
SHARP TOTAL VARIATION RESULTS FOR MAXIMAL FUNCTIONS
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Abstract. In this article, we prove some total variation inequalities for maximal functions. Our
results deal with two possible generalizations of the results contained in [1], one of those considers
a variable truncation of the maximal function, and the other one interpolates the centered and
the uncentered maximal functions. We also provide counterexamples showing that our methods
do not apply outside our parameter ranges, and therefore are sharp.

1. Introduction

An object of major interest in Harmonic Analysis is the Hardy-Littlewood maximal function,
which can be defined as

Mf(x) = sup
t∈R+

1

2t

∫ x+t

x−t

|f(s)|ds.

Alternatively, one can also define its uncentered version as

M̃f(x) = sup
x∈I

1

|I|

∫

I

|f(s)|ds.

The most classical result about these maximal functions is perhaps the Hardy–Littlewood–Wiener
theorem, which states that both M and M̃ map Lp(R) into itself for 1 < p ≤ ∞, and that in the
case p = 1 they satisfy a weak type inequality:

|{x ∈ R : Mf(x) > λ}| ≤
C

λ
‖f‖1,

where C = 11+
√
61

12 is the best constant possible found by A. Melas [12] for M . The same inequality

also holds in the case of M̃ above, but this time with C = 2 being the best constant, as shown by
F. Riesz [13].

In the remarkable paper [6], J. Kinnunen proves, using functional analytic techniques and the
aforementioned theorem, that, in fact, M maps the Sobolev spaces W 1,p(R) into themselves, for
1 < p ≤ ∞. Kinnunen also proves that this result holds if we replace the standard maximal func-
tion by its uncentered version. This opened a new field of studies, and several other properties of
this and other related maximal functions were studied. We mention, for example, [3, 4, 5, 7, 9].

Since the Hardy-Littlewood maximal function fails to be in L1 for every nontrivial function f
and the tools from functional analysis used are not available either in the case p = 1, an important
question was whether a bound of the form ‖(Mf)′‖1 ≤ C‖f ′‖1 could hold for every f ∈ W 1,1.

In the uncentered case, H. Tanaka [15] provided us with a positive answer to this question.

Explicitly, Tanaka proved that, whenever f ∈ W 1,1(R), then M̃f is weakly differentiable, and

it satisfies that ‖(M̃f)′‖1 ≤ 2‖f ′‖1. Here, W 1,1(R) stands for the Sobolev space {f : R →
R : ‖f‖1 + ‖f ′‖1 < +∞}.

Some years later, Aldaz and Pérez Lazaro [1] improved Tanaka’s result, showing that, when-

ever f ∈ BV (R), then the maximal function M̃f is in fact absolutely continuous, and V(M̃f) =

‖(M̃f)′‖1 ≤ V(f), with C = 1 being sharp, where we take the total variation of a function to be

V(f) := sup{x1,...,xN}=P
∑N−1

i=1 |f(xi+1)− f(xi)|, and consequently the space of bounded variation
1
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functions as BV (R) = {f : R → R : V(f) < +∞}. In this direction, J. Bobber, E. Carneiro, K.
Hughes and L. Pierce [2] studied the discrete version of this problem, obtaining similar results.

In the centered case, many questions remain unsolved. Surprisingly, it turned out to be harder
than the uncentered one, due to the contrast in smoothnes of Mf and M̃f. In [8], O. Kurka showed
the endpoint question to be true, that is, that V(Mf) ≤ CV(f), with C = 240, 004. Unfortunately,
his method does not give the best constant possible, with the standing conjecture being that C = 1
is the sharp constant.

In [16], F. Temur studied the discrete version of this problem, proving that for every f ∈ BV (Z)
we have V(Mf) ≤ C′V(f), where C′ > 106 is an absolute constant. The standing conjecture is
again that C′ = 1 in this case, which was in part backed up by J. Madrid’s optimal results [11]: If
f ∈ ℓ1(Z), then Mf ∈ BV (Z), and V(Mf) ≤ 2‖f‖1, with 2 being sharp in this inequality.

Our main theorems deal with – as far as the author knows – the first attempt to prove sharp
bounded variation results for classical Hardy–Littlewood maximal functions. Indeed, we may see
the classical, uncentered Hardy-Littlewood maximal function as

M̃f(x) = sup
x∈I

1

|I|

∫

I

|f(s)|ds = sup
(y,t) : |x−y|≤t

1

2t

∫ y+t

y−t

|f(s)|ds.

Notice that this supremum need not be attained for every function f and at every point x ∈ R, but
it is attained if our points are strict local maxima of M̃f. This way, we may look at this operator
as a particular case of the wider class of nontangential maximal operators

Mαf(x) = sup
|x−y|≤αt

1

2t

∫ y+t

y−t

f(s)ds.

Indeed, from this new definition, we get directly that
{

Mαf = Mf, if α = 0,

Mαf = M̃f, if α = 1.

As in the uncentered case, we can still define ‘truncated’ versions of these operators, by imposing
that t ≤ R. These operators are far from being a novelty: several references consider those all
around mathematics, among those the classical [14, Chapter 2], and the more recent, yet related
to our work, [4]. An easy argument (see Section 5.3 below) proves that, if α < β, then

V(Mβf) ≤ V(Mαf).

This implies already, by the main Theorem in [8], that there exists a constant A ≥ 0 such that
V(Mαf) ≤ AV(f), for all α > 0. In the intention of sharpening this result, our first result reads,
then, as follows:

Theorem 1. Fix any f ∈ BV (R). For every α ∈ [ 13 ,+∞), we have that

(1) V(Mαf) ≤ V(f).

There exist an extremizer f for the inequality (1). If α > 1
3 , then any positive extremizer f to

inequality (1) satisfies:

• limx→−∞ f(x) = limx→+∞ f(x).
• There is x0 such that f is non-decreasing on (−∞, x0) and non-increasing on (x0,+∞).

Conversely, all such functions are extremizers to our problem. Finally, for every α ≥ 0 and
f ∈ W 1,1(R), Mαf ∈ W 1,1

loc (R).

Notice that stating that a function g ∈ W 1,1
loc (R) is the same as asking it to be absolutely

continuous. Our ideas to prove this theorem and theorem 3 are heavily inspired by the ones in



TOTAL VARIATION OF MAXIMAL FUNCTIONS 3

[1]. Our aim will always be to prove that, when f ∈ BV (R), then the maximal function Mαf is
well-behaved on the detachment set

Eα = {x ∈ R : Mαf(x) > f(x)}.

Namely, we seek to obtain that the maximal function does not have any local maxima in the set
where it disconnects from the original function, which should be the main idea behind the maximal
attachment property. Such property, together with the concept of detachment set Eα, are also far
from being new, having already appeared at [1, 3, 4, 15], and recently at [10]. More specific details
of this can be found in the next section.

In general, our main ideas are contained in Lemma 2, where we prove that the region in the
upper half plane that is taken into account for the supremum that defines

M1
≡Rf = sup

x∈I : |I|≤2R

−

∫

I

|f(s)|ds,

where we define

−

∫

I

g(s)ds :=
1

|I|

∫

I

g(s)ds,

is actually a (rotated) square, and not a triangle – as a first glance might impress on someone –,
and in the comparison of Mαf and M1

≡R over a small interval, in order to establish the maximal
attachment property.

We may ask ourselves if, for instance, we could go lower than 1/3 with this method. Our next
result, however, shows that this is the optimal bound for this technique:

Theorem 2. Let α < 1
3 . Then there exists f ∈ BV (R) and a point xα ∈ R such that xα is a local

maximum of Mαf , but Mαf(xα) > f(xα).

We can, however, inquire ourselves whether we can genralize the results from Aldaz and Pérez-
Lázaro in yet another direction. With this in mind, we notice that Kurka [8] cites in his paper that
his techniques allow one to prove that some Lipschitz truncations of the center maximal function,
that is, maximal functions of the form

M0
Nf(x) = sup

t≤N(x)

1

2t

∫ x+t

x−t

|f(s)|ds,

are bounded from BV (R) to BV (R) – with some possibly big constant – if Lip(N) ≤ 1. Inspired
by it, we define the N−truncated uncentered maximal function as

M1
Nf(x) = sup

|x−y|≤t≤N(x)

−

∫ y+t

y−t

|f(s)|ds.

The next result deals then with an analogous of Kurka’s result in the case of the centered
maximal functions. In fact, we achieve even more in this case, as we have also the explicit sharp
constants for that. In details, the result reads as follows:

Theorem 3. Let N : R → R+ be a measurable function. If Lip(N) ≤ 1
2 , we have that, for all

f ∈ BV (R),

V(M1
Nf) ≤ V(f).

Moreover, the result is sharp, in the sense that there are non-constant functions f such that V(f) =
V(M1

Nf).

Again, we are also going to use the maximal attachment property in this case. Actually, we are
going to prove it both in theorems 1 and 3 for the non-endpoint cases α > 1

3 and Lip(N) < 1
2 ,

while the endpoints are treated with an easy limiting argument.

In the same way, one may ask whether we can ask our Lipschitz constant to be greater than 1
2

in this result. Regarding this question, we prove in section 4.3 the following negative answer:
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Theorem 4. Let c > 1
2 and

f(x) =

{

1, if x ∈ (−1, 0);

0, otherwise.

Then there is a function N : R → R≥0 such that Lip(N) = c and

V(M1
Nf) = +∞.

Acknowledgements. The author would like to thank Christoph Thiele, for the remarks that
led him to the full range α ≥ 1

3 at Theorem 1, as well as to the proof that this is sharp for this
technique, and Olli Saari, for enlightening discussions about the counterexamples in the proof of
Theorem 4 and their construction. He would also like to thank Emanuel Carneiro and Mateus
Sousa for helpful comments and discussions, many of which took place during the author’s visit
to the International Centre for Theoretical Physics in Trieste, to which the author is grateful for
its hospitality, and Diogo Oliveira e Silva, for his thorough inspection and numerous comments on
the preliminary versions of this paper. Finally, the author acknowledges financial support from the
Hausdorff Center of Mathematics.

2. Basic definitions and properties

Throughout the paper, I and J will usually denote open intervals, and l(I), l(J), r(I), r(J) their
left and right endpoints, respectively. We also denote, for f ∈ BV (R), the one-sided limits f(a+)
and f(a−) to be

f(a+) = lim
xցa

f(x) and f(a−) = lim
xրa

f(x).

We also define, for a general function N : R → R, its Lipschitz constant as

Lip(N) := sup
x,y∈R

|N(x)−N(y)|

|x− y|
.

Throughout the text we will consider a function in BV (R) as normalized if f(x) = lim supy→x f(y), ∀x ∈
R. This normalization appears already in [1] in their lemmata, and therefore there is no harm in
assuming it here.

We mention also a couple of words about what we called before themaximal attachment property.
In the paper [1], the authors developed an ingenious way to prove the sharp bounded variation
result for the uncentered maximal function. Namely, they proved that, whenever f ∈ BV (R), then

the maximal function M̃f is actually continuous, and the (open) set

E = {M̃f > f} = ∪jIj

satisfies that, in each of the intervals Ij , M̃f has no local maxima. More specifically, they observed

that every local maximum x0 of M̃f satisfies that M̃f(x0) = f(x0). In our case, we are going to
need the general version of the maximal attachment property, as the statement with local maxima
of Mαf(x0) may not hold.

We may prove, however, in all cases the following property:

Property 1. We say that an operator O defined on the class of bounded variation functions
satisfies the maximal attachment property if, for every f ∈ BV (R) and local maximum x0 of Of
over an interval (a, b), with Of(x0) > max(Of(a), Of(b)), then there exists an interval (a, b) ⊃
I ∋ x0 such that Of is constant on I and there is y ∈ I such that Of(y) = f(y).

One may prove, by following the arguments in [1], that such an operator must mandatorily sat-
isfy that V(Of) ≤ V(f). Proofs of this fact in our specific cases will eventually appear in our paper.

Finally, we define, for f ∈ BVloc(R), the variation of a function over an interval I as

VI(f) = sup
l(I)≤x1<···<xN≤r(I)

N−1
∑

i=1

|max(f(xi+1+), f(xi+1−))−max(f(xi+), f(xi−))|.
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Figure 1. For the function f = χ(−1,1), we have that the variation

V(−∞,−1)(M
0f) = V(−∞,−1)(f), whereas, if we defined the variation of an interval

as we did for the real line, we would not obtain this equality.

This definition might seem a little artificial in the beginning, but it is going to be the precise one
for our sharp results. Moreover, we see directly from the definition that, if I = R, then VR = V .

3. Proof of Theorems 1 and 2

In what follows, let f ∈ BV (R) have our normalization f(x) = lim supy→x f(y).

3.1. Mα satisfies the maximal attachment property. Here, we prove this cornerstone fact
that will facilitate our work. Let then [a, b] be an interval, and suppose that Mαf has a strict local
maximum at x0 ∈ (a, b). Suppose also that Mαf(x0) = u(y, t), for some (y, t) ∈ {(z, s); |z − x| ≤
αt}, where we define the function u : R2

+ → R+ as

u(y, t) =
1

2t

∫ y+t

y−t

|f(s)| ds.

This implies, of course, that Mαf(x0) = Mαf(y). Moreover, we claim that

[y − αt, y + αt] ⊂ (a, b).

If this did not hold, then [y−αt, y+αt] ∋ either a or b. Let us suppose, without loss of generality,
that a ∈ [y − αt, y + αt]. But then

a ≥ y − αt ⇒ |a− y| ≤ αt ⇒ Mαf(a) ≥ Mαf(y) ≥ Mαf(x0),

a contradiction to our assumption of strictness of the maximum. This implies that, as for any
z ∈ [y − αt, y + αt] ⇒ |z − y| ≤ αt, the maximal function Mαf is constant over the interval
[y − αt, y + αt]. Moreover, we have that the supremum of

u(z, s), for (z, s) ∈ ∪z′∈[y−αt,y+αt]{(z
′′, s′′) : |z′′ − z′| ≤ αs′′} =: C(y, α, t),

is attained for (z, s) = (y, t).

Our next step is to find a subinterval I of [y − αt, y + αt] and a R = R(y, α, t) such that, over
this interval I, it holds that

M1
≡Rf ≡ Mαf.

Here, M1
≡R stands for the operator supx∈I,|I|≤2R −

∫

I |f(s)|ds. For that, we need to investigate a few

properties of the restricted maximal function M1
≡Rf. This is done via the following:

Lemma 1 (Boundary Projection Lemma). Let (y, t) ∈ R2
+. Let us denote

1

2t

∫ y+t

y−t

f(s)ds = u(y, t).

If (y, t) ∈ {(z, s); |z − x| ≤ s}, then

u(y, t) ≤ max

{

u

(

x+ y − t

2
,
x− y + t

2

)

, u

(

x+ y + t

2
,
y − x+ t

2

)}

.
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(y, t)

y − αt y y + αt

Figure 2. The region C(y, α, t).

Proof. The proof is simple: we just have to write

u(y, t) =
1

2t

∫ y+t

y−t

f(s)ds =
1

2t

∫ x

y−t

f(s)ds+
1

2t

∫ y+t

x

f(s)ds

=
x− y + t

2t

1

x− y + t

∫ x

y−t

f(s)ds

+
y − x+ t

2t

1

y − x+ t

∫ y+t

x

f(s)ds

=
x− y + t

2t
u

(

x+ y − t

2
,
x− y + t

2

)

+
y − x+ t

2t
u

(

x+ y + t

2
,
y − x+ t

2

)

≤ max

{

u

(

x+ y − t

2
,
x− y + t

2

)

, u

(

x+ y + t

2
,
y − x+ t

2

)}

.

�

Let Mr,Af(x) = sup0≤t≤A
1
t

∫ x+t

x
|f(s)| ds, and define Ml,Af in a same way, there the subindexes

“r” and “l” represent, respectively, “right” and “left”. There operators are present out of the
context of sharp regularity estimates for maximal functions, just like in [13]. In the realm of
regularity of maximal function, though, the first to introduce this notion was Tanaka [15]. As a
corollary, we may obtain the following:

Corollary 1. For every f ∈ L1
loc(R), it holds that

sup
|z−x|+|t−R|≤R

u(z, t) ≤ max{Mr,Rf(x),Ml,Rf(x)}.

From this last corollary, we are able to establish the following important – and, as far as the
author knows, new – lemma:

Lemma 2. For every f ∈ L1
loc(R), we have also that

M1
≡Rf(x) = sup

|z−x|+|t−R|≤R

u(z, t).

Proof. From Corollary 1, we have that

M1
≡Rf(x) := sup

|x−y|≤t≤R

u(y, t) ≤ sup
|z−x|+|t−R|≤R

u(z, t)

≤ max{Mr,Rf(x),Ml,Rf(x)} ≤ M1
≡Rf(x).

That is exactly what we wanted to prove. �
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(y, t)

(

x+y−t
2 , x−y+t

2

)

(

x+y+t
2 , y−x+t

2

)

x

Figure 3. Illustration of Lemma 1: the points
(

x+y−t
2 , x−y+t

2

)

and
(

x+y+t
2 , y−x+t

2

)

are the projections of (y, t) over the lines t = x− y and t = y+ x,
respectively.

(y, t)

y − αt y y + αt

Figure 4. In the figure, the dark gray area represents the region that our Lemma
gives, for some 1

2 t < R < α
1−α t, and the black interval is one in which Mαf =

M1
≡Rf ≡ Mαf(y).

Let R be then selected such that t
2 < R < α

1−α t. For α > 1
3 this is possible. This condition is

exactly the condition so that the region

{(z, t) : |z − y|+ |t−R| ≤ R} ⊂ C(y, α, t).

Now we are able to end the proof: if I is a sufficiently small interval around y, then, by continuity,
it must hold true that the regions

{(z, t) : |z − y′|+ |t−R| ≤ R} ( C(y, α, t),

for all y′ ∈ I. This is our desired interval for which Mαf ≡ MRf. But we already know that,
from [1, Lemma 3.6], M1

≡Rf satisfies a stronger version of the maximal attachment property. In
particular, we know that, if M1

≡Rf is constant in an interval, then it must be equal to the function
f at every point of that interval. But this is exactly our case, as we have already noticed that
Mαf is constant on [y − αt, y + αt], and therefore also on I. This implies, in particular, that

Mαf(y) = M1
≡Rf(y) = f(y),

which concludes this proof.
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3.2. Proof of V(Mαf) ≤ V(f), for α ≥ 1
3 . We remark, before beginning, that this strategy, from

now on, is essentially the same as the one contained in [1]. First, we say that a function g : I → R

is two-part monotone if there exists a point c ∈ I such that

gχ(l(I),c) and gχ(c,r(I))

are both monotone. We do then our general strategy in two parts:
Part 1: suppose f ∈ Lip(R). One can easily check then that Mαf ∈ C(R) in this case. Moreover,
we may prove an aditional property about it that will help us later:

Lemma 3 (Reduction to the Lipschtiz case). Suppose we have that

V(Mαf) ≤ V(f), ∀f ∈ BV (R) ∩ Lip(R).

Then the same inequality holds for all Bounded Variation functions, that is,

V(Mαf) ≤ V(f), ∀f ∈ BV (R).

Proof. Let ϕ ∈ S(R) be a smooth nonnegative function such that
∫

R
ϕ(t)dt = 1, and call ϕε(x) =

1
εϕ(

x
ε ). We define then fε(x) = f ∗ ϕε(x). Notice that these functions are all Lipschtiz (in fact,

smooth) functions. Moreover, by Standard Theorems on Approximate Identities, we have that
fε(x) → f(x) pointwise. Therefore, assuming the Theorem to hold for Lipschitz Functions, we
have:

V(Mαfε) ≤ V(fε)

= sup
x1<···<xN

N−1
∑

i=1

|fε(xi+1)− fε(xi)|

≤

∫

R

ϕε(t) sup
x1<···<xN

(

N−1
∑

i=1

|f(xi+1 − t)− f(xi − t)|

)

dt

≤ V(f).

Thus, it suffices to prove that Mαfε(x) → Mαf(x) for all x ∈ R. Let us suppose, for the sake
of a contradiction, that this does not happen. Therefore, there should exist a real number x0, a
sequence ε → 0 and a positive real number η > 0 such that

Mαfε(x0) > (1 + 2η)Mαf(x0).

By definition, we may find - depending on ε - then y, r with |x0 − y| ≤ αr and

−

∫ y+r

y−r

fε(s)ds ≥ (1 + η)Mαf(x).

Suppose that rε → 0. In this case, it is clear that yε → x0. We notice that x0 must be a discontinuity
point of f , as

lim
ε→0

−

∫ y+r

y−r

[f(s)− fε(s)]ds → 0,

in case it is not. But then, using Fubini’s Theorem,

−

∫ y+r

y−r

[f(s)− fε(s)]ds = −

∫ y+r

y−r

∫

R

(f(s)− f(s− t))ϕε(t)dtds

=

∫ ε

−ε

ϕε(t)

(

−

∫ y+r

y−r

[f(s)− f(s− t)]ds

)

dt

> 0,

for ε ≪ 1, as s then ranges over a small neighbourhood of x and f(x) = lim supy→x f(y). Therefore
we also rule this case out, and thus r ≥ c > 0 for each ε > 0. But, by using Fubini’s Theorem
again,
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−

∫ y+r

y−r

fε(s)ds = −

∫ y+r

y−r

∫

−ε

ϕε(t)f(s− t)dtds

=

∫ ε

−ε

ϕε(t)

(

−

∫ y+r

y−r

f(s− t)ds

)

dt

≤
r + ε

r

∫ ε

−ε

ϕε(t)

(

−

∫ y+r+ε

y−r−ε

f(s)ds

)

dt

≤
r + ε

r
Mαf(x).

This already implies that r+ε
r > 1 + η ⇒ r < N(α, η). This boundedness implies that, possibly

passing through a subsequence, we may find (yεk , rεk) → (y0, r0), and then

Mαf(x0) ≥ −

∫ y0+r0

y0−r0

f(s)ds = lim
k→∞

−

∫ yεk
+rεk

yεk
−rεk

f(s)ds > (1 + η)Mαf(x0),

which is an evident contradiction that ends the proof of this lemma. �

Our main claim is then the following:

Lemma 4. Let f ∈ Lip(R) ∩BV (R). Then, over every interval of the set

Eα = {x ∈ R : Mαf(x) > f(x)} =
⋃

j∈Z

Iαj ,

it holds that Mαf is either monotone or two-fold monotone in Iαj .

Proof. The proof goes roughly as the first paragraph of the proof of Lemma 3.9 in [1]: let Iαj =

(l(Iαj ), r(I
α
j ) =: (lj , rj), and suppose that Mαf is not two-fold monotone there. Therefore, there

would be a maximal point x0inI
α
j and an interval J ⊂ Iαj such that Mαf has a strict local

maximum at x0 over J. Then, by the maximal attachment property, we see that we have reached
a contradiction from this fact alone, as J ⊂ Eα. We omit further details, as they can be found, as
already mentioned, at [1, Lemma 3.9]. �

To finalize the proof in this case for α > 1
3 , we just notice that we can, in fact, bound the

variation of Mαf inside every interval Iαj . In fact, we have directly from the last claim that

VIα
j
(Mαf) = |max(Mαf(l(Iαj )−),Mαf(l(Iαj )+))−max(Mαf(cj−),Mαf(cj+))|+

|max(Mαf(r(Iαj )−),Mαf(r(Iαj )+))−max(Mαf(cj−),Mαf(cj+))|

= |Mαf(l(Iαj )−Mαf(cj)|+ |Mαf(r(Iαj ))−Mαf(cj)|

≤ |f(l(Iαj ))−max(f(cj−), f(cj+))|+ |f(r(Iαj ))−max(f(cj−), f(cj+))|

≤ VIα
j
(f).

The way to formally end the proof is the following: Let x1 < · · · < xN be an arbitrary sequence
of real numbers. As adding points to the sequence is a non-decreasing operation in terms of the
variation of the function, then we may assume that the endpoints of all intervals Iαj are contained
in such a sequence. From this point on, we split the variation into two parts: the points inside Eα

and the ones outside. It was seen above that

VEα
(Mαf) ≤ VEα

(f).

As Mαf ≡ f on R\Eα, it is then obvious that

Vx1<···<xN
(Mαf) =

N−1
∑

i=1

|Mαf(xi+1)−Mαf(xi)| ≤ V(f).
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Inequality (1) is proved for α > 1
3 by just taking the supremum over any such a sequence of real

numbers. For α = 1
3 , we just notice that, for any such a sequence,

N−1
∑

i=1

|M
1
3 f(xi+1)−M

1
3 f(xi)|

Fatou
≤ lim

αց 1
3

N−1
∑

i=1

|Mαf(xi+1)−Mαf(xi)| ≤ V(f).

The theorem follows again in this case by taking a supremum.
Part 2: let f ∈ BV (R) be a general function, normalized as f(x) = lim supy→x f(y). The argument
here is morally the same, with just a couple of minor modifications – and with the use of the facts
we proved above, namely, that the result already holds. Therefore, this section might seem a little
bit superfluous now, even though its reason of being is going to be shown while we prove the
characterization of extremizers.

Claim 1. Let Eα = {x ∈ R : Mαf(x) > f(x)}. This set is open for any f ∈ BV (R) normalized
as f(x) = lim supy→x f(y) and therefore can be decomposed as

Eα = ∪j∈ZI
α
j ,

where each Iαj is an interval. Furthermore, the restriction of Mαf to each of those intervals is
either a monotone function or a two-part monotone function with a minimum at cj ∈ Iαj . Moreover,

Mαf(cj) < min{Mαf(l(Iαj )),M
αf(r(Iαj ))}.

Proof of the claim. The claim seems quite sophisticated, but its proof is simple, once one has the
maximal attachment property. The fact that Eα is open is easy to see. In fact, let x0 ∈ Eα. By
definition, there must be a t > 0 and y such that |x − y| ≤ αt and Mαf(x) = u(y, t). This itself
already implies that

lim inf
z→x0

Mαf(z) ≥ Mαf(x0) > f(x0) = lim sup
z→x0

f(z).

This shows that, for z close to x0, the strict inequality should still hold, as desired.
The second part follows in the same fashion as the proof of Lemma 4, and we therefore omit it. �

To finish the proof of the fact that VIα
j
(Mαf) ≤ VIα

j
(f) also in this case we just need one more

lemma:

Lemma 5. For every (maximal) open interval Iαj ⊂ Eα we have that

max(Mαf(l(Iαj )−),Mαf(l(Iαj )+)) = f(l(Iαj )),

and an analogous identity holds for r(Iαj ).

Proof. It is easy to prove that Mαf(x) ≥ min(Mαf(x−),Mαf(x+)) for all x ∈ R. We separate
therefore into two cases:

• If Mαf is continuous at l(Iαj ), then we have automatically that Mαf(l(Iαj )) ≥ f(l(Iαj )). If
the inequality were strict, we would have that l(Iαj ) ∈ Eα. But then there would be an

open interval Eα ⊃ J ∋ l(Iαj ), which contradicts the maximality of Iαj .
• If Mαf(l(Iαj )+) > Mαf(l(Iαj )−), then, as f ∈ BV (R), we can select two sequences {xn}n≥1, {yn}n≥1

such that yn ր l(Iαj ), xn ց l(Iαj ) and f is continuous at each point of {yn}n≥1, {xn}n≥1.
By those properties, we have that Mαf(xn) ≥ f(xn),M

αf(yn) ≥ f(yn). This shows that

max(Mαf(l(Iαj )+),Mαf(l(Iαj )−)) ≥ max(f(l(Iαj )−), f(l(Iαj +)).

In the case where the inequality above is strict, then suppose, without loss of generality,
that the sequence {yn}n≥1 satisfies, for n sufficiently large, there is ε0 > 0 with the property
that

Mαf(yn)−max(f(l(Iαj )−), f(l(Iαj +)) > ε0.

This implies that there must be a sequence of points (zn, tn) such that

u(zn, tn)−max(f(l(Iαj )−), f(l(Iαj +)) ≥
ε0
2
, |yn − zn| ≤ αtn,

1

δ0
≥ tn ≥ δ0
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for n ≫ 1, – ortherwise either limn→∞ u(zn, tn) = limn→∞ f(yn) or we get M
αf(l(Iαj )+) =

Mαf(l(Iαj )−), – and therefore we may extract a subsequence {(znk
, tnk

)}k≥1 such that

(znk
, tnk

) → (z0, t0) that satisfies |z0 − l(Iαj )| ≤ αt0. This implies already that

Mαf(l(Iαj )) −max(f(l(Iαj )−), f(l(Iαj +)) ≥
ε0
2
.

This is again a contradiction, by the same argument as in the first case. This finishes the
proof of the Lemma.

The finish in this case uses Lemma 5 in a direct fashion, combined with the strategy for Part 1:
namely, the estimate

VIα
j
(Mαf) = |max(Mαf(l(Iαj )−),Mαf(l(Iαj )+))−max(Mαf(cj−),Mαf(cj+))|+

|max(Mαf(r(Iαj )−),Mαf(r(Iαj )+))−max(Mαf(cj−),Mαf(cj+))|

≤ |Mαf(l(Iαj )−Mαf(cj)|+ |Mαf(r(Iαj ))−Mαf(cj)|

≤ |f(l(Iαj ))−max(f(cj−), f(cj+))|+ |f(r(Iαj ))−max(f(cj−), f(cj+))|

≤ VIα
j
(f)

still holds, by Lemma 5 and by the fact that cj ∈ Iαj . This finishes finally the most general version

of Theorem [?]. �

3.3. Absolute continuity on the detachment set. We prove briefly the fact that, for f ∈
W 1,1(R), then we have that Mαf ∈ W 1,1

loc (R) for any 1 > α > 0. Actually, we may prove some-
thing a little bit stronger: for f ∈ BV , with our standard normalization – that is, lim supy→x f(y) =
f(x)–, then the restriction of Mαf to Eα = {Mαf > f} is absolutely continuous.

The proof of the second fact claimed above is just a simple adaption of [8, Claim 7.2] and [1,
Lemma 3.8]. Indeed, let

Eα,k = {x ∈ Eα : ∃(y, t),M
αf(x) =

1

2t

∫ y+t

y−t

|f(s)|ds and 2t ≥
1

k
}.

Then we see that Eα = ∪k≥1Eα,k. Moreover, for x, y ∈ Eα,k, let then (y1, t1) have this property
for x. Suppose also, without loss of generality, that y ≥ x and Mαf(x) ≥ Mαf(y). We have that

Mαf(x)−Mαf(y) ≤
1

2t1

∫ y1+t1

y1−t1

|f(s)|ds−
1

2
1+α (y − y1 + t1)

∫ y1+t1

y1−t1

|f(s)|ds

≤
2

1+α (y − y1)−
2α
1+α t1

2t1 ·
2

1+α (y − y1 + t1)

∫ y1+t1

y1−t1

|f(s)|ds

≤
2

1+α |y − x|
2

1+α (y − y1 + t1)
‖f‖∞ ≤

|x− y|

2t1
‖f‖∞ ≤ k|x− y|‖f‖∞.

This shows that Mαf is Lipschitz continuous with constant ≤ n‖f‖∞ on each Eα,n. This proves
already the second assertion. The proof of the first one, however, follows from the second one,
using the well-known Banach-Zarecki lemma:

Lemma 6 (Banach-Zarecki). A function g : R → R is absolutely continuous if and only if the
following conditions hold simultaneously:

(A) g is continuous;
(B) g is locally of bounded variation;
(C) g(S) has measure zero for every set S with |S| = 0.

Let S be then a null-measure set on the real line and f ∈ W 1,1(R) – which implies that
Mαf ∈ C(R) –, and let us estimate:
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|Mαf(S)| ≤ |Mαf(S ∩Ec
α)|+

∑

k≥1

|Mαf(S ∩ Eα,k)|

≤ |f(S ∩ Ec
α)|

= 0,

where we used that f ∈ W 1,1(R) (and particularly f is absolutely continuous) on the last inequal-
ity. This completes the proof.

3.4. Sharpness of the inequality and extremizers. In this part, we prove that the best con-
stant in such inequalities is indeed 1, and characterize the extremizers for such. Namely, we mention
promptly that the inequality must be sharp, as f = χ(−1,0) reaches equality.
It is easy to see that, to do so, we may assume that f(x) = lim supy→x f(y). We have to be es-
pecially careful now, as we can have points on R for which f > Mαf. We define then two more
sets

E∗
α = {x ∈ R; f(x) > Mαf(x)} and E0

α = {x ∈ R; f(x) = Mαf(x)}.

As we already now, the set E∗
α is at most countable. We divide the proof in this section into several

claims:

Claim 2. E∗
α ⊂ ∂Eα = {x ∈ R : x ∈ Eα \ Eα}. Moreover, the points where that happens are

discontinuity points of f .

Proof. Let a ∈ E∗
α, and f(a) = f(a+) > f(a−) – as, if they were equal, a would be a Lebesgue

point of f . Therefore, as also

Mαf(a) ≥
(1 + α)f(a+) + (1 − α)f(a−)

2
>

f(a+) + f(a−)

2
,

and

lim inf
x→−

Mαf(x) ≥ Mαf(a),

Mαf(x) >
f(a+) + f(a−)

2
> f(x), for all x close to a at its left.

This finishes the proof of the claim. �

Claim 3. Let f ∈ BV (R) normalized as before satisfy V(f) = V(Mαf). If we decompose then
Eα = ∪jI

α
j , where each of the Iαj is open, then

VIα
j
(f) = VIα

j
(Mαf).

Proof. Let P ,Q be two finite partitions of R such that
{

V(Mαf) ≤ VP(Mαf) + ε.

V(f) ≤ VQ(f) + ε.

Now let the mutual refinement of those be S = P ∪ Q. As our partition is finite, there is a finite
number of intervals from those in Eα that contain at least a point in S. We will focus on those
intervals: with each of those, we add the following points:

(A) If f = Mαf on the boundary of an interval Iαj , we add to the collection both endpoints

r(Iαj ), l(I
α
j ).

(B) If f > Mαf at at least one of the points on the boundary of one of those intervals, select
then a point r̃j next to rj := r(Iαj ) such that

• f(r̃j) ≤ Mαf(r̃j);
• |Mαf(r̃j)− f(rj)| ≤ ε2−20j;
• |f(r̃j)− f(rj)| ≤ ε2−20j ;
• |r̃j − rj | ≤ ε2−20j.

Add then such a point to our collection.
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(C) If Mαf is not monotone on the interval Iαj , then, as we showed it has at most one local
minimum, add this point cj to the collection.

(D) Finally, add a finite quantity of points on each Iαj such that the variation of f according

to the partition between the points l̃j and r̃j selected as above is at least greater than
VIα

j
(f)− ε2−20j.

It is easy to see that, from the prescriptions above, if we denote by S ′ this new partition, then, as

|VS′(f)− VS′(Mαf)| ≤ 2ε,

We will get that
∑

j∈Z

VIα
j
(f)− 2ε ≤

∑

j∈Z

V(lj ,rj)∩S′(f) ≤
∑

j∈Z

VIα
j
(Mαf) + 2ε.

As ε was arbitrary, comparing the first and last terms above and looking back to our proof that
in each of the Iαj the variation of f controls that of the maximal function, we conclude that, for
each j ∈ Z,

(2) VIα
j
(f) = VIα

j
(Mαf).

This finishes the proof of this claim. �

Claim 4. Let f, Iαj as above. Then f and Mαf have to be monotone in Iαj .

Proof. Suppose this is not the case. This would imply the existence of a point inside the interval
cj ∈ Iαj such that

min{f(cj+), f(cj−)} < min{f(l(Iαj )), f(r(I
α
j ))}.

Suppose the minimum on the left is attained for f(cj+), without loss of generality. Then

VIα
j
(f) ≥ |f(l(Iαj ))− f(cj+)|+ |f(r(Iαj ))− f(cj+)|

≥ f(l(Iαj ))− 2f(cj+) + f(r(Iαj ))

≥ max(Mαf(r(Iαj )−),Mαf(r(Iαj )+))− 2Mαf(y) + max(Mαf(l(Iαj )−),Mαf(l(Iαj )+)),

∀y ∈ Iαj .

But this last expression is always strictly greater than VIα
j
(Mαf) in the case when f(cj) <

Mαf(cj), which is our case here, by definition. We get immediately to a contradiction, which
shows our claim to be true. �

Notice that this last claim proves also that, if Iαj is bounded, f is non-decreasing over it and lj
is its left endpoint, then f(lj−) ≤ f(lj+), as otherwise we would arrive at a contradiction with the
fact that VIα

j
(f) = VIα

j
(Mαf). An analogous statement holds for the right endpoint, and analogous

conclusions if f is non-increasing instead of non-decreasing over the interval.

Next, we suppose without loss of generality that the function f is non-decreasing on Iαj , as the
other case is completely analogous.

Claim 5. Such an f is, in fact, non-decreasing on (−∞, r(Iαj )].

Proof. Our proof of this fact will go by contradiction:

First, let aj = inf{t ∈ R; f is non-decreasing in [t, r(Iαj )]}, and define bj < aj such that the
minimum of f in [bj , rj ] happens inside (bj , rj). Of course, such a minimum need not happen at a
point, but it surely does happen at a lateral limit of a point.

Subclaim 1. Mαf(aj) = f(aj) and f(aj−) = f(aj+).

Proof. We have to consider some different cases:

• If Mαf(aj) > f(aj), then there exists an open interval Eα ⊃ J ′
j ∋ aj , and, as we proved

before, f must be monotone in such an interval. By the definition of aj , f must be non-
decreasing, which is a contradiction to the definition of aj .
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• If Mαf(aj) < f(aj), then, as we have seen before, there exists an interval Eα ⊃ J ′′
j such

that aj is the right end point of J ′′
j , as we have seen that E∗

α ⊂ ∂Eα. But then f must be

non-decreasing on J ′′
j . In fact, it is easy to see that, for this present case to be possible, we

are forced to have f(aj+) > f(aj−). But then, if f were non-increasing on J ′′
j , we would

have that VJ′′

j
(f) > VJ′′

j
(Mαf). Therefore, f is indeed non-decreasing on this interval, and

this is a contradiction to the definition of aj .

Now for the second equality: if it were not true, then aj would be, again, one of the endpoints
of a maximal interval Jj ⊂ Eα. If aj is the left-endpoint, then it means that f(aj−) > f(aj+).
But this is a contradiction, as f then must be non-decreasing on Jj , and therefore we would again
have that VJj

(f) > VJj
(Mαf). Therefore, aj is the right endpoint, and also f(aj−) < f(aj+). At

the present moment an analysis as in the proof of the case Mαf(aj) = f(aj) is already available,
and thus we conclude that f shall be non-decreasing on Jj , which is again a contradiction to the
definition of Jj . �

We must prove yet another fact that will help us:

Subclaim 2. Let

D = {x ∈ (bj , rj) : min(f(x−), f(x+)) attains the minimum in (bj , rj)}.

Then there exists d ∈ D such that f(d−) = f(d+) and Mαf(d) = f(d).

Proof. If aj ∈ D, then our assertion is proved by Subclaim 1. If not, then D ⊂ (bj , aj). In this
case, pick any point d0 in this intersection.

Case 1:f(d0+) = f(d0−). In this case, we claim that we have already that f(d0) = Mαf(d0). Oth-
erwise, we would have that Mαf(d0) > f(d0), and then there would be an interval Eα ⊃ J0 ∋ d0.
By the fact that all the points in D must lie in (bj , aj), and that f is monotone on J0, we see
automatically that either J0 ⊂ (bj , rj) or M

αf(bj) ≤ Mαf(d0), a contradiction. Suppose also that
f is non-decreasing on J0, and the other case can be handled analogously. We must have then
that f is continuous on l0 – the left endpoint of J0, and as othwersie we would have some point
y′ ∈ (bj , aj) with f(y′) < f(d0). Then naturally Mαf(l0) = f(l0) there. This l0 ∈ D is our desired
point.

Case 2:f(d0+) > f(d0−). It is easy to see that, in this case, there is an open interval J ⊂ Eα such
that either J ∋ d0 or d0 is its right endpoint. In either case, we see that f must be non-decreasing
over this interval J , and let again l0 be its left endpoint. As we know, l0 ∈ D again, l0 ∈ (bj , rj)
and, by the comments following Claim 4, we must have that f(l0−) = f(l0+). Of course, by being
the endpoint we have automatically again that Mαf(l0) = f(l0). This concludes again this case,
and therefore the proof of the subclaim. �

The concluding argument for the proof of the Claim 5 goes as follows: let d be the point that
Subclaim 2 gives. Then we must have that

f(d) = Mαf(d) ≥ Mf(d) ≥ −

∫ d+δ

d−δ

f.

varying δ, it is easy to see that we get a contradiction from that. This contradiction came from
the fact that we supposed that aj > −∞, and our claim is established. �

Now we finish the proof: If Mαf ≤ f always, we get to the case of a superharmonic function,

i.e., a function which satisfies −
∫ x+r

x−r
f(s)ds ≤ f(x) for all r > 0. That is going to be handled in a

while. If not, then we analyze the detachment set:

(A) If all intervals in the detachment set are either increasing or decreasing, our function
must then admit a point x0 such that f is either non-decreasing on (−∞, x0] (resp. non-
decreasing on [x0,+∞),) and f = Mαf on (x0,+∞) (resp. on (−∞, x0)).

(B) If there is at least one interval of each type, then we must have an interval [R,S] such that
• f is non-decreasing on (−∞, R];
• f is non-increasing on [R,+∞);
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• f = Mαf on (R,S).

The analysis is then easily completed for every one of the cases above: If f = Mαf over an
interval, then, as Mαf ≥ Mf , we conclude that f must be superharmonic there, where by “locally

subharmonic” we mean a function that satisfies f(x) ≥ −
∫ x+r

x−r f(s)ds for all 0 ≤ s ≪x 1. As
superharmonic in one dimension coincides with concave, and concave functions have at most one
global maximum, then the first case above gives that f is either monotone or has exaclty one
point x1 such that it is exactly two-fold monotone on R. The case of monotone functions is easily

ruled out, as if limx→∞ f = L, limx→−∞ f = M ⇒ V(f) = |M − L|,V(Mαf) ≤ |M−L|
2 . The

second case is treated in the exact same fashion, and the result is the same: in the end, the only
possible extremizers for this problem are functions f such that there is a point x1 such that f is
non-decreasing on (−∞, x1), and f is non-increasing on (x1,+∞). The theorem is then complete.

3.5. Proof of Theorem 2. We start our discussion by pointing out that the measure dµ = δ0+δ1
satisfies our Theorem.

Proposition 1. Let 0 ≤ α < 1
3 . Then

+∞ = Mαµ(0) > Mαµ

(

1

3

)

< Mαµ

(

1

2

)

> Mαµ

(

2

3

)

.

That is, Mαµ has a nontrivial local maximum.

Before proving our Proposition, we mention that our choice of 1
3 ,

1
2 ,

2
3 was not random: 1

2 is

actually a maximum point of Mαµ, while 1
3 ,

2
3 are local minima.

Proof. By the symmetries of our measure,Mαµ
(

1
3

)

= Mαµ
(

2
3

)

. Therefore, let’s calculateMαµ
(

1
3

)

and Mαµ
(

1
2

)

explicitly.

As we have concentrated our mass at {0, 1}, we will have at most three averages where the
supremum could be achieved in either case. Explicitly, for 1

3 , we have to choose averages that
pick up either {0}, {1}, or both. If it picks only {0}, then we have the existance of (y, t) with
y− t < 0 and | 13 − y| ≤ αt. If | 13 − y| < αt, then, by changing y, we may get an interval (y′, t) that
still contains zero and | 13 − y′| = αt. If y − t < 0, we move both y and t so that y′ − t′ = 0 and

|y′ − 1
3 | = αt′. Therefore, we are restricted to minimizing for those intervals. But then we have

only two possibilities, which are

t =
1

3(α+ 1)
or t =

1

3|α− 1|
.

However, the second option, when α ≥ 1
3 makes us also include {1} in our average. Doing a similar

analysis to the one we did above, we see that, for us to include only {1} in our average, we will
have to take an interval of length at least

2

3α+ 3
.

Finally, to get both of them, we can take, in the case α ≥ 1
3 , y = 1

2 and t = 1
2 . For α < 1

3 , the
interval which maximizes matches exactly with the above mentioned interval that optimizes for
taking “only” {1}. Thus we see that

Mαµ

(

1

3

)

=
3α+ 3

2
, α <

1

3
.

As Mαµ
(

1
2

)

≥ Mµ
(

1
2

)

= 2 > 3α+3
2 ⇐⇒ α < 1

3 , we are done with the proof of this proposition.
�

Proof of Theorem 2. Let fn(x) = n(χ[0, 1
n
] + χ[1− 1

n
,1]). It is easy to see that

∫

gfndx →
∫

gdµ(x),

for each g ∈ L∞(R) that is continuous on [0, t0) ∪ (t1, 1], for some t0 < t1.
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We prove thatMαfn(x) → Mαµ(x), ∀x ∈ [0, 1]. This is clearly enough to conclude our Theorem,
as then, if we fix α < 1

3 , there will be n(α) > 0 such that, for N ≥ n(α),

MαfN

(

1

3

)

< MαfN

(

1

2

)

> MαfN

(

2

3

)

.

To prove convergence, we argue in two steps.

The first step is to prove that lim infn→+∞ Mαfn(x) ≥ Mαµ(x). It clearly holds for x ∈ {0, 1}.
For x ∈ (0, 1), we see that

Mαfn(x) = sup
|x−y|≤αt≤3α

1

2t

∫ y+t

y−t

fn(s)ds.

But then

Mαµ(x) = sup
|x−y|≤αt≤3α

1

2t

∫ y+t

y−t

dµ(s)

= sup
|x−y|≤αt≤3α;t≥δ(x)>0

lim
n→∞

1

2t

∫ y+t

y−t

fn(s)ds

≤ lim inf
n→∞

Mαfn(x),

where δ(x) > 0 is a multiple of the minimum of the distances of x to either 1 or 0. This completes
this part.

The second step is to establish that, for every ε > 0, (1 + ε)Mαµ(x) ≥ lim supN→∞ MαfN (x).
This readily implies the result.

To do so, notice that, as 1 > x > 0, then for N sufficiently large, the average that realizes the
supremum on the definition of Mα has a positive radius bounded bellow in N . Specifically, we
have that

MαfN (x) = −

∫ yN+tN

yN−tN

fN (s)ds, tN ≥ δ(x) > 0.

This shows also that {yN} must be a bounded sequence. Therefore, passing to subsequences if
necessary, we may suppose that yN → y, tN → t. Hence

lim sup
N→∞

MαfN (x) = lim sup
N→∞

−

∫ yN+tN

yN−tN

f(s)ds

≤ (1 + η)
1

2t
lim sup
N→∞

∫ y+(1+ε/2)t

y−(1+ε/2)t

fN (s)ds

= (1 + η)(1 + ε/2)−

∫ y+(1+ε/2)t

y−(1+ε/2)t

dµ(s)

≤ (1 + ε)Mαµ(x),

if we manage to make N sufficiently large, and take η depending on ε such that (1+ η)(1 + ε/2) <
1 + ε. �

Remark. Actually, our proof holds only for a subsequence, as we had to assume that (yN , tN ) →
(y, t). As our method did not take the limit (y, t) directly into account, we can change it so that
for every accumulation point (y′, t′) of {(yN , tN )} and every subsequence converging to it, we are
able to prove our final result.
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4. Proof of Theorems 3 and 4

The idea for this proof is basically the same as before: we prove that the maximal attachment
property still holds in this Lipschitz case, if the Lipschitz constant into consideration is less than
1
2 . By the end, we sketch on how to build the mentioned counterexamples.

4.1. Maximal attachment property for Lip(N) < 1
2 . Let first (a, b) be an interval on the real

line, such that there exists a point x0 inside it with the property that

M1
Nf(x0) > max{M1

Nf(a),M1
Nf(b)}.

Therefore, we wish to prove that, for either that point or another one in (a, b), M1
Nf = f. We begin

with the general strategy: let us suppose that this is not the case. Then there must be an average

u(y, t) = 1
2t

∫ y+t

y−t
|f(s)|ds with N(x) ≥ t > 0, |x− y| ≤ t and M1

Nf(x) = u(y, t). Now we look for a

neighbourhood of x0 ∈ I such that there is R > 0 such that, for all x ∈ I, M1
≡Rf(x) = M1

Nf(x0).

By Lemma 1, we can suppose that either y = x0− t or y = x0+ t, as we can show that y ∈ (a, b).
Without loss of generality, let us assume the first equality.

Case (a): t < N(x0). This is the easiest case, and we rule out with a simple observation: let I be
an interval for which x0 is an endpoint and such that, for all x ∈ I, N(x) > t. We claim then that,
for x ∈ I, M1

≡t+εf(x) = M1
Nf(x0), if ε is sufficiently small. Indeed, if ε is sufficiently small, then

M1
≡t+εf(x) ≤ M1

Nf(x)(≤ M1
Nf(x0)) for every x ∈ I. But then we see also that (x0 − t, t) belongs

to the region {y : |x− y| ≤ s ≤ N(x)}, as then |(x0 − t)− x| = x+ t− x0 ≤ t < t+ ε < N(x). This
shows that

M1
Nf(x0) ≤ inf

x∈I
M1

≡t+εf(x) ≤ sup
x∈I

M1
≡t+εf(x) ≤ M1

Nf(x0).

As before, we finish this case with [1, Lemma 3.6], as then it guarantees us that M1
≡t+εf(x) = f(x)

for every point in this interval I.

Case (b): t = N(x0). In this case, we have to use Lemma 2. Namely, we wish to include the point
(x0 −N(x0), N(x0)) in the region

{(z, s) : |z − x|+ |s−N(x)| ≤ N(x)},

for x < x0 but sufficiently close to it.
Let then ε > 0 and x close to x0 be such that N(x) ≥ N(x0)− ε. We have already a comparison

of the form
M1

Nf(x) ≥ M1
≡N(x0)−εf(x).

We want to conclude that there is an interval I such that M1
≡N(x0)−εf is constant on I. We want

then the point (x0 −N(x0), N(x0)) to lie on the set

{(z, s) : |z − x|+ |s−N(x0) + ε| ≤ N(x0)− ε}.

But this is equivalent to

x− x0 +N(x0) + ε ≤ N(x0)− ε ⇐⇒ |x− x0| ≥ 2ε.

So, we can only afford to to this if x is somewhat not too close to x0. But, as Lip(N) < 1
2 in this

case, we see that

|N(x)−N(x0)| ≤ Lip(N)|x− x0| ⇒ N(x) ≥ N(x0)− Lip(N)|x − x0| > N(x0)− ε ⇐⇒

|x− x0| ≤
1

Lip(N)
ε.

Therefore, we conclude that, on the non-trivial set

{x ∈ R :
1

Lip(N)
ε ≥ |x− x0| ≥ 2ε},

it holds that M1
Nf(x0) ≥ M1

Nf(x) ≥ M1
≡N(x0)−εf(x) ≥ M1

Nf(x0) ≥ M1
Nf(x). By [1, Lemma 3.6],

M1
≡N(x0)−εf(x) = M1

Nf(x) = f(x). This concludes the proof of this fact, and also finishes this part
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N(x0)− ε
N(x0)

|x−x0|
2

x0xa b

(x0 −N(x0), N(x0))

|x−x0|
2

Figure 5. Illustration of proof of case (b).

of the section, as the finish here is then the same as the one used in Theorem 1, and we therfore
omit it.

4.2. The critical case Lip(N) = 1
2 . The argument is pretty simple: we build explicitly a suitable

sequence of approximations of N such that they all have Lipschitz constants less than 1
2 . By our

already proved results, we this will give us the result also in this case.

Explicitly, let N be such that Lip(N) = 1
2 and f ∈ BV (R). Let then P = {x1 < · · · < xM} be

any partition of the real line. Let J ≫ 1 be a large integer, and divide the interval [x1, xM ] into J
equal parts, that we call (aj , bj). Define also the numbers

∆j =
N(bj)−N(aj)

bj − aj
.

We know, by hypothesis, that ∆j ∈ [−1/2, 1/2]. Let then ∆̃j =
1
2 − 1

J3 , and define the function

Ñ(x) =



















N(x1), if x ≤ x1,

N(x1) + ∆̃1(x − x1), if x ∈ (a1, b1),

Ñ(bj−1) + ∆̃j(x− bj−1), if x ∈ (aj , bj),

Ñ(bJ ), if x ≥ xN .

It is obvious that this function is continuous and Lipschitz with constant 1
2 − 1

J3 . If x ∈ [x1, xN ],
then

|Ñ(x) −N(x)| = |Ñ(x) − Ñ(x1) +N(x1)−N(x)| ≤

∫ x

x1

|
1

2
−

1

J3
−

1

2
|dt ≤

|xM − x1|

J3
.

We now choose J such that the right hand side above is less than δ > 0, which is going to be
chosen as follows: for the same partition P , we let δ > 0 be such that

|Ñ(xi)−N(xi)| < δ ⇒ |M1
N(xj)

f(xj)−M1
Ñ(xj)

f(xj)| <
ε

2M
.

This can obviously, by continuity, always be accomplished. This implies that, using the previous
case,

VP(M
1
Nf) ≤ VP(M

1
Ñ
f) + ε ≤ V(M1

Ñ
f) + ε ≤ V(f) + ε.

Taking the supremum over all possible partitions and then taking ε → 0 finishes also this case,
and thus the proof of Theorem 3.
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N(x)

Figure 6. Such a counterexample in the case of α = 3
4 . The dashed lines are the

graphs of x
2 and 1

1+x , and the non-dashes ones the graphs of M1
Nf and N in this

case.

4.3. Counterexample for Lip(N) > 1
2 . Finally, we build examples of functions with Lip(N) > 1

2
and f ∈ BV (R) such that

V(MNf) = +∞.

Fix then α > 1
2 and let a function N with Lip(N) = α be defined as follows:

(A) First, let x0 = 2
2α+1 . Let then N(0) = 1, N(x0) =

x0

2 and extend it linearly in (0, x0).

(B) Let x′
K be the real number that satisfies the equation αx − αxK−1 + xK−1

2 = x+1
2 ⇐⇒

x′
K = xK−1 +

1
α− 1

2

.

(C) At last, take xK = x′
K + 1

2α+1 , and define for all K ≥ 1 N(xK) = xK

2 , N(x′
K) =

x′

K+1
2 ,

extending it linearly on (xK−1, x
′
K) and (x′

K , xK).

As {x′
K}K≥1 is an arithmetic progression, we see that

∑

K≥0

1

x′
K

= +∞.

Moreover, define f(x) = χ(−1,0)(x). We will show that, for this N , we have that

V(MNf) = +∞.

In fact, it is not difficult to see that:

(A) M1
Nf(xK) = 0, ∀K ≥ 0. This is due to the fact that the maximal intervals (y − t, y + t)

that satsify |xK − y| ≤ t ≤ N(xK) are still contained in [0,+∞), which is of course disjoint
from (−1, 0).

(B) M1
Nf(x′

K) ≥ 1
x′

K
+1 . This follows from

M1
Nf(x′

K) ≥
1

2Nf(x′
K)

∫ x′

K

−1

f(t)dt =
1

x′
K + 1

.

This shows that

V(M1
Nf) ≥

∞
∑

K=0

|M1
Nf(x′

K)−M1
Nf(xK)| =

∞
∑

K=0

1

x′
K + 1

= +∞.

This construction therefore works, and Theorem 4 is proved.

5. Comments and remarks

5.1. Nontangential maximal functions and classical results. Here, we investigated mostly
the regularity aspect of our family Mα of nontangential maximal functions, and looked for the
sharp constants in such bounded variation inequalities. One can, however, still ask about the most
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classical aspect studied by Melas [12]: Let Cα be the least constant such that we have the following
inequality:

|{x ∈ R : Mαf(x) > λ}| ≤
Cα

λ
‖f‖1.

By [12], we have that, for when α = 0, then C0 = 11+
√
61

12 , and the classical argument of Riesz

[13] that C1 = 2. Therefore, 11+
√
61

12 ≤ Cα ≤ 2, ∀α ∈ (0, 1). Nevertheless, the exact values of those
constants is, as long as the author knows, still unknown.

5.2. Bounded variation results for mixed Lipschitz and nontangential maximal func-

tions. In Theorems 3 and 4, we proved that, for the uncentered Lipschitz maximal function MN ,
we have sharp bounded variation results for Lip(N) ≤ 1

2 , and, if Lip(N) > 1
2 , we cannot even

assure any sort of bounded variation result.

We can ask yet another question: if we define the nontangential Lipschitz maximal function

Mα
Nf(x) = sup

|x−y|≤αt≤αN(x)

1

2t

∫ y+t

y−t

|f(s)|ds,

then what should be the best constant L(α) such that, for Lip(N) ≤ L(α), then we have some sort
of bounded variation result like V(Mα

Nf) ≤ AV(f), and, for each β > L(α), there exists a function
Nβ and a function fβ ∈ BV (R) such that Lip(Nβ) = β and V(MNβ

fβ) = +∞? Regarding this
question, we cannot state any kind of sharp constant bounded variation result, but the following
is still attainable: it is possible to show that the first two lemmas of O. Kurka [8] are adaptable in
this context if we suppose that

Lip(N) ≤
1

α+ 1
,

and then we obtain our results, with a constant that is even independent of α ∈ (0, 1). On the
other hand, our example used above in the proof of Theorem 4 is easily adaptable as well, and
therefore one might prove the following Theorem:

Theorem 5. Let α ∈ [0, 1] and N be a Lipschitz function with Lip(N) ≤ 1
α+1 . Then, for every

f ∈ BV (R), we have that

V(Mα
Nf) ≤ CV(f),

where C is independent of N, f, α. Moreover, for all β > 1
α+1 , there is a function Nβ and

f(x) =

{

1, if x ∈ (−1, 0);

0, otherwise,

with Lip(Nβ) = β and V(Mα
Nβ

f) = +∞.

5.3. Increasing property of maximal BV−norms. Theorem 1 proves that, if we define

B(α) := sup
f∈BV (R)

V(Mαf)

V(f)
,

then B(α) = 1 for all α ∈ [ 13 , 1]. We can, however, with the same technique, show that B(α) is

increasing in α > 0, and also that B(α) ≡ 1 ∀α ∈ [ 13 ,+∞). Indeed, we show that, for f ∈ BV (R)

and β > α, then V(Mαf) ≥ V(Mβf). The argument uses the maximal attachment property in the
following way: let, as usual, (a, b) be an interval where Mβf has a local maximum inside it, at,
say, x0, and

Mβf(x0) > max(Mβf(a),Mβf(b)).

Then, as we have that Mβf ≥ Mαf everywhere, we have two options:

• If Mβf(x0) = f(x0), we do not have absolutely anything to do, as then also Mαf(x0) =
Mβf(x0).
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• If Mβf(x0) = u(y, t), for t > 0, we have – as in the proof of Theorem 1 – that (y− βt, y+
βt) ⊂ (a, b). But it is then obvious that

Mαf(y) ≥ u(y, t) = Mβf(x0) ≥ Mβf(y) ≥ Mαf(y).

Therefore, we have obtained a form of the maximal attachment property, and therefore we can
apply the standard techniques that have been used through the paper to this case, and it is going
to yield our result.

This shows directly that B(α) ≤ 1, ∀α ≥ 1, but taking f(x) = χ(0,1) as we did several times
shows that actually B(α) = 1 in this range.
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