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Main theorem

Definition
A 1-tube T ⊂ Rn is the 1-neighborhood of a straight doubly infinite
line in the direction e(T) ∈ Sn−1.
Let T1, · · · , Tn be families of 1-tubes in Rn such that e(Tj) is close to
the basis vector ej for Tj ∈ Tj.

Theorem (Multilinear Kakeya/perturbed Loomis–Whitney)

∫
Rn

 ∑
T1∈T1

χT1(x) · · ·
∑

Tn∈Tn

χTn(x)

1/(n−1)

dx

≲ (#T · · · #Tn)
1/(n−1) .

Here and later implicit constants depend only on n.
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Main theorem, discrete version
Let Q denote the lattice of dyadic cubes of unit size. Let also

G(Q) =
(∏

j

#{Tj ∈ Tj | Tj ∩ Q ̸= ∅}
)1/(n−1)

.

Then ∑
Q∈Q

G(Q) ≲
∏

j

(#Tj)
1/(n−1).

Equivalent formulation: for every M : Q → R+ with
∑

Q M(Q) = 1
there exist Sj : Q → R+ with

G(Q)M(Q)1/(n−1) ≲
∏

j

Sj(Q)1/(n−1),

∑
Q

Sj(Q) ≲ #Tj.
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Proof of equivalence (needed direction)
Let G :=

∑
Q G(Q) and M(Q) = G(Q)/G. Then

G =
(
G−1/n

∑
Q

G(Q)
)n/(n−1)

=
(∑

Q

G(Q)(n−1)/nM(Q)1/n
)n/(n−1)

≲
(∑

Q

n∏
j=1

Sj(Q)1/n
)n/(n−1)

(hypothesis)

≤
n∏

j=1

(∑
Q

Sj(Q)
)1/(n−1) (Hölder)

≲
n∏

j=1

(
#Tj

)1/(n−1)
. (hypothesis)

Not much happened, but cross-interaction and self-interaction are
separated.
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Ansatz for tubes

Sj(Q) =
∑
T∈Tj

Sj(Q,Tj)

Theorem
For every function M : Q → R+ with

∑
M = 1 there exist

Sj : Q× Tj → R+ with

M(Q) ≲
∏

j

Sj(Q,Tj) if Tj ∩ Q ̸= ∅,

∑
Q∈Q:Tj∩Q̸=∅

Sj(Q,Tj) ≲ 1 for each Tj ∈ Tj.

Wlog M compactly supported.

Will find polynomial p of degree ≲ λ
and set

Sj(Q,Tj) := λ−1sp,Q(e(Tj)). Add this to handout!
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Directional surface area

Let Zp be the zero set of the polynomial p. Let

sp,Q(v) :=
∫

Zp∩Q
|⟨v,Nx⟩|dHn−1(x), Nx normal unit vector.

(small lie: this is not a continuous function of p, so one has to use a
mollified version instead to apply a topological result)

Guth’s tube estimate:∑
Q∈Q,T∩Q ̸=∅

sp,Q(e(T)) ≤
∫

Zp∩T̃
|⟨e(T),Nx⟩|dHn−1(x) ≲ deg p.

This takes care of the self-interaction term.
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Cross-interaction term

Let now Tj ∈ Tj be tubes and Q ∈ Q. Then∏
j

S(Q,Tj) = λ−n
∏

j

sp,Q(e(Tj))

∼ λ−n
(

vol conv(0, e(Tj)/sp,Q(e(Tj)))
)−1

by transversality

≳ λ−n
(

volBsp,Q

)−1
,

where B is the unit ball of the norm s.
Want to find polynomial p with

λnM(Q) ≲
(

volBsp,Q

)−1
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Visibility

Want to find polynomial p with

M̃(Q) := λnM(Q) ≲
(

volBsp,Q

)−1
=: Visp,Q .

Small lie: we pretend that Bsp,Q ⊂ B for all Q with M(Q) ̸= 0. For
this we need λ to be large enough; this is how we choose λ.
Notice that ∑

Q

M̃(Q) = λn

is approximately the dimension of the space of polynomials of degree
≲ λ in n variables. Let P∗ be the unit sphere in this space.
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Naive approach to maximizing visibility

Imagine for the moment that the directional surface area is isotropic,
i.e. sp,Q(v) ∼ sp,Q∥v∥ for all p,Q, where sp,Q is the usual surface area.
In this case:

1. Fit into each cube Q approximately M̃(Q) disjoint balls of
measure M̃(Q)−1.

2. Use the polynomial ham sandwich theorem to find p of degree
≲ λ that bisects all these balls.

3. In each ball Zp has surface area at least M̃(Q)−(n−1)/n by the
isoperimetric inequality.

4. Summing up gives sp,Q ≳ M̃(Q)1/n, hence Bsp,Q ⊂ M̃(Q)−1/nB,
hence Visp,Q ≳ M̃(Q).

Problem: sp,Q not isotropic.
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Numerology of adapted ellipsoids
Suppose now that Bsp,Q basically does not depend on p, e.g. in the
sense that its John ellipsoid EQ ⊂ B does not depend on p. In this
case:

1. We do not have to worry about the cubes with vol EQ ≲ M̃(Q)−1.
2. For the cubes with vol EQ ≫ M̃(Q)−1 a fixed positive proportion

can be covered by ≤ M̃(Q) disjoint copies of ηEQ for some small
absolute constant η.

3. By the polynomial ham sandwich theorem there exists p of
degree ≲ λ that bisects all these copies.

4. Let v1, . . . , vn be principal axes of EQ. In each copy E′ of ηEQ
the surface Zp has area at least vol(ηEQ) in the direction ηvj for
some j (this is an affine invariant formulation of the isoperimetric
inequality).

5. Adding these contributions we sp,Q(ηvj) ≳ 1 – contradiction for
small enough η.
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The topological input

Theorem (Lusternik, Schnirelmann, 1930)
If SN is covered by N + 1 closed sets, then one of these sets contains a
pair of antipodal points.

We claim that the sets

B(Q) = {p ∈ P∗ | 1 ≤ Visp,Q ≤ M̃(Q)}

do not cover P∗. To see this we will write ∪QB(Q) as the union of
≲

∑
Q M̃(Q) closed sets that are disjoint from their antipodes. The

John ellipsoid Ep,Q of Bsp,Q depends continuously on p. Using the
geometry of the space of all ellipsoids we split the sphere P∗ into
On(1) symmetric closed subsets P∗

θ on each of which Ep,Q is locally
constant. Let

B(Q, θ) = {p ∈ P∗
θ | 1 ≤ Visp,Q ≤ M̃(Q)}.

11



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The topological input

Theorem (Lusternik, Schnirelmann, 1930)
If SN is covered by N + 1 closed sets, then one of these sets contains a
pair of antipodal points.
We claim that the sets

B(Q) = {p ∈ P∗ | 1 ≤ Visp,Q ≤ M̃(Q)}

do not cover P∗. To see this we will write ∪QB(Q) as the union of
≲

∑
Q M̃(Q) closed sets that are disjoint from their antipodes.

The
John ellipsoid Ep,Q of Bsp,Q depends continuously on p. Using the
geometry of the space of all ellipsoids we split the sphere P∗ into
On(1) symmetric closed subsets P∗

θ on each of which Ep,Q is locally
constant. Let

B(Q, θ) = {p ∈ P∗
θ | 1 ≤ Visp,Q ≤ M̃(Q)}.

11



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The topological input

Theorem (Lusternik, Schnirelmann, 1930)
If SN is covered by N + 1 closed sets, then one of these sets contains a
pair of antipodal points.
We claim that the sets

B(Q) = {p ∈ P∗ | 1 ≤ Visp,Q ≤ M̃(Q)}

do not cover P∗. To see this we will write ∪QB(Q) as the union of
≲

∑
Q M̃(Q) closed sets that are disjoint from their antipodes. The

John ellipsoid Ep,Q of Bsp,Q depends continuously on p. Using the
geometry of the space of all ellipsoids we split the sphere P∗ into
On(1) symmetric closed subsets P∗

θ on each of which Ep,Q is locally
constant. Let

B(Q, θ) = {p ∈ P∗
θ | 1 ≤ Visp,Q ≤ M̃(Q)}.

11



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Covering

1. For each ellipsoid E ⊂ B with vol E ≳ M̃(Q)−1 fix a maximal
collection of disjoint translates of ηE inside each Q, index them
by α = 1, . . . ,Cη−nM̃(Q). Numerology shows that not each
translate of ηEp,Q can be (approximately) bisected

2. Let

B(Q, θ, α) = {p ∈ B(Q, θ) not ≈ bisects α-th copy of ηEp,Q}.

This is a closed set, and it can be partitioned into closed
antipodal sets by looking which of {x ∈ Q | p(x) > 0} and
{x ∈ Q | p(x) < 0} is larger.
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End of talk

Tanks.
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Zhang’s extensions to hyperplanes

We can replace tubes Tj by neighborhoods Hj of affine kj-subspaces
(for simplicity with

∑m
j=1 kj = n). I will not state the results, but will

explain the additional ingredients involved in obtaining them.
Let p denote the same polynomial as before and let µQ be the
pushforward of the surface measure on Zp ∩ Q to Rn = Λ1Rn under
the normal vector field. In this case we use

Sj(Q,Hj) = λ−kj |
⟨

Hj, µ
∧kj
Q

⟩
|,

where Hj is also used for the volume form on the tangential space of
the central affine subpace of Hj. The intersection estimate still holds
(but seems to require a fair bit of linear algebra).
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Cross-interaction for hyperplanes

Lemma
|µ∧n| ≳ Visp,Q.

Proof.
Note sp,Q(v) =

∫
|⟨v,w⟩|dµ(w). By affine invariance wlog Bsp,Q ∼ B.

In this case |µ| ≲ 1 and µ cannot concentracte near hyperplanes.

Lemma

|µ∧n||∧m
j=1Hj| ≲

m∏
j=1

|
⟨
Hj, µ

∧kj
⟩
|.

Proof.
Laplace expansion formula.
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