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Functions with Fourier suport on submanifolds

Free Schrodinger equation: 2mionh = Dy, P(x,0) = g(x)
Solution: Fy : 2mi0Fxp = (2mig) Fxp(€, )

ODE: Fab(&,1) = e Ew(€, 0)
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Functions with Fourier suport on submanifolds

Free Schrodinger equation: 2mionh = Dy, P(x,0) = g(x)
Solution: F : 2midFxp = (2mi€)? Fab(€, 1)
ODE: Fap(g,t) = ™ Fap(e, 0)
A wix t) = [ erePereg(e) de.
t Theorem (Strichartz 1977)

S r supp ¢ ||'QZJ||L2+4/d(Rd+1) S ||QHL2(]R‘7)'

- Fourier restriction formulation:

T2 ||¢||L2+4/d(Rd+1) S H@HLZ(RC’)'



Local version: Decoupling for the paraboloid

Theorem (Bourgain, Demeter 2014) 1
Let 6 be §-caps on the unit paraboloid. U
Let Uy D 0 be & x §2-boxes. J
Then, for any functions with supp fy C Uy, %
04 1
_ 5 2 ) .
HZ]CQHL2+A/d(Rd+W) ~ (ZH]C@HLZJrA/d(RdM)) . X means "< C.67°" for
0 0 every e > 0.

With L2 in place of L2T%/4 this is Plancherel's theorem.
To recover (up to 6—¢ loss) Strichartz estimate, take

fo = /Qe (- —¢&)dg,
¢ ~ 1g(0,5-2) SMooth. Then, with p =2+ 4/d,

follore+ry < Ifoll o oy < 572/DHQGHLD’(R‘7) < 196l 2(ra);

where we used Hausdorff-Young and Holder’s inequalities.



Applications of decoupling

Decoupling for the paraboloid is like localized Strichartz estimates.

- Local smoothing for the wave equation (paraboloid — cone)
Sogge, Seeger, Stein, Mockenhaupt 90s, Wolff, Tao, Vargas, Vega,
Garrigos, Seeger 00s, Bourgain, Demeter 10s

- Strichartz estimates on manifolds
Beltran, Hickman, Sogge

- Maximal estimates for Schrodinger equation

Carleson, Sjolin 70s, Kenig, Ponce, Vega 90s, Guth, X. Li, X. Du, R. Zhang,
H. Wang
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Decoupling inequalities for polynomial surfaces of higher degrees.

- Vinogradov mean value theorem
Vinogradov 30s, Arkhipov, Karatsuba, Chubarikov 80s, Wooley 90s-,
Bourgain, Demeter, Guth 2014, Guo, Li, Oh, Yung, Zhang, ZK



Multidimensional Weyl sums

Question o . .
For a tuple @ of polynomials in d variables, how large is

N
[ 1Y e aprlenl dar )
[o.1° &ynbg=1  pED

Large sieve: estimates for this mean value = pointwise estimates

Example
Vinogradov: & = {¢,..., &} } |
Arkhipov, Karatsuba, Chubarikov: ® = {&... &9 j,...,jq < k}

Parsell: & = { 4W...§£,f’,j1+~-+jd§fe}



Multidimensional Weyl sums

Question o . .
For a tuple ® of polynomials in d variables, how large is

Z aup(§ ))‘pda? (*)

[071]‘1’5 ..... £=1 @ed

Theorem (Parsell, Prendiville, Wooley 2012)
If ® translation-dilation invariant and p even integer, then

() 5 NP7 2eee B89 for p > 2|®|(maxdegp +1).

This exponent of N is minimal (rectangular box around a = 0).

In the Vinogradov case, this gives p > 2R(kR +1).



Decoupling formulation

t i

1 5
supp ¢
Us v
A @y

09 1% &

6 € P() - d-box in X.
Uy D 0 box in X, t.
suppfy C Up.

Let ® be a tuple of polynomials and partition {®(¢) | £ € [0,1]9} into
0-caps #. How does the best constant in the decoupling inequality

HZfeH Zuf 17, suppfa C Us,

depend on §?



A short history

Bourgain, Demeter 2014: & = {& +... + &},
Bourgain, Demeter, Guth 2015: ® = {¢,...,£F},
Bourgain, Demeter, 2015: ® = {£,n,£%,¢n},

Bourgain, Demeter, 2015: ¢ = {&y! |j+ [ < 2},
Bourgain, Demeter, Guo, 2016: & = {&/n! |j + [ < 3},
Guo, Zhang 2018: & = { 41---5{;’ |1+ .. +}C,< R},
Guo, ZK 2018: & = {&' - - &9 | ji +--- +jy < k,j < k}.
Guo, ZK2019: & = {&, ..., &, ) gf, ijgf}.

Guo, Oh, Roos, Yung, ZK 2019: & = {¢&, 1, ¢, 2, n2 + £C).
Guo, Oh, Zhang, ZK 2020: ® quadratic.



Induction on scales

Split this inequality (suppfo € Up): 1

1/2
H%:f9HL6(R2) S (%:HfHer(Rz))

|
‘ s
046 il &
into these two (with 8 c o € [0,1]):
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(5] o
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0 1 affine transformation 0 1
1/2 1/2
13" ol < (DN folloy) s 13 follsgy = (ol
[4 a  0Ca 0Ca 0Co



Bilinear reduction: Whitney decomposition

Notation for arcs a of length > §: 1
fa o= Zf@ 0 o
0Ca s |
0 1

Whitney decomposition:

2 5 i
S =t S fafe
) 0 aq,00: e
dist(ov,a0)~|an|=|as|

|
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Diagonal term: easy. i




Transversality

Parabola: transverse = separated. suppfg Ue,
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Transversality

Parabola: transverse = separated. supp/fg Ue,

1
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0 1

Paraboloid: transverse = not near a hyperplane.

Loomis-Whitney inequality



Transversality

Parabola: transverse = separated. suppfg 7

1
(5] 4.
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Paraboloid: transverse = not near a hyperplane.

Multilinear Kakeya inequality



Transversality: Brascamp-Lieb inequalities

For @ : R" — R™, when does

. M
[ Tmes axs TI(f )7 (50

hold for all positive functions f;? Picture of ker m;:

~ %

Loomis-Whitney Fubini good
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Transversality: Brascamp-Lieb inequalities

For @ : R" — R™, when does

n M n
[ Tmes axs TI(f )7 (50

hold for all positive functions f;? Picture of ker m;:

- RRR

Loomis-Whitney Fubini good

Bennett, Christ, Carbery, Tao 2008: BL inequality holds iff
M
dim(V LM Z im 7rj (BCCT)

for every subspace V < R". -



Obtaining transversality: subvariety Bourgain-Guth

Dichotomy: broad vs. algebraic.

Broad: many papers listed under “history” are about verifying the
BBCT dimension condition for a generic choice of tangent space
projections .

Algebraic: in the main contribution is concentrated near subvariety,
induct on dimension (Bourgain+Demeter 2015 for monomials, Guo+ZK
2019 for polynomials).



A non-transverse example

For any point on the surface
&(r,s,t) = (r,t,5,r*, 5% +rt),
tangent spaces satisfy
lin{(1,0,0,2r,t),(0,1,0,0,2s),(0,0,1,0,r)} L (-2r,0,0,1,0).
Their normal spaces (2-dim), intersect a fixed 2-dim subspace.

This is non-generic in 5-dim, and BCCT condition fails.

13



A non-transverse example

For any point on the surface
&(r,s,t) = (r,t,5,r*, 5% +rt),

tangent spaces satisfy

lin{(1,0,0,2r,t),(0,1,0,0,2s),(0,0,1,0,r)} L (-2r,0,0,1,0).
Their normal spaces (2-dim), intersect a fixed 2-dim subspace.
This is non-generic in 5-dim, and BCCT condition fails.
Theorem (Guo, Oh, Roos, Yung, ZK 2019)
Let @ be §-caps on the surface &(r,s,t) = (r,t,s,r?,s* + rt).

HZ]EGHL‘*(R5) S 573/4(2"]‘:@“?4(]}%5))1/47 SUPPJCAQ C Uy.
0 0

ad-hoc proof: bilinear, two-parameter

(square caps are replaced by rectangular caps).
13



Transversality: scale-dependent Brascamp-Lieb inequalities

X

For 7 : R" — R™, what is the smallest x such that

M n M _n
/B(O’R) H]Z‘(W](X))mM dx S R jl_!:(/fj) mM

hold for all positive functions f; constant at scale 1?
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Transversality: scale-dependent Brascamp-Lieb inequalities

For @ : R" — R™, what is the smallest « such that

M . M
[, s s i

hold for all positive functions f; constant at scale 1?

z‘j

Maldague 2019 (Kakeya version by ZK):

V<R"

=1
5 ‘ ‘
; /
k=0 k=20 k>0

M
n
k = sup dimV — o Zdim 7rVJ.V.
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Decoupling theorem for quadratic forms

Theorem (Guo, Oh, Zhang, ZK 2020)
letd,n>1,and2<qg<p < .

LetQ = (Qq,...,Qpn) be quadratic forms in d variables.
Let § be 6-caps on the manifold Sq = {(€,Q(€)) : € € [0,1]9}. Then,

1> sll, S 07 o Iflg) e,
0 0

where

~Y = max max (d/(T*%*%)*(d/_w(Q)(%fl),Z(H*”))

0<d’<d0<n’<n

(@)= G (@0 M),

rank(M)=d’ rank(M")=n’

The exponent ~ is the smallest possible.
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Bilinear vs multilinear: (r,t,s, r?, s + rt)

/
HZH:]CGHM(H@ ~ 5_3/"(2\\1‘9”;@5))1 k

0
Bilinear:
two linear decouplings: .

) Multilinear:
ocX1xXo—o0X0o° Xo, . ) .
Ixox1o 0% ox o2 multilinear ball inflation:

: o — o’

proved by bilinear methods,
applied alternatingly.

16



Bilinear vs multilinear: moment curve

HZ]CBHU? R (RR) R (Z”f@”m (k1) (RE )

- Different ways to use same transversality
(Fubini/Brascamp-Lieb):

+ Different induction schemes:

- Bilinear proof is effective, because transversality is made explicit

in the Vandermonde determinant.
17



Thanks for listening.
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