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An exact sequence interpretation
of the Lie bracket in Hochschild cohomology

By Stefan Schwede at Cambridge

Abstract. We give an interpretation of the Lie bracket and the divided squaring
operations in the Hochschild cohomology of an associative algebra in terms of exact
sequences of bimodules. We construct natural loops in the category of extensions whose
homotopy classes represent the Lie bracket and squaring operations.

Introduction

Let k& be a commutative ring, A a k-algebra and M an A-bimodule. The Hochschild
cohomology groups Hj (4; M) of 4 with coefficients in M are defined as the cohomology
of a certain cochain complex. If the bimodule M is the algebra A itself, one simply speaks
of the Hochschild cohomology groups of 4 and writes Hf(A). In this case, there is a
graded commutative cup product

U HY (A) @ Hy(4) > Hp*'(4),

as well as a Lie bracket
[—,—1:H(4) @ Hi(4) - HP """ 1(A4)

and divided square operations

Sq:H(A) - H" " 1(4),

S¢ being defined when A is of characteristic 2 or  is even. The definitions of these operations
are in terms of explicit formulae on the cochain level. The term Gerstenhaber-algebra is
used for the kind of structure present in Hochschild cohomology, as a tribute to M.
Gerstenhaber who introduced the Lie bracket and the squaring operations [G]. The
Hochschild cohomology groups are naturally isomorphic to relative bimodule Ext groups
and the standard isomorphism takes the cup product to the Yoneda product, defined by
splicing of exact sequences. The purpose of this paper is to give an interpretation of the
Lie bracket and the squaring operations in terms of exact sequences. For simplicity we
will restrict to the case where 4 is projective as a k-module.
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For any ring R and left R-modules M and N we denote by &xtx (M, N) the category
of n-fold extensions of M by N. The group Exty (M, N) can be defined as the path com-
ponents of (the classifying space of) the category &xty (M, N) with group structure induced
from Baer sum. V. Retakh [R] has determined the homotopy type of the classifying space
of the category &xtx (M, N): it is homotopy equivalent to a product of Eilenberg-MacLane
spaces, and its i-th homotopy group is isomorphic to Ext} (M, N) for 0 < i < n and trivial
for i > n.

Our interpretation of the Lie bracket involves “loops of extensions”. We construct
natural elements in the fundamental group of the category &xt’f""(A, A), where

= A ®,A°®. By Retakh’s theorem, this fundamental group is isomorphic to
Ext'j{;’ " 1(A,A). Given two bimodule extensions F and F of length m and n respectively,
we denote by F# E the (m + n)-fold extension obtained by splicing. The tensor product
of E and F, considered as augmented complexes of right (resp. left) 4-modules, is another
(m + n)-fold extension which comes with edge morphisms in &xt%."" (A, A)

F#E <« EQF > (—1)"E#F.
A mild flatness assumption is needed to ensure that the sequence E ®, F is exact. This
pair of morphisms shows directly that the Yoneda ring structure on Ext*.(A4, 4) is graded
commutative.
Instead of E®, F one can also use the tensor product (—1)"F®, E to relate the
two spliced sequences. Since the tensor product of bimodules over 4 is not symmetric, we

get two different paths between F# FE and (—1)""E 3 F. The upshot is a loop in the
category &xt1" (A4, A).

EQ,F

\

(—1)'""F®A

The construction of this loop is functorial in F and E, and we let
Q1o bxtly. (A, A) X 1y Extlc (A, A) - mExt"(A, A)

be the induced map on components. Our main Theorem 3.1 says that the so defined loop
bracket corresponds to the Lie bracket on Hochschild cohomology.

Theorem. Assume that A is k-projective. Then the following diagram commutes up to
the sign (—1)":
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HP(A) x Hi(4) —— s gpen-1(g)

Kx K u

R 6X11e (A, A) X o Ex154e (A, A) —5—> 7, EX4" (A, A)

The vertical isomorphisms K and u will be defined in Section 3. We give a similar
interpretation of the divided squaring operations by loops of length 2.

The plan for this paper is as follows. In Section 1 we provide an explicit isomorphism
of the fundamental group of &xtip(M,N) (with arbitrary basepoint) with the group
Ext% (M, N). In Section 2 we define the loop operations for extensions. In Section 3 we
review the Hochschild complex and the operations defined therein and compare them to
the loop operations. Proofs are deferred to Section 4.

1. Loops of extensions

Every (small) category has a classifying space, defined as the geometric realization
of its nerve (see [Q], §1). For any choice of object as base point, this classifying space has
homotopy groups. In this paper we will be interested in the fundamental group of a
category of extensions. We now recall how the fundamental group can be defined combi-
natorially, i.e., without reference to the classifying space. The fact that this group is
(isomorphic to) the fundamental group of the classifying space is implicit in [Q], §1,
Prop. 1.

Let X and Y be objects of a small category . A path A from X to Y is a zigzag of
morphisms of ¢

oy o, 0,y o

X=4,« 4,

Here the A; are objects of ¥ and the «; are morphisms of 4. The symbol " means
that o; either goes from A4;_, to A, or it goes the other direction. The number n will be
referred to as the length of the path. There is a unique path of length 0 from X to itself
which we call the trivial path.

We call two paths 4 and A’ of length n and n + 1 elementary homotopic if there exist

composable morphisms f: C, —» C, and g: C, — C, in ¥ such that A’ is obtained from A
by replacing a morphism occurring as one side of the triangle

7N,



156 Schwede, Lie bracket in Hochschild cohomology

by the two other morphisms pointing in the appropriate directions. This means the following
three types of modifications give rise to elementary homotopies:

- If C, AN C, occurs in 4, it can be replaced by C, LN C, LA C,.

¢, ¢,

- If C, SLEN C, occurs in 4, it can be replaced by C,
- If C, g—f> C, occurs in 4, it can be replaced by C, #» C, _£, C,.

In addition, the trivial path at X is declared to be elementary homotopic to the path of
length 1 consisting of the identity morphism of X. We say that two paths are homotopic
relative to X and Y if they are equivalent under the equivalence relation generated by
elementary homotopy.

A suitable combination of elementary homotopies shows that two paths are homotopic
if one can be obtained from the other by inserting or deleting identity morphisms, replacing
a morphism by any left or right inverse pointing in the opposite direction, or deleting or
inserting pieces of the form

S S g

clc0clc or c o —f, .

A loop at X is a path from X to itself. Concatenation of loops gives an associative monoid
structure with the trivial loop as identity element. This concatenation respects the homotopy
relation, so it passes to homotopy classes. On the level of homotopy classes, every loop
has an inverse given by the same loop read from right to left. We denote the resulting
group of relative homotopy classes of loops based at X by =, (%, X') and refer to it as the
fundamental group. We also use the notation n,% for the set of components of the category
%. n,% is the quotient of the set of objects of ¥ by the equivalence relation generated by
the existence of morphisms between objects.

In general, the fundamental group depends on the choice of basepoint. If two objects
X and Y are in the same component of the category %, the fundamental groups =, (%, X)
and n,(%,Y) are non-canonically isomorphic. In fact, conjugation with a path between X
and Y determines an isomorphism, and two such isomorphisms differ by an inner auto-
morphism. Fundamental groups based at objects in different components can be non-
isomorphic.

Now let R be a (unital and associative) ring and M and N left R-modules. We denote
by éxtx (M, N) the category of n-fold extensions of M by N (n = 1). An object of &xtx (M, N)
is an exact sequence of left R-modules

EO-N->E, - >E ->M->0.

We also use the notation E_; =M and E, = N. A morphism £ — F is a commutative
diagram of R-module homomorphisms
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N > E,_, > e > £, > M
N > F,_, > e > F, > M

For n =1, every morphism is an isomorphism, i.e., the category &x7x(M, N) is a groupoid.

There is a standard way of identifying Ext groups, defined via projective resolutions,
with the components of the extension categories (see [MacL], III, Thm.6.4). We recall
this identification in some detail in order to set up notation and extend it to an identification
of the fundamental group of the extension category. We let P — M be a projective resolution,
so that the cohomology groups of the cochain complex Homg (P, N) serve as the groups
Ext¥(M, N). For any n-cocycle ¢ : B, > N (i.e., ¢ - d =0 where d denotes the differential
of P), an object K(¢) of the category &xtxz (M, N) is defined as follows. First we let K(¢), _
be the pushout of the diagram

d
B_ye——PF—"5N.

So K(¢),_, is the quotient module of P,_,; @ N by the submodule consisting of the ele-
ments of the form (—d(x), ¢(x)) for all xe P,. We set K(¢),= P, for 0<i<n—1 and
K(p)_,= M. The maps N - K(¢),_,— K(¢),_, = P,_, are induced by n+ (0,n) and
(p,n) — d(p) respectively. All other differentials are the ones from P. Since ¢ - d =0, the
map N — K(¢),_, is injective. Furthermore, the whole sequence K(¢) is exact, defining
an object of &xtgx (M, N).

An (n—1)-cochain of the complex Homg(P, N) is simply a homomorphism
k: P _, — N. The cochain determines a morphism

p(): K(p) > K(p +x-d)

in the category &xtz (M, N) for any n-cocycle ¢. The morphism u(x) is the identity except
in dimension n — 1. There,

:u(K)nfl : K((p)nfl - K((P+K d)nfl

is induced on quotients by (p,n) > (p,n — x(p)). Then u(x) is a map of extensions and
u satisfies

pe+x') = p(’) p) and p(0)=id.

The existence of the morphisms u(x) shows that the assignment ¢ — K(¢) induces a well
defined map

K:H"(Homg(P,N)) - ny&xta(M,N).

This map is a bijection and a homomorphism with respect to Baer sum of extensions. In
fact, K is inverse to the isomorphism { of [MacL], III, Thm.6.4.



158 Schwede, Lie bracket in Hochschild cohomology

Now suppose the (n — 1)-cochain k : P,_; — N is actually a cocycle, so x - d = 0. Then
u(x) is an endomorphism of the extension K(¢), i.e., a loop based at K(¢).

Theorem 1.1. The homotopy class of the loop u(k) depends only on the cohomology
class of k. The induced map

o H "1 (Homg (P, N)) — m,(8x1x (M, N), K())
is an isomorphism of groups for all n-cocycles .

The left hand side of Theorem 1.1 is the group Ext,~'(M, N), so we recover a special
case of Retakh’s Theorem 1 of [R]. For the convenience of the reader, and because certain
tools will be needed for the poof of Theorem 3.1, we reprove this result in Section 4.

The cautious reader will have noticed that the category &xtx (M, N) is not small, nor
even equivalent to a small category. There are various ways to avoid this problem, depend-
ing on the underlying framework for set theory. We will ignore this point and treat
Exty(M, N) as if it were a small category.

2. The loop bracket

In this section we define the loop bracket of bimodule extensions of an algebra A4
by itself, as well as divided square loops. We will show in Theorem 3.1 that the loop
bracket corresponds to the Lie bracket on Hochschild cohomology groups, and that the
divided square loop corresponds to the divided square operation. We fix a commutative
ring k and a k-algebra 4. We assume for simplicity that A4 is projective as a k-module. In
terms of the previous section, we now take the ring R to be 4°= A4 ®, A°°, so that the
R-modules are precisely the k-symmetric A-bimodules.

We consider objects F of &xt’.(A, A) and E of &xtj.(A, A) with m, n = 1. We denote
by ip: A - F, _, the injection and by p,: F, > A the surjection at the two ends of F, and
similarly for E. E # F then denotes spliced sequence

g P
- = By LRI

n—1

A — F

m—1 - Ey - A,

We denote by (—1) E the sequence obtained from E by replacing p, by —p,. The sequence
(—1) E represents the inverse with respect to Baer sum of the sequence E in 7, &xt. (4, A).
With this convention, the sequences ((—1)E) # F and (—1)(E 4 F) are equal, so we can
leave out the parenthesis. Both sequences are isomorphic to E 4 ((—1) F). Splicing induces
a product on the components of the extension category, and we want to see that this so
called Yoneda product is graded commutative. In other words, we are looking for a path
from F# E to (—1)™E4# F in &xt'5" (A4, A).

For this we view the exact sequence E as a truncated complex

+>0->4-E _ - >E —->0->- -
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together with the map p, as an augmentation to A, and similarly for F. The augmentation
is a quasi-isomorphism when considered as a map of complexes. Then the tensor product
of E and F as augmented complexes of right resp. left A-modules is another (m + n)-fold
extension £ ®, F which comes with morphisms

F#E <™ E®,F %" (—1)"™E 4 F.

In detail,
(E®AF)i: @ E ®,F

k+1=i;k, 120
fori=0,...,m+nand (E®, F)_, = A. The differential in this complex is given as usual by
dle®f)=d(e) ®f+(=1)"™e®d(f),
and pp g, pisequal to pp Q@ pp: E,®,F, > A®, A= A. Note that the three sequences
(=DE)®,F. (-D)(E@,F) and E®,(-1F)
are equal, so again the parenthesis can be omitted.

We want the tensor product to induce an operation on the components of the exten-
sion categories. For this the sequence E ®, F has to be exact, so that it is an object of the
category &xt' (A, A). Although E ® , F will not always be exact, it is so on certain big
enough subcategories of the extension categories. Here “big” means that the subcategory
has the same components as the entire extension category. We could restrict to extensions
E for which all the E, are flat as right A-modules, but we can even arrange that all modules
occurring are left-right projective, i.e., that they are projective when considered as left
A-modules or right A-modules separately. The bimodule A is an example which is left-right
projective, but usually not projective as a bimodule. We let &xt".(4, A) denote the full
subcategory of the extension category consisting of those sequences in which all modules
are left-right projective. For n =1, every extension splits as a short sequence of either left
or right A-modules, hence &xtj. (A4, A) is the entire extension category. For n > 1, however,
&xt".(A, A) is in general a proper subcategory. Since we assumed that A4 is k-projective,
the inclusion of the subcategory éxt%.(A4, A) into the extension category induces a homo-
topy equivalence on classifying spaces (compare [Q], §1, Prop. 2) by the following lemma.

Lemma 2.1. There exists a functor Q from éxt.(A, A) to itself with values in the
Sfull subcategory &xt".(A, A) and a natural transformation from Q to the identity functor.
In particular, the inclusion functor induces a bijection of components

Ty bxt"e (A, A) = 1y Ext (A, A) .

Proof. We consider an n-fold extension E as above and we define Q (E), as the free
A°-module on the underlying set of E,. The map Q(F), - E, is the A°-linear extension
of the identity. For 0 <i<n —1 we define Q (F), inductively as the free 4°-module on the
underlying set of the pullback K; , X _ E; where K; | =Ker(Q(E);,_; —> Q(E),_,). The
map Q (E); — E; and the differential Q (E); —» Q(E);_, are the composites of the A4°-linear
extension of the identity followed by the projection
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and the map

projection inclusion

K, XEi_lEi — K, ——— 0(E);_,

respectively. The module Q (E),_, is defined as the pullback K, _, X  E,_, with similar
maps to E,_; and Q(E),_,. The map 4 - Q(E),_,=K,_,%p ,E,_, takes a to
(0, iz(a)). We omit the verification that the sequence Q(E) is exact and that Q(E) — E is
a morphism in éxt%.(4, A). By construction, the modules Q(E),, ..., Q(E),_, are free
over A°. Since A was assumed to be projective over k, every projective 4°-module is also
left-right projective. It remains to show that Q(FE), _, is left-right projective. By induction
the short exact sequences that make up Q(F) are split as sequences of right 4-modules
and the kernels K; are projective as right modules for i =0, ..., n — 2. Hence

Q(E),-1=ADK, _,

as right 4-modules, thus Q(F),_; is right-projective. The proof that Q(F),_, is left-
projective is analogous. O

Next we define the edge morphisms Ay  and ¢y . In dimensions i with m <i<m +n,
Jpr EQF > F4#E
is given by the projection (E®, F);, —» E,_,, ®, F,, followed by the identification
E_,Q,F,=2E_,.

In dimensions 0 < i < m it is given by the projection (E ®, F); —» E, ®, F; followed by the
map py ® idy,. The morphism

Cpr  EQuF > (—1)"E+#F

is defined in a similar way. In dimensions i with n <i < m + n it is given by (—1)"™*n=9
times the projection (E®, F), - E, ®, F,_, followed by the identification

En ®AFwi—n = F;'—n .

In dimensions 0 =i <n it is given by (—1)™" times the projection (E®,F);, > E, ®, F,
followed by the map id;, ® py to E; ® 4 A = E;. We omit the verification that A  and ¢y
are in fact morphisms in the category &xt’js™ (4, A).

Instead of E®, F we could have used the complex (—1)"F ®, E to relate the two
spliced sequences F 4 E and (—1)™"E # F. Since the tensor product of 4-bimodules is not
symmetric, these two paths between the spliced sequences may be quite different, and this
is what leads to the loop bracket of F and E. In fact, if F and E consist of left-right
projective modules, we obtain a loop in &xt/."" (A4, A)



Schwede, Lie bracket in Hochschild cohomology 161

EQ,F

\ E

(=D"F®E

It is important to note that although two of the objects in the loop have a sign, none of
the morphisms has. This is because any morphism between two objects in &xtg ™" (M, N)
is also a morphism between the negated objects without introduction of extra signs.

We denote the above loop of extensions, oriented counter-clockwise, by Q(F, E).
Since the construction of the loop is functorial in F and E, the homotopy class of Q(F, E)
only depends on the components of F and E in the respective extension categories. Hence
the loop construction induces a well-defined map

Q:myExtle(A, A) X 1o Ext’ye (A, A) - 1 Ext" (A, A) .

In view of Lemma 2.1 we can (and will) identify the components of the subcategories
éxt.(A, A) and &xt’.(A, A) with the components of the whole extension categories. We
refer to the resulting operation as the loop bracket.

We have completely suppressed basepoints in the construction of the loop bracket.
The justification for this is that although the fundamental group can in general depend
on the choice of basepoint, it is independent of such choices in the case of the extension
category. In fact, since the fundamental group of the extension category is abelian (by
Retakh’s theorem [R] or Theorem 1.1), it is independent up to canonical isomorphism of
the choice of basepoint within a component. Furthermore, all components have canonically
isomorphic fundamental groups, so we can simply speak of the fundamental group of the
extension category. For the same reason, a closed oriented loop without choice of basepoint
whatsoever determines an element in the fundamental group. To calculate it, we can choose
any object as basepoint and the result is independent of this choice.

If we assume that A4 is of characteristic 2 (i.e., 2 =0 in A) or that n is even, then Ay
and ¢y ; give two different maps from E®, E to E4 E. We thus get a loop of length 2

EQE - E4 E<"" E®,E
which we denote by S¢(F) and refer to as the divided square loop. After all, the loop

bracket Q(E, E) is the loop product of two copies of S¢(F). Again, since the divided
square loop is functorial in E, it induces a well defined map

Sq:myExtlc(A, A) = o Ext’ (A, A) - 7, Ext58(A, A) .

3. Review of the Hochschild complex

In this section we recall the Hochschild complex of an algebra. More details, back-
ground and applications can be found in [G], [GS], [MacL], X.3 or [W], Chpt.9. We
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use the notation and sign conventions of [GS]. We also recall the definition of the Lie
bracket and the divided square operations in Hochschild cohomology and compare them
to the loop bracket and divided square loop constructions introduced in the previous
section.

Again k is a commutative ring, A an associative and unital k-algebra and M an A4-
bimodule (always k-symmetric). Unspecified tensor products are taken over k. For m = 0,
the Hochschild m-cochains C™(A4; M) are defined as the k-module of k-linear maps from
A®™ to M. The Hochschild coboundary map

0" C™(A; M) - C™ N (A; M)
is defined by
(0"f)a; @+ @ y 1)

=a, f(a,® " ®a,.q)+ Z (_1)if(a1® T ®a0;,,Q @ ay, )
i=1

i=

+(_1)m+1f(a1® ®am)am+1'

The coboundary satisfies 6™ **6™ = 0 and the Hochschild cohomology groups H} (4; M)
are defined as the cohomology groups of the cochain complex (C*(4; M), 5).

We want to view the cup product as an external pairing

U C™A; M) Q@ C"(A;N) > C"*"(A; M @, N)
defined by

(fug)(@,®  ®ay.,) =/(;,®  ®a,) L1 ® & ay.,).

The cup product is associative and unital. This means that it satisfies (fug) U h = fu(guh)
for feC™(A; M), ge C"(A;N),he C?(A4; P) with respect to the natural isomorphism
MRI/N)R@,P=M®,(N®,P). Also ful=f=10f where 1:k — A is the unit map
of A4, viewed as an element of C°(A4; 4) and where we identify A, M= M =M ®, A in
the standard fashion. The cup product furthermore satisfies

o(fug)=(©f)ug+(=1"fu(dg).

When the cochain g takes values in A4, the graded commutator with respect to cup product
is defined as

[fgl"=fug—(=D)"guf

where again we identified M ® , 4 and 4 ® , M with M. [ f,g]" is defined similarly when
f takes values in 4 and g takes values in an arbitrary A-bimodule. Then the equality

Le./1"=—(=1)™[/.g]" holds.

The next piece of structure is the circle product, which was introduced by M. Gersten-
haber in [G]. For fe C™(A4A; M) and ge C"(4;4A) im=1,n=0), and every i=1,...,m,
there is a partial product fo,ge€ C™""~(4; M) defined by substitution in the i-th place
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(foi8)(@;® " ®apiy—1)
:f(a1® T ®a_,®g® a4, )R, - ®am+n*1)‘

The circle product is then defined as the alternating sum
fog= Y (=10 g
i=1

This definition is extended to 0-cochains by setting fo g = 0 if m = 0. Note that f can have
values in any A-bimodule, but g has to take values in 4 for the circle product to make
sense. The coboundary of the circle product satisfies the fundamental formula

(%) 0(fog)=(=D""1(0f)cg+ /(08 +(=1"[g f1".

We also need the functoriality of the various cochain operations with respect to change
of coefficient modules. Since the symbol o is reserved for the circle product, we use a dot
to denote composition of homomorphisms. If 4: M — M’ is a homomorphism of A-
bimodules, we then have the equalities

oh-f)y=n-o(f), (h-fHug=h®id)-(fug) and h-(fog)=("f)-g.

In the case where the bimodule M is the algebra A itself, C*(4; A) is a differential graded
algebra with respect to the cup product, and U induces a product on the Hochschild
cohomology groups H;¥(4; A), which are abbreviated to H;f(A4). The circle product does
not directly pass to a product in cohomology, but the formula () for the coboundary of
a circle product gives rise to further relations and operations, due to M. Gerstenhaber
[G]. For example, if fe C™(A;A) and ge C"(A; A) are cocycles, then (x) specializes to
o(fog)=(—1)"[g, /1", which means that the cup product is graded commutative on the
level of cohomology. Also, if f and g are cocycles as above, then their graded commutator
with respect to the circle product,

[f8]"=fog— (=1 D" Dgof,

is a cocycle whose cohomology class only depends on the classes of f and g. The Hochschild
cohomology groups thus have induced operations

[—. —1: Hy(4) ® Hy(4) - Hy ™"~ 1(4)

which make them into a Lie algebra, graded by degree, which is one less than the dimension
of a cohomology class.

Finally, we consider a cocycle ge C"(A4; A) and assume that n is even or A4 is of
characteristic 2 (i.e., 2 =0 in 4). Then the formula (x) shows that g g is also a cocycle
whose cohomology class only depends on that of g. This defines the divided squaring
operations

Sq: H(A) - H2"1(4).
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The standard identification of the Hochschild cohomology groups with bimodule Ext
groups uses the (unnormalized) bar resolution #(A) of the algebra 4 (see [W], Cor. 9.1.5
or the note on p.287 of [MacL], X. 3). The latter is a complex of 4-bimodules defined by
A(A), = A®"*? (where A acts through the two outermost tensor factors) and with diffe-
rential given by

day® - ®a,,y) = 2 (_1)iao® T ®a;4;4,Q " ®a, -

i=0

The multiplication map #(A4), = A ® A - A is an augmentation of #(A4) to A. Extension
of scalars from k to 4° = 4 ®, A°® gives an isomorphism of cochain complexes

C*(A; M) ~ Hom ,.(#(A), M)

for any A-bimodule M. Since we assume that A4 is projective as a k-module, #(A4) is a
projective resolution of 4 by A-bimodules. The constructions K and u of Section 1 thus
give natural isomorphisms

K:Hp(A; M) - ngéxthe(A, M)
and
w:H "YW (A; M) — n,Ext" (A, M) .
Specializing to the case M = A, there are cohomology operations on the one side and loop
operations on the other. The following main theorem of this paper says that these operations
correspond to each other under the natural isomorphisms.
Theorem 3.1. Assume that A is k-projective. Then the following diagram commutes

up to the sign (—1)":

Hi' (4) x Hi(4) Hptn=h(4)

K x K u

Mo Exte (A, A) X 7o Extje (4, A) —> 7 Ext’i " (A, A)

If n is even or A of characteristic 2, then the following diagram commutes:

n S n—
Hi(4) —2— HM '(4)

Ty Extle (A, A) = n,Ext}e(A4, A)
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4. Proofs

This section is the technical part of the paper. Here we calculate the fundamental
group of the extension category (Theorem 1.1) and carry out the comparison of the
Hochschild cohomology operations with the loop operations (Theorem 3.1). We start in
the situation of Theorem 1.1. So R is a ring and M and N are left R-modules, and we
want to identify the fundamental group of the category &xt (M, N). We first need a notion
of chain homotopy which has meaning inside the category of extensions and which implies
that chain homotopic maps give homotopic paths.

Definition 4.1. Let f, g: F —» E be morphisms in éxtk (M, N). We say that f and g
are chain homotopic relative to M and N if there exist homomorphisms s;: F; - E, ., for
i=0,...,n—2 satisfying

d- s = g —Jfo>
d'si+si—1'd= g,-—fi forO0<i<n-—1,
sn—2‘d=gn—1_f;,_1-

Lemma 4.2. Let f,g: F — E be morphisms in Exty (M, N) which are chain homotopic
relative to M and N. Then the paths represented by f and g are homotopic relative to the
endpoints.

Proof. We adapt the notion of a cylinder object. We will define an object F x I of
Exty(M,N) together with morphisms iy, i,: F— FxI and p:FxI[— F satisfying
p i, =1d; = p - i,. Furthermore, a relative chain homotopy between f and g gives rise to
a morphism S: Fx [ — E in éxtj (M, N) such that S-i, =g and S i, =f. We first show
how this implies the lemma: since f'= S - i;, the path represented by f is homotopic, relative
endpoints, to the path

Since the morphisms i, and i, have p as common left inverse, i; can then be replaced by
i, without changing the relative homotopy class. Because of S - i, = g, the resulting path
is then relatively homotopic to the one represented by g.

The cylinder FX [ is a quotient of the usual cylinder object of the complex F, but
modified so that it becomes an object of the category &xti (M, N). We define

F,®F, ifi=0,
(FxI), = F®F, _®F fo<i<n-—1,
(F, \®F ,®F /W ifi=n—1.
Here W is the submodule of F,_,® F,_, @ F,_, consisting of the elements of the form

(x,dx,—x) for xe F,_,. For i >1, the differential d: F® F, @ F, > F,_®F, _,®F,_,
is given by the formula

d(x,y,2) = (dx+ (= 1D)" "'y, dy,(—=1)" """y + dz).
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For i =n —1, this map passes to the quotient by W. In dimension 1,
d(x,y,2) = (dx — (=1)"y, (= 1)"y + dz) .

The inclusion N — (F,_, @ F,_, ® F,_,)/W sends n to the class of (iz(n),0,0), and the
projection Fy, @ F, — M is the original projection F;, —» M on each summand. The two
inclusion morphisms iy, i, : F — FX [ are given by the first and last direct summand inclu-
sions, the projection morphism p: FxI— F is defined by p,;(x,y,z) =x + z (mutatis
mutandis when i =0 or n —1). A relative chain homotopy s;: F; > E;,,i=0,...,n—2
gives rise to a morphism S: FX I — E via

So(x,2) = go(x) + fo(2),
Si(x,p.2) = g(¥) +(=D""'s,. () + fi(2) i 0<isn—1,

the latter formula being well defined on the quotient when i = n — 1. We omit the verification
that the complex FX [ is acyclic, that S is a chain map and that i,, i; and p have the
properties claimed. O

Now we can prove the first part of Theorem 1.1, namely that g induces a well defined
group homomorphism

o H'H(Homg (P, N)) — 7, (Extz(M, N), K(p)) .

We consider a projective resolution P - M and cocycles ¢: P, > N and k: P,_, - N of
the complex Homg (P, N). If 6: P,_, — N is any homomorphism, a relative chain homo-
topy between p(x) and u(x + o - d) is obtained by setting s; = 0 for i & n — 2 and by setting
s,_,(y) equal to the class of (0,—a(y)) in K(¢),_,=(P,_;® N)/(—d(x),p(x)) for

€ P,_,. Lemma 4.2 thus shows that the loops based at K(¢) given by u(x)and u(x + ¢ - d)
are homotopic. Since p(x + x’) is equal to the composite of u(x) and u(x’) as an endo-
morphism of K(¢), n induces a group homomorphism after passage to homotopy classes
of loops.

The next ingredient is a recipe for calculating the homotopy classes of loops of length
2. This lemma will be the main tool in the comparison of loop operations and Hochschild
cohomology operations. Let f, g: F — E be two morphisms in &xtx(M,N)and P > M a
projective resolution. We choose a chain map @ : P — F covering the identity of M. Then
®,: P, — N is a cocycle and the chain map induces a morphism & : K(®,) — F. Since both
f-®and g-P: P — E cover the identity of M and since P is a complex of projectives, we
can choose a chain homotopy s;: P, » E;,, from f- & to g- ® over M. In general, this
chain homotopy is not in any sense relative to V. The failure to be a relative chain homotopy
is measured by the homomorphism s,_,: P,_, —» N, which is a cocycle in the complex
Homg (P, N). However, the homomorphisms s; for i =0, ..., n — 2 are a chain homotopy,
relative to M and N, between the composites

K@) F 'L E
and

K@) k@) * s F * L E.
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So an application of Lemma 4.2 gives

Lemma 4.3. The loop
f g

F——> FE«—F

is homotopic, relative to F, to the loop

(s, 1) K(@n) (4 F. 0

Fe2 K(@®,)

Now we proceed to show that the map u is surjective. To prepare for this, we need
a lemma about factorization of morphisms in the category &xty (M, N).

Lemma 4.4 ([R], Lemmas 1,2). (1) Every morphism in &xty (M, N) can be factored
as the composite of two morphisms such that the first one is injective and the second one
admits a section.

(2) Pushouts along injective morphisms exist in Exty (M, N).

Proof. (1) Let f: F— E be a morphism in &xty(M,N). We choose an acyclic
complex Z concentrated in dimensions 0 through » —1 with a chain map b: F — Z which
is injective in dimensions 0 through n — 2. For example, Z can be taken to be

F_, fi=n—1,
Z;=(F®F_, if0<i<n-—1,
K, if i=0

with differential d(x;, x;_ ;) = (x;_4,0) and b(x;) = (x;,d(x;)). The desired factorization is
then given by
id
(f.b) ( 0 >

F— F®7Z— F,
where the first map is also injective in dimension n — 1.

(2) Let E P F—25Gbea diagram in &xtx (M, N) with f injective in every

dimension. Let P be the pushout of this diagram in the category of chain complexes of R-
modules. Then P is concentrated between dimensions — 1 and 7, and the groups in degree
—1 and n are canonically identified with M and N respectively. So in order for P to be an
object of &xty(M, N), it suffices to show that P is acyclic as a chain complex. But this
holds because P contains the acyclic subcomplex G and P/G is also acyclic. O

Lemma 4.5. p is surjective.

Proof. We start with an arbitrary loop A based at K(¢) representing a given class
in the fundamental group. If the length of A is greater than 2, we show how to find a loop
of shorter length in the same homotopy class. We can assume that no two adjacent arrows
point in the same direction. This means that some piece of the loop looks like
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(or with all arrows pointing in the opposite direction). We can factor «;, ; = - 1 according
to Lemma 4.4 (1), replace 7 by its section pointing in the opposite direction and compose
that section with «;. This way we can assume that «; ., is injective. By Lemma 4.4 (2), the
pushout of o;,, and o;,, then exists, so these two morphisms can simultaneously be
replaced by morphisms pointing in the opposite directions. But then the arrow replacing
o; ,, can be composed with «;, which reduces the length.

We can thus assume that A is of the form
S/ g
K(p) — E«—— K(9) .

To apply Lemma 4.3, we can take @ : P — K(¢) to be the unique chain map which satisfies
®, = ¢ and @ =idg,,. We choose a chain homotopy s;: P, = E;, , between f- & and g - ®.

13

The loop A is then homotopic, relative K(¢), to the loop of length 1 given by u(s,_,). O

To establish the injectivity of u we recall a general procedure for constructing maps
out of the fundamental group of a category. Suppose 7: % — & is a functor which takes
all morphisms to isomorphisms. A loop

%y

A:X=4,

4,

based at X gives an element 7,(4) in the automorphism group of the object 7(X) by
applying 7 to all the morphisms «;, then inverting those morphisms which point back-
wards, and then composing. 7, respects elementary homotopies and composition, so it
passes to a group homomorphism

Ty 7, (6, X) — Aut,(z(X)).

We apply this construction with € = &xt (M, N) and with ¥ = Z(R), the derived category
of chain complexes of R-modules (see e.g. [W], Chpt.10). A functor

T:Exty(M,N) - 2(R)
is defined by taking an extension E to the doubly truncated complex
(E):0-0->E_,—-> " >E,»>0->0->" -

considered as an object in the derived category. This functor takes all morphisms to iso-
morphisms hence for every object E of &xty (M, N), it induces a group homomorphism

1 (Extx (M, N),E) - Auty g, (1(E)).
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Lemma 4.6. The composite

T H:H"™ {(Homg(P,N)) — Auty (t(K(9)))
is injective. Hence u is injective.

Proof. For any chain complex C and integer j, we denote by C[ ;] the j-fold shift
suspension of C. We denote by ]~\7I the cokernel of ix,,: N[n—1] —» t(K(¢)), considered
as a map of chain complexes. M is quasi-isomorphic to the complex consisting only of
the module M in dimension 0. The short exact sequence of chain complexes

0 — N[n—1] 2" 2(K(¢)) —— M — 0

induces long exact sequences of homomorphism groups in the derived category. Since
Homy, g, (M, M[—1]) = 0, the map

Homy, g, (M’ N[n—1]) - Homy z, (M, T(K(QD)))
induced by iy, is injective. Similarly, since Homy, g, (N[n],7(K(¢))) =0, the map

Homy, g, (M,7(K(p))) - Hom g, (z(K(9)).1(K(9)))
induced by = is injective.

Let k: P,_, —> N be a cocycle representing a cohomology class in the kernel of the
map H" ™ '(Homg (P, N)) - Autg g, (1 (K(¢))). Since « - d = 0, k factors over a chain map
K:M — N[n—1] that sends the residue class of (p,n) in K(¢),_, to x(p). Since the
cohomology class of « is in the kernel, id — (k) is trivial as an endomorphism of 7 (K (¢))
in the derived category. But this difference factors as id — u(x) = ix,, - € - © on the chain

complex level. By the injectivity properties we derived in the previous paragraph, & is thus
trivial in the derived category, so the cohomology class of k is trivial. O

Now we can proceed to prove Theorem 3.1. To identify the homotopy classes of loop
bracket and divided square loop we use Lemma 4.3 with the bar resolution #(A4) as the
projective resolution of 4. We fix components of the extension categories &xtj. (4, A) and
éxt".(A, A). By Lemma 2.1 we can choose representing bimodule extensions F and £ which
consist entirely of left-right projective modules, so that their tensor products are objects
of &xt"id " (A, A). We choose chain maps

p:AB(A) - F and ¢:%(A4) - E

covering the identity of A. It will be convenient to use the same name for the 4-bimodule
homomorphism 1, : #(A4),= A®¢*? — F, and the associated Hochschild cochain in
C'(A; F,). The fact that  and ¢ are chain maps can then be rephrased as

d-y,=06(p;_;) and d-@;=6(p;_,).
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The maps ¢, Uy, e C**H (A4, E, ®, F,) (for 0 <i<n+ m, k,[=0) provide a chain map
U :AB(A) > EQF

covering the identity of 4. The homomorphisms ¢, and 1, are Hochschild cocycles whose

cohomology classes are mapped by K to the components of E and F respectively. Similarly,
the cohomology class of ¢, U, is mapped by K to the component of the sequence £ ® , F.

We start with the slightly easier second part of Theorem 3.1. So we consider a single
n-fold extension E where A is of characteristic 2 or n is even. To apply Lemma 4.3 to the
morphisms

lp g 0pp  EQuE - E#E,
we choose the bar resolution #(A) as the projective resolution of A, so that
pup:HA) > EQE

covers the identity of A. The following lemma, combined with Lemma 4.3, identifies the
homotopy class of the divided square loop S¢ (£) with the divided square cohomology class.

Lemma 4.7. There exists a chain homotopy s;: #(A);, > (E # E); , , between
lpp (@U@) and Qg (9UQ)
Satisfying Sy,_1 = @, ° @,
Proof. We calculate the composite map
B(A) 220 EQE 2 E4 E
from the definitions. This map is trivial in dimension i < » and equal to
[P i— 01" B(A); > E;_,,

in dimensions i for n < i £ 2n. We obtain the desired chain zero homotopy of this composite
by setting s, =@, _,° ¢, for n =i<2n and s; =0 else. In fact, for n =i < 2n we have

desi+si v d=d Qiv1-p)° @+ 0(pi_,° )
= 5((pi—n)o q)n+(_1)n_15((pi—n)Ogon+(_1)n[q)n> (pi—n:lU
= [(pna (pifn]u‘

The second equality is the formula (x) for the coboundary of a circle product, the third
equality uses the assumption that 4 has characteristic 2 or n is even. 0O

The loop bracket has length 4, so we cannot apply Lemma 4.3 directly to calculate
it. Instead we consider the diagram in &xt"." " (4, A)



Schwede, Lie bracket in Hochschild cohomology 171

/\\

(=D)™E#F K(p,vw,)

(=D™puep+e

(=D™F®,E

whose left part is the loop bracket Q(F, E), and whose right part commutes. The important
new ingredient comes from a chain map ¢: #(A4) » F®, E that is added to (—1)"pu @
to make up the lower right map. ¢ is trivial in dimensions < #, and in higher dimensions
it has only two non-trivial components (with respect to the direct sum decomposition of
F®, E). These two non-trivial components are

(=)™ [ 0,1 BA), > Fy = F @, E, forn<i<m+n,

and
(=D gy g0 @) Vig B(A); > Fr o ®uE, fornsism+n—1.

The map ik:k — E,_, is the composite of the unit map k - 4 and the injection

:A — E,_,, viewed as a cocycle in C°(4; E,_,). The fact that ¢ is a chain map uses the
coboundary formula (). The equality of g - (pUy) and Ag - ((=D)™ypUe+¢) can
be verified directly from the definitions.

The chain maps ¢ Uy and (—1)™"p U ¢ + ¢ with source #(A4) factor over morphisms
with source K(¢,u,,), for which we used the same names in the above diagram. Since
the right part of the diagram commutes, the loop bracket represents the same homotopy
class as the loop of length 2 made up from the non-commutative outer square of the
diagram. Now we are in the situation of Lemma 4.3. We again use the bar resolution as
the projective resolution of A4, so we only need a suitable chain homotopy between the
two ways around the outer square in the above diagram. The following lemma provides
such a homotopy and concludes the proof of Theorem 3.1.

Lemma 4.8. There exists a chain homotopy s;: B(A);, > (F# E),., between
dpp e (@Uw) and op p - (=)™ U @ + &) satisfying s,y 1= (—=1)" [P, @,1°.

Proof. Another look at the definitions shows that the difference

OrE" (( 1)man(/’) lpr(@uy): B(A) > FHE
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is trivial in dimensions <m and equal to —[¢@;_,,,¥,]" in dimensions m <i<m + n.
The map gy ;- ¢ is trivial except in dimension m +n and m +n —1, where it is equal to
Lo, v,,]" and (—1)"ig - (p,, ° ¢,) respectively. We define the desired chain homotopy as
follows:

(=) [P 9, 1° if i=m+n—1,
s; = (=)™ Ve, oy, fmSism+n—2,

0 else .
In fact, we have form<i<m+n—2

d-sit+ sy d=(=1)"""D5(p; ) o P+ (= 1)™0(P;_ )
= (=" (@) 0 W+ (= D)"{(= D" 10(9; ) © W
+ (=) [ W P1 -]}
= (=" [P 0y ] = =[O s V)"

where the second equality uses the formula (x) for the coboundary of a circle product,
and the third equality uses that m? is congruent to m modulo 2. Similarly,

A Spin—t ¥ Spien—z d=(=1)"ig [, 9,1° + (= D" """ V5(p,_, > p,,)
= (=1"ig (o @)+ (=D"" " Vig-(9,°p,)
+ (=)= D)" T (@, - 1) © Y+ (= D" [ W 117}
= (=1)"ig- W @) + (=D)"" " V[, 0, 11"

= (=" (peoo,) =[O, 1,17 O
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