same order of 2−(1−α)j/α, as long as n − k ∼ 2j/α. We show here that this phe-

nomenom does not happen in case the sequence of zeros {a(k)
n } has structure similar to the

counterexample above. Considering the bound (5), we wish to bound the average of f (k)

over the interval [2j , 2j+1). A computation shows that

−
∫ 2j+1

2j
|f (k)(x)|dx . 1

2j
(2π)kIk+1(f̂)

 nj+1∑
l=nj−k

|a(k)
l+1 − a

(k)
l |

2

 . (37)

Notice that each of the |a(k)
l+1 − a

(k)
l | terms is bounded by Cα · (k + 1)2−(1−α)j/α, for some

absolute Cα > 0. Our problem is equivalent to the following: we have a sequence of N

non-negative real numbers {cj}Nj=1 such that
∑N

j=1 cj = A and 0 < cj ≤ B. What is the

maximum of
N∑
j=1

c2
j , (38)

and when is it attained? By fixing all but 2 variables, it is easy to see that the maximum

of (38) happens when the cj are all either B or 0. As

N∑
j=1

cj = A,

it holds that the optimal value happens when there are ∼ A/B different j′s for which

cj = B, and then the maximal value of (38) is ∼ B ·A. Applying this analysis to (37) yields

that

−
∫ 2j+1

2j
|f (k)(x)|dx . (2π)kIk+1(f̂)Cα · (k + 1)2−(1−α)j/α, (39)

as long as k ≤ 2j/α, which is essentially the same as we obtained before. In order to prove

that there is a sequence with the behaviour described above, we define a sequence {a(k)
n }

of the following form: on the interval [nj , nj + k + 1), we define our sequence exactly as in

(36); we then do the same construction as in (36) on [nj + k + 1, nj + 2(k + 1)), but with

nj + k + 1 in place of nj . Similarly, we do it for each of the ∼ 2j/α/k intervals of the form
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[nj + `(k+1), nj +(`+1)(k+1)). The sequence obtained that way will nearly maximise the

square sums, in the sense that there are going to be ∼ 2j/α/k terms close to ∼ k2−(1−α)j/α,

and the remaining ones will be close to zero. A computation shows that the bound (39)

holds in the same way for this sequence.

These examples indicate that not much more can be improved in our methods in terms

of the range of exponents A above without additional information about the location of the

sequences of zeros {a(k)
n }k≥0,n∈Z.

5.2. Generalisations of Theorem 1.

5.2.1. Conditions on the sets of zeros. One might wonder if the sequences in Theorem 1

being composed of powers and logarithms of integers plays an important role in our proofs,

but it does not. The spacing of the zeros comes into the proofs in order to produce the

first decay estimates, and for that the important piece of information that plays a role

is the bound (34), which comes from the distance between two consecutive zeros of the

derivatives of f , and the growth condition of the sequence of zeros of f and f̂ . In other

words, if f(±an) = f(±bn) = 0, then it is sufficient to have two positive numbers η and ω

such that

η · ω > 1,

|ak+n − an| ≤ Ck|ak+n|−η,

|bk+n − bn| ≤ Ck|bk+n|−ω,

(40)

in order to apply the same procedure as in Lemma 7 and obtain the initial degree of

exponential decay. Now, in order to optimise the exponent as in subsection 4.2, we need

|an| ≤ Cn
1

1+η ,

|bn| ≤ Cn
1

1+ω ,
(41)

where (α, β) = ( 1
1+η ,

1
1+ω ) belong to the region A in Theorem 1. This means our results

are stable under small perturbations of the sequences of zeros. In fact one can even delete

a large number of zeros and still get the same results. One should compare, for instance,

to the interpolation result (2) mentioned in the introduction, whose proof, to the best of

our knowledge, is rigid to the fact that the interpolation nodes are the square roots of

the natural numbers, and the construction of the interpolation basis itself shows that one

cannot remove any term from the sequence without breaking down the final result.

5.2.2. Conditions on the functions. Another very natural question that arises from the

results is if it is completely necessary to assume the functions involved are in the Schwartz

class. Perhaps the result could hold with more relaxed conditions, but our proof rely
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heavily on finiteness of Ik(f) and Ik(f̂) for every k ≥ 0, and this implies, although not in

a straightforward manner, that f is a Schwartz function. For the sake of completeness, we

outline the proof of this fact.

First of all, by Fourier inversion and the Riemann-Lebesgue lemma, finiteness of Ik(f̂)

implies that f is of C∞ class with all derivatives bounded and converging to zero at infinity.

Now, we only need to prove polynomial decay of all the derivatives of f , and in order for

that to be true we start by proving that f has polynomial decay. For a fixed N > 0, we

define the set

Ej,N = Ej = {x ∈ [2j , 2j+1) : |x|Nf(x) > 1}.

It follows from Chebychev‘s inequality that

|Ej | ≤
∫ 2j+1

2j
|f(x)||x|N dx ≤ 2−jNI2N (f),

This means there is y ∈ Ej and x ∈ [2j , 2j+1)\Ej such that |x− y| ≤ 2−jNI2N (f). By the

aforementioned fact that f ′ is bounded, we have

|f(y)| ≤ |f(x)− f(y)|+ |f(x)|

≤ Cf |x− y|+ |x|−N

.N,f |y|−N .

Therefore f has polynomial decay of any order. Now, in order to propagate this decay to

every derivative, we combine the fact that f ′′ is a bounded function and |f(x)| . |x|−N

with a Taylor series remainder argument in order to obtain |f ′(x)| . |x|−N/2. This implies

polynomial decay for f ′. Iterating this argument with higher order derivatives implies that

f is of Schwartz class.

5.2.3. Radial versions for higher dimensions. A very natural generalisation one could think

of is that of asking the same question for higher dimensional functions. Of course the notion

of density would have to be redefined for general functions of several variables since one

can easily construct functions that vanish along uncountable sets, such as manifolds, but

if one restricts its attention to the case of radial functions similar questions will naturally

arise. In fact, if we consider Srad(Rd) to be the class of radial Schwartz class on Rd, in [6]

the authors study interpolation formulas in this radial setting, and dimensional differences

come into the fold. This motivates the question: for which exponents (α, β) does the pair

({nα}n∈Z+ , {nβ}n∈Z+) forms a Fourier uniqueness pair for Srad(Rd)? Turns out in our

setting the same ideas already introduced here apply to this problem, and we outline the

steps here.
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Step 1 : By replacing f (k) by the k-th order radial derivative ∂kr f , one can run the same

game of intermediate zeros as in section 2.1 to get high order polynomial decay with loss

on the constants involved in terms of Ik,d(f) and Ik,d(f̂), where

Ik,d(g) =

∫
Rd
|g(x)||x|kdx.

One can also obtain analogues of Lemmas 7 and 8. More precisely, one gets the analogue

of inequality (22) paying a dimensional constant, which means one can directly replicate

Lemma 7 to obtain

|f̂(|ξ|)| .f e−(1−θ)|ξ|
1
ε . (42)

Lemma 8 for the d-dimensional setting will read as the estimate

Ik,d(f) .f,δ,θ Γ(δ(k + d)),

which can be applied in the same fashion in the rest of the iteration procedures to reach

the same order of decay.

Step 2 : Hadamard’s theorem on distribution of zeros of entire functions fails to work

in the same fashion for several complex variable functions, so one cannot do the simply

extend the radial functions involved to Cd. The alternative to this is observe that the

Fourier transform of a radial function can be seen as a Hankel transform. We consider the

following Hankel transform

Hν(f)(ρ) :=

∫ ∞
0

f(r)Aν(rρ)dr,

where Aν(s) = (2πs)νJν(2πs), and Jν is a Bessel function of first kind. In this setting, if

we consider f̃(r) = f(r)rd−1, which has the same zeros as f , then

f̂(ξ) = (2π)
d
2H d−2

2
(f̃)(|ξ|).

By observing that the function A d−2
2

can be extended as a real entire function satisfying

the estimate

|A d−2
2

(ξ + iη)| .d e2π|η|,

it is clear that an analogue version of Lemma 3 holds for the Hankel transform.

Step 3 : In order to finish, we now combine the analytic extension property of the Hankel

transform and its connections with the Fourier transform mention in Step 2, together with

the decay mentioned in Step 1, one can invoke Hadamard’s theorem in the same fashion as

before and conclude f has to be the zero function, as long as (α, β) ∈ A, where A is the set

introduced in Theorem 1.
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5.3. Open problems. Comparing Theorem 1 and (2), we see that there is a gap in area

between the two pictures. The (α, β) = (1/2, 1/2) point considered by Radchenko and

Viazovska possesses a ‘quasi-uniqueness’ property, in the sense that there is essentially

one real function who vanishes on the nodes ±
√
n and belongs to the Schwartz class. We

believe that the question of denseness of the sequences (±nα,±nβ) plays an important role

in removing this rigidity condition, which is reflected on the following conjecture.

Conjecture. Let α, β ∈ (0, 1) be such that α+ β < 1. If f ∈ S(R) satisfies that f(±nα) =

f̂(±nβ) = 0 for all n ≥ 0, then it holds that f ≡ 0.

Of course, Theorem 1 is partial progress towards this conjecture, but our techniques do

not seem to be immediately susceptible to being generalised in order to conclude the full

conjecture. On the other hand, another interesting problem that, as far as we know, is still

largely unexplored is that of sequences that grow roughly as a power of an integer, but do

not posses as strong tightness properties as in Section 5.2.1 above.

Question 2. Let α, β ∈ (0, 1) be such that α+ β < 1. Under which conditions does it hold

that, for two sequences (±cn,±dn)n≥0 such that

lim
n→∞

dn
nβ
, lim
n→∞

cn
nα

< +∞

and a function f ∈ S(R) such that f(±cn) = f̂(±dn) = 0,∀n ≥ 0, then f ≡ 0?

The first natural guess is that a result of that kind should hold in the same range as

Conjecture 5.3, but it would already be interesting if one could prove that the uniqueness

property holds under the assumptions in Theorem 1. Finally, our last question concerns

what happens on the critical case of Theorem 1.

Question 3. Let α, β ∈ (0, 1) be such that α+ β = 1. Suppose f ∈ S(R) is a real function

such that f(±anα) = f̂(±bnβ) = 0 holds for each natural number n ≥ 0. Under which

conditions on a, b > 0 does it holds that f ≡ 0?

This type of questions remains heavily unexplored even in the α = β = 1
2 case, where we

believe that a combination of our present techniques with those of [15] may be useful.
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