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Abstract. We propose a formalism to capture the structure of the equivariant bordism

rings of smooth manifolds with commuting involutions. We introduce the concept of an
oriented elRO

2 -algebra, an algebraic structure featuring representation graded rings for all

elementary abelian 2-groups, connected by restriction homomorphisms, a pre-Euler class,

and an inverse Thom class; this data is subject to one exactness property. Besides equi-
variant bordism, oriented global ring spectra also give rise to oriented elRO

2 -algebras, so

examples abound. Inverting the inverse Thom classes yields a global 2-torsion group law.
In this sense, our oriented elRO

2 -algebras are delocalized generalizations of global 2-torsion

group laws.

Our main result shows that equivariant bordism for elementary abelian 2-groups is an
initial oriented elRO

2 -algebra. Several other interesting equivariant homology theories can

also be characterized, on elementary abelian 2-groups, by similar universal properties. We

prove that stable equivariant bordism is an initial elRO
2 -algebra with an invertible orienta-

tion; that Bredon homology with constant mod 2 coefficients is an initial elRO
2 -algebra with

an additive orientation; and that Borel equivariant homology with mod 2 coefficients is an

initial elRO
2 -algebra with an orientation that is both additive and invertible.
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Introduction

The purpose of this paper is to unveil the universal property of the equivariant bordism
rings for elementary abelian 2-groups. More precisely, we will show that equivariant bordism
of manifolds with commuting involutions is an initial example of a specific kind of algebraic
structure that we call an oriented elRO2 -algebra. The superscript ‘RO’ refers to the feature that
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gradings by real representations are hard wired into our theory. Our formalism also allows
to characterize several other interesting equivariant homology theories, on elementary abelian
2-groups, by similar universal properties in the category of oriented elRO2 -algebras; examples in-
clude stable equivariant bordism, Bredon homology with constant mod 2 coefficients, and Borel
cohomology with mod 2 coefficients. In short, stable equivariant bordism is initial among ori-
ented elRO2 -algebras equipped with an invertible orientation; Bredon homology is initial among

oriented elRO2 -algebras equipped with an additive orientation; and Borel cohomology is initial

among oriented elRO2 -algebras equipped with an orientation that simultaneously invertible and
additive.

The key new insight that we wish to promote in this paper is that the algebraic structure of
an orientable elRO2 -algebra arises very naturally in the study of equivariant homology theories
for elementary abelian 2-groups, and that it greatly clarifies and conceptualizes the ‘true’
nature of several prominent equivariant theories. Indeed, for all the theories mentioned in
the previous paragraph, there is a vast literature of explicit calculations, in particular for the
group with two elements. Examples include [2, 4, 5, 6, 7, 10, 12, 15, 28, 29, 30] for equivariant
bordism, [9, 15, 28] for stable equivariant bordism, and [3, 11, 14, 18, 19, 20, 21, 22, 26, 27] for
Bredon homology and cohomology. Many of the answers are in terms of lists of generators and
relations. While often quite explicit, the present authors do not find many of these calculations
conceptually enlightening, and contemplating the answers left us wondering what it actually
means to ‘calculate’ or understand such kinds of mathematical structures. Furthermore, none
of the previous results we are aware of relate to Quillen’s algebraic interpretation [24] of the
bordism ring N∗ as the 2-torsion Lazard ring, carrying the universal formal group law with
trivial 2-series.

Our approach shifts the emphasis away from explicit calculations of equivariant bordism or
cohomology rings for individual groups of equivariance; we focus on the question: ‘What do
the equivariant rings represent?’ A lesson we learned is that for getting interesting answers,
one might want to:

• consider all elementary abelian 2-groups simultaneously, keeping track of the con-
travariant functoriality in group homomorphisms, and

• remember and exploit the RO-grading by real representations.

We implement these two aspects in the structure an oriented elRO2 -algebra. Central to this
notion are two distinguished classes of elements, the ‘pre-Euler classes’ aλ and the ‘inverse
Thom classes’ tλ, indexed by all nontrivial characters λ of elementary abelian 2-groups. The
structure is subject to one key regularity property: multiplication by the pre-Euler classes of
nontrivial characters must be injective, with cokernel given by the value at the kernel of the
given character, while the classes tλ must restrict to the unit at the trivial group. In the case of
equivariant bordism, aλ equals the bordism class of the inclusion {0} −→ Sλ of the origin into
the representation sphere associated to λ, while tλ is given by the bordism class of the identity
map Sλ −→ Sλ. In the case of Bredon homology, the classes aλ and tλ generate the entire
representation-graded ring, subject to certain explicit polynomial relations [18]. The precise

definition of an oriented elRO2 -algebra will be given in Definition 1.4. Notably, the category

of oriented elRO2 -algebras contains the category of 2-torsion formal group laws as a reflective
subcategory via the ‘complete t-invertible’ objects, see Section 8. Hence, in very loose terms,
an oriented elRO2 -algebra can be viewed as a delocalized and decompleted version of a 2-torsion
formal group law.

After this attempt to provide motivation for our formalism, we now list our main results.
The first of these, to be proved as Theorem 7.14 below, makes the title of this paper precise:
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Theorem A. Equivariant bordism is an initial oriented elRO2 -algebra.

We emphasize that in contrast to all previous results that we are aware of, Theorem A
characterizes geometric equivariant bordism in absolute terms rather than relative to the non-
equivariant bordism ringN∗. In particular, no a priori connection to formal group laws, nor any
N∗-algebra structure, are directly built into the definition of an oriented elRO2 -algebra. Still,
the regularity properties of the pre-Euler classes together with the functoriality in elementary
abelian 2-groups indirectly induce nontrivial structure also over the trivial group, namely
that of a 2-torsion formal group law. As such, Theorem A can be viewed as a refinement of
Quillen’s theorem [24]; however, our Theorem A does not provide an independent proof of
Quillen’s result, as we rely on it as central input.

We now turn to our next result. Stable equivariant bordism is a certain localization of
equivariant bordism first considered by Bröcker and Hook [9, §2]. We call an orientation of

an elRO2 -algebra invertible if the inverse Thom classes for all characters of elementary abelian
2-groups act invertibly, see Definition 8.1. Stable equivariant bordism is, essentially by design,
the oriented elRO2 -algebra obtained from equivariant bordism by inverting all those inverse
Thom classes. The following result is thus an immediate corollary of Theorem A:

Theorem B. Stable equivariant bordism is an initial invertibly oriented elRO2 -algebra.

Theorem B will be proved as Corollary 8.6 below. As we explain at the end of Section 8,
combining Theorem B with the main result of Bröcker and Hook [9] yields an independent
proof of a recent result of the first author, namely that the global 2-torsion group law carried
by the global Thom spectrum MO is initial, see [17, Theorem D]. In fact, this earlier result of
the first author was a key motivation for the present project, and some of our arguments are
inspired by arguments from [17].

The next interesting example is Bredon homology with coefficients in the constant Mackey
functor with value F2; by definition, the Z-graded part of this theory is a copy of F2 con-
centrated in dimension 0. These Bredon homology groups have attracted a certain amount of
attention, and we listed specific references with many explicit calculations above. In this paper
we show an algebraic universal property for the coefficients of Bredon homology. The oriented
elRO2 -algebra of Bredon homology has a unique orientation, and this orientation is additive
in the sense of Definition 3.3. We use the adjective ‘additive’ because the formal group law
arising from an additive orientation is the additive one, see Example 4.8.

Theorem C. Bredon homology with constant F2-coefficients is an initial additively oriented
elRO2 -algebra.

Theorem C is proved as Theorem 3.5 below. In our paper [18], we provide an explicit
presentation of the representation-graded Bredon homology rings with constant F2-coefficients.

The last example whose universal property we discuss is the mod 2 global Borel spectrum
b(HF2), representing Borel equivariant cohomology with F2-coefficients. The associated elRO2 -
algebra has a unique orientation, and this unique orientation is both additive and invertible.
We prove in Theorem 8.8 that mod 2 global Borel cohomology is characterized by such an
orientation:

Theorem D. Borel cohomology with F2-coefficients is initial among oriented elRO2 -algebras
whose orientation is both additive and invertible.

In Section 9 we explain how our theory can be used to reprove various previous results on
equivariant bordism, in particular the Conner–Floyd exact sequence [12], Alexander’s descrip-
tion [2] of an explicit basis over N∗ for the bordism ring of involutions, and Firsching’s pullback



4 MARKUS HAUSMANN AND STEFAN SCHWEDE

square [15]. In all cases, the results in fact hold for a large class of oriented elRO2 -algebras, and
not just for the initial one given by equivariant bordism.

Acknowledgments. The authors are members of the Hausdorff Center for Mathematics
at the University of Bonn (DFG GZ 2047/1, project ID 390685813). A substantial part of
the work for this paper was done while the second author spent the summer term 2023 on
sabbatical at Stockholm University, with financial support from the Knut and Alice Wallenberg
Foundation; the second author would like to thank SU for the hospitality and stimulating
atmosphere during this visit.

1. Oriented elRO2 -algebras

In this section we introduce our main characters, the oriented elRO2 -algebras. One of the key
points of this paper is the insight that to unveil the universal property of equivariant bordism
for elementary abelian 2-groups, one needs to take the grading by representations into account.
More precisely, the proper book keeping needs the ‘effective’ part of the RO-grading, i.e., the
part that keeps track of the integer graded bordism groups of representation spheres.

We start by fixing notation and terminology to deal with the RO-grading. For every finite
group G, we define a submonoid IG of the real representation ring RO(G) by

IG = {m ∈ RO(G) : m = k − V for some k ∈ Z and some G-representation V } .
So the elements of IG are formal differences of integers and actual representations. These
submonoids are closed under restriction along homomorphisms α : K −→ G between finite
groups, i.e., α∗ : RO(G) −→ RO(K) sends IG to IK . We emphasize that unless the group G
is trivial, the abelian monoid IG is not a group.

Construction 1.1 (The category elRO2 ). We introduce a category elRO2 of effective repre-

sentations of elementary abelian 2-groups. Objects of elRO2 are pairs (A,m), where A is an
elementary abelian 2-group and m ∈ IA. Morphisms from (B,n) to (A,m) in the category

elRO2 are group homomorphisms α : B −→ A such that α∗(m) = n.

We give the category elRO2 a symmetric monoidal structure as follows. On objects, we set

(A,m)× (B,n) = (A×B,m⊕ n) ,
where

m⊕ n = p∗1(m) + p∗2(n)

is the external sum, with p1 : A × B −→ A and p2 : A × B −→ B the projections to the two
factors. On morphisms, the symmetric monoidal structure is given by product of homomor-
phisms. The symmetry and associativity isomorphisms are the symmetry and associativity
isomorphism for the product of groups. The unit object is (1, 0), the pair consisting of the
trivial group 1 and its zero representation. A symmetric monoidal structure on a category is
at the same time a symmetric monoidal structure on its opposite.

Definition 1.2. An elRO2 -algebra is a lax symmetric monoidal functor

X : (elRO2 )op −→ F2-mod

to the category of F2-vector spaces under tensor product. A morphism of elRO2 -algebras is a
monoidal transformation.

Since symmetry is part of the definition of an elRO2 -algebra, a more precise name for these ob-

jects would have been commutative elRO2 -algebras. Since we will not consider non-commutative

elRO2 -algebras (i.e., non-symmetric lax monoidal functors), we have opted for the simpler name.

Expanding the definition reveals that an elRO2 -algebra X consists of
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• F2-vector spaces X(A,m) for every elementary abelian 2-group A and every m ∈ IA,
• a restriction homomorphism

α∗ : X(A,m) −→ X(B,α∗(m)) ,

for every group homomorphism α : B −→ A and every m ∈ IA,
• associative and commutative pairings

× : X(A,m)⊗X(B,n) −→ X(A×B,m⊕ n)

with a multiplicative unit 1 ∈ X(1, 0).

Moreover, the restriction homomorphisms must be contravariantly functorial and strictly com-
patible with the multiplicative structure. A morphism f : X −→ Y of elRO2 -algebras consists
of additive maps f(A,m) : X(A,m) −→ Y (A,m) such that f(1, 0)(1) = 1 and

f(A×B,m⊕ n)(x× y) = f(A,m)(x)× f(B,n)(y)

for all x ∈ X(A,m) and y ∈ X(B,n).
The multiplicative structure could alternatively be given in ‘internal form’

· : X(A,m)⊗X(A,n) −→ X(A,m+ n) ,

as the composite

X(A,m)⊗X(A,n)
×−−→ X(A×A,m⊕ n) ∆∗

−−→ X(A,m+ n) ,

where ∆ : A −→ A × A is the diagonal. For fixed A and varying m, this makes the collec-
tion of groups X(A,m) into a commutative IA-graded F2-algebra. We will often employ the
notation X(A, ⋆) for this IA-graded F2-algebra. The abelian groups X(A, k) for k ∈ Z form
a commutative Z-graded F2-algebra, the integer graded subring of this IA-graded F2-algebra
X(A, ⋆), which we denote by X(A)∗. The external multiplication can be recovered from the
internal multiplication as the composite

X(A,m)⊗X(B,n)
p∗1⊗p

∗
2−−−−→ X(A×B, p∗1(m))⊗X(A×B, p∗2(n))

·−→ X(A×B,m⊕ n) .

Remark 1.3. The cautious reader might wonder why we consider functors on isomorphism
classes of representations, and why we abuse notation and use the same symbol for a represen-
tation and for its class in RO(G). In other words: why does our theory not take automorphisms
of representations into account? The reason is that the automorphisms of real representations,
and even all equivariant homotopy self-equivalences of linear spheres, are invisible to the the-
ories we consider. We explain this in detail in Theorem 2.3, but here is already a brief sketch.
All theories relevant to us arise from global ring spectra E in which trC1 (1) = 0, i.e., the trans-
fer from the trivial group to the two element group C vanishes in πC0 (E). This property has
strong consequences for the coefficients of the theory: for every compact Lie group G, the unit
ring map πG0 (S) −→ πG0 (E) from the G-equivariant 0-stem sends all units to 1. Consequently,
all G-equivariant homotopy self-equivalences of spheres of real G-representations induce the
identity in the G-homology theory represented by E.

In the following we write C = {±1} for the group with two elements. A character of a
group G is a homomorphism λ : G −→ C. We shall consistently confuse such characters with
the associated 1-dimensional G-representation on R with G-action g · x = λ(g) · x, and with
the class of this representation in the representation ring RO(G). We write σ for the sign
representation of C on R, corresponding to the identity character of C.
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Definition 1.4 (Orientable elRO2 -algebras). An orientable elRO2 -algebra is a pair (X, a) con-

sisting of an elRO2 -algebra X and a class a ∈ X(C,−σ) with the following property: for every
elementary abelian 2-group A, every m ∈ IA and every nontrivial A-character λ, the sequence

0 −→ X(A,m)
aλ·−−−−→ X(A,m− λ) resAK−−−→ X(K, resAK(m)− 1) −→ 0

is exact, where K is the kernel of λ, and aλ = λ∗(a). We refer to the class a as the pre-Euler

class of the orientable elRO2 -algebra. A morphism of orientable elRO2 -algebras is a morphism of

elRO2 -algebras that takes the pre-Euler class to the pre-Euler class.

An easy but useful fact is that a morphism of orientable elRO2 -algebras is already an iso-
morphism if its restriction to all the integer graded subrings is:

Proposition 1.5. Let f : X −→ Y be a morphism of orientable elRO2 -algebras. If all the
homomorphisms of Z-graded rings f(A)∗ : X(A)∗ −→ Y (A)∗ are bijective, then f is an iso-

morphism of elRO2 -algebras.

Proof. We show that for all elementary abelian 2-groups A, all k ∈ Z and all A-representations
W with WA = 0, the map f(A, k −W ) : X(A, k −W ) −→ Y (A, k −W ) is an isomorphism.
We argue by induction on the dimension of W . For W = 0 the claim is true by hypothesis.
If W is nonzero, we choose a nontrivial A-character λ such that W = V ⊕ λ. Then the outer
two maps in the following commutative diagram are isomorphisms by induction, because V
has smaller dimension than W :

0 // X(A, k − V )

f(A,k−V )

��

aλ·− // X(A, k −W )

f(A,k−W )

��

resAK // X(K, k − 1− V |K)

f(K,k−1−V |K)

��

// 0

0 // Y (A, k − V )
aλ·−

// Y (A, k −W )
resAK

// Y (K, k − 1− V |K) // 0

Since both rows are exact, the middle map is an isomorphism. □

For an orientable elRO2 -algebra (X, a) we already employed the notation aλ = λ∗(a) for A-
characters λ. Then aλ = 0 when λ is the trivial character; and multiplication by aλ is injective
for all nontrivial characters λ. If V is an A-representation, we define

aV =
∏

λ∈Hom(A,C)

amλλ ∈ X(A,−V ) ,

where mλ is the multiplicity of the character λ in V . Then aV = 0 whenever V has nontrivial
A-fixed points; and multiplication by aV is injective whenever V A = 0. These a-classes are
multiplicative and natural for restriction homomorphisms, i.e.,

aV · aW = aV⊕W and β∗(aV ) = aβ∗(V )

for all homomorphisms β : B −→ A between elementary abelian 2-groups.

In an orientable elRO2 -algebra, divisibility by the a-classes of general representations can be
tested separately on the isotypical summands. The next proposition makes this precise.

Proposition 1.6. Let (X, a) be an orientable elRO2 -algebra, and let A be an elementary abelian
2-group.

(i) Let λ be a nontrivial A-character with kernel K. Let x and y be homogeneous elements
of X(A, ⋆). Suppose that resAK(y) is a non zero-divisor in X(K, ⋆). Then x is divisible
by anλ if and only if xy is divisible by anλ.
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(ii) Let V be an A-representation with trivial A-fixed points. Let z be an homogeneous element
of X(A, ⋆) that is divisible by amλλ for every nontrivial character λ of A, where mλ is the
multiplicity of λ in V . Then z is divisible by aV .

Proof. (i) If x is divisible by anλ, then clearly so is xy. We prove the other direction by induction
on n. The statement is vacuous for n = 0. Now let n ≥ 1. By the induction hypothesis we
know that x is divisible by an−1

λ . Hence there exists an element x′ such that x = x′an−1
λ . Since

x′yan−1
λ = xy, and x′y is the unique element with this property, we know that x′y must be

divisible by aλ. Hence the restriction resAK(x′y) = resAK(x′) resAK(y) is trivial. Since resAK(y) is
a non zero-divisor, this implies that resAK(x′) = 0. Hence x′ is divisible by aλ, and therefore x
is divisible by anλ. This finishes the proof.

(ii) We argue by induction on the number of nontrivial isotypical summands of V . There
is nothing to show if V = 0. Otherwise we let χ be a nontrivial A-character that occurs in
V . Then V = χmχ ⊕ U for an A-representation U with fewer nontrivial isotypical summands.
We let z ∈ X(A,m) be divisible by amλλ for all nontrivial A-characters λ. Then we know by
induction that z is divisible by aU , say z = x ·aU for some x ∈ X(A,m+U). We let K denote
the kernel of χ. Since χ does not occur in U , the representation U has trivial K-fixed points.
So resAK(aU ) = aU |K is a non zero-divisor in X(K, ⋆). Since x ·aU = z is divisible by a

mχ
χ , part

(i) shows that x is divisible by a
mχ
χ . So z = x · aU is divisible by a

mχ
χ · aU = aV . □

Definition 1.7 (Oriented elRO2 -algebras). An inverse Thom class of an orientable elRO2 -algebra
(X, a) is a class t ∈ X(C, 1− σ) such that resC1 (t) = 1, the multiplicative unit in X(1, 0). An

oriented elRO2 -algebra is a triple (X, a, t) consisting of an orientable elRO2 -algebra and an inverse
Thom class.

Remark 1.8 (The choice of inverse Thom class). If (X, a) is an orientable elRO2 -algebra, then
in particular the restriction homomorphism

resC1 : X(C, 1− σ) −→ X(1, 0)

is surjective. So an inverse Thom class exists. Moreover, any two inverse Thom classes differ
by an element of the form a ·y, for a unique y ∈ X(C, 1); so the set of inverse Thom classes is a
torsor over the additive group X(C, 1). In some important cases, the group X(C, 1) is trivial,
so that there is a unique inverse Thom class. This holds for example for equivariant bordism,
and for Bredon homology.

The choice of inverse Thom class is essential, and the automorphism group of an orientable
elRO2 -algebra need not act transitively on the set of inverse Thom classes. An explicit example

is the orientable elRO2 -algebra (H ∧H)♯ arising from the ‘global dual Steenrod algebra’, where
H = HF2 is the global Eilenberg-MacLane spectrum of the constant Mackey functor. As we
plan to discuss elsewhere, (H ∧ H)♯ has exactly four inverse Thom classes, falling into two
distinct orbits under the automorphism group of (H ∧H)♯.

Similarly as for the pre-Euler class, we will use the notation

tλ = λ∗(t) ∈ X(A, 1− λ)

for an inverse Thom class t and an A-character λ. The inverse Thom class of the trivial
character is the multiplicative unit 1. And we extend the inverse Thom classes to general
A-representations by defining

(1.9) tV =
∏

λ∈Hom(A,C)

tmλλ ,
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where mλ is the multiplicity of the character λ in V . These inverse Thom classes are also
multiplicative and natural for restriction, i.e.,

tV · tW = tV⊕W and β∗(tV ) = tβ∗(V )

for all homomorphisms β : B −→ A between elementary abelian 2-groups.

Proposition 1.10. Let (X, a, t) be an oriented elRO2 -algebra.

(i) For every subgroup B of A, and for all m ∈ IA, the restriction homomorphism

resAB : X(A,m) −→ X(B, resAK(m))

is surjective.
(ii) The IA-graded algebra X(A, ⋆) is generated by its Z-graded subalgebra X(A)∗ and the

classes aλ and tλ for all nontrivial A-characters λ.

Proof. We prove both statements together by induction over the rank of A. The induction
starts when A is the trivial group, in which case there is nothing to show. Now we let A be
a nontrivial elementary abelian 2-group, and we assume that (i) and (ii) hold for all proper
subgroups of A.

To prove (i) we may assume that B is a proper subgroup of A. We write m = k − W
for an A-representation W with WA = 0. By (ii) for B, it suffices to show that all classes
of the form x · aU · tV are in the image of the restriction homomorphism, whenever U and
V are B-representations such that U ⊕ V = W |B , and x ∈ X(B)k. Because W is a sum of
1-dimensional A-representations, we may choose an A-equivariant decomposition W = Ū ⊕ V̄
such that Ū |B ∼= U and V̄ |B ∼= V . We also choose a homomorphism r : A −→ B that is a
retraction to the inclusion. Then

resAB(r
∗(x) · aŪ · tV̄ ) = x · aU · tV ,

and we have shown (i) for A.
For (ii) we also fix a representation grading m = k−W , with WA = 0. We prove the claim

for all classes in X(A, k−W ) by induction over the dimension ofW . There is nothing to show if
W = 0. Otherwise we writeW = V ⊕λ for an A-representation V and a nontrivial A-character
λ, with kernel K. By part (i), the restriction map resAK : X(A, k−1−V ) −→ X(K, k−1−V |K)
is surjective. So given x ∈ X(A, k − W ), there is a class z ∈ X(A, k − 1 − V ) such that
resAK(z) = resAK(x). Then

resAK(x+ tλ · z) = resAK(x) + resAK(z) = 0 .

The fundamental exactness property of an orientable elRO2 -algebra provides a class y ∈
X(A, k − V ) such that aλ · y = x + tλ · z. By the inductive hypothesis, the classes y and
z are X(A)∗-linear combinations of products of a-classes and t-classes. Hence the same is true
for x = y · aλ + z · tλ, and we have shown (ii). □

2. Oriented global ring spectra

In this section we explain how orientable global ring spectra give rise to orientable elRO2 -
algebras, see Construction 2.4 and Theorem 2.5, leading to a wealth of interesting examples.
For the purpose of this paper, a global ring spectrum is a commutative monoid object in the
global stable homotopy category of [25, Section 4.4], under the globally derived smash product
[25, (4.2.25)]. So informally speaking, a global ring spectrum is a consistent collection of
G-equivariant homotopy ring spectra, for every compact Lie group G.

In this paper, we mostly care about the underlying G-spectra of a global spectrum when G
is an elementary abelian 2-group. So we could have worked in the el2-global stable homotopy
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category, the Bousfield localization of the global stable homotopy category that is designed so
that it only ‘sees’ the values of a global spectrum at the global family el2 of elementary abelian
2-groups. However, since every el2-global ring spectrum is underlying a global ring spectrum
(in many different ways), working with global ring spectra is no loss of generality. Moreover,
some interesting results, specifically Proposition 2.1 and Theorem 2.3 below, refer to general
compact Lie groups.

We recall that a global functor in the sense of [25, Definition 4.2.2] is an additive functor
from the global Burnside category of [25, Construction 4.2.1] to the category of abelian groups.
In more explicit terms, a global functor specifies values on all compact Lie groups, restriction
homomorphisms along continuous group homomorphisms, and transfers along inclusions of
closed subgroups; these data have to satisfy a short list of explicit relations that can be found
after Theorem 4.2.6 of [25]. The primary invariant of a global spectrum E is the homotopy
group global functor π0(E) = {πG0 (E)}G that records the 0-th equivariant homotopy groups
for all compact Lie groups, along with the restriction and transfer maps that relate them, see
[25, Example 4.2.3]. One of the transfer homomorphisms plays a particularly important role
for this paper, namely the transfer

trC1 : π0(E) −→ πC0 (E)

from the homotopy group of the underlying non-equivariant spectrum to the C-equivariant
homotopy group.

In the following proposition, S denotes the global sphere spectrum, so that π0(S) is the
Burnside ring global functor, compare [25, Example 4.2.7]. The value of π0(S) at a compact
Lie group G is the G-equivariant stable stem πG0 (S) = colim[SV , SV ]G∗ , where the colimit
is over finite-dimensional G-subrepresentations of a complete G-universe. When G is finite,
πG0 (S) is isomorphic to the Grothendieck ring of isomorphism classes of finite G-sets.

For every closed subgroup H of G, the ring homomorphism

ΦH : πG0 (S) −→ Z

sends the class of a based continuous G-map f : SV −→ SV to the degree of the restriction

fH : SV
H −→ SV

H

to H-fixed points. These homomorphisms are jointly injective, i.e., classes
in πG0 (S) are detected by the collection of fixed point degrees, see for example [25, Theorem
3.3.15].

Proposition 2.1. Let ⟨trC1 ⟩ denote the global subfunctor of π0(S) generated by the transfer
trC1 (1) in π

C
0 (S). Let G be a compact Lie group.

(i) A class x ∈ πG0 (S) belongs to ⟨trC1 ⟩(G) if and only if for every closed subgroup H of G
with finite Weyl group, the integer ΦH(x) is even.

(ii) For every unit u ∈ πG0 (S), the class u− 1 belongs to ⟨trC1 ⟩(G).

Proof. (i) As we show in the proof of [25, Proposition 6.1.45], the value ⟨trC1 ⟩(G) is the subgroup
of πG0 (S) generated by 2·πG0 (S) and by the transfers tGH = trGH(1H) for all closed subgroups H of
G whose Weyl group is finite and of even order. The degree homomorphism ΦK : πG0 (S) −→ Z
is additive, so it takes even values on all classes in 2 · πG0 (S). If the Weyl group of H in G
is finite of even order, then there is a closed subgroup L of G that contains H as a normal
subgroup of index 2. Then

ΦK(tGH) = ΦK(resGK(trGL (tr
L
H(1H)))) .

The Weyl group WGH acts freely from the right on the coset space G/H, and hence it acts
freely and smoothly on the smooth closed manifold (G/H)K . By [25, Proposition 3.4.2 (ii)],



10 MARKUS HAUSMANN AND STEFAN SCHWEDE

the integer ΦK(tGH) is divisible by the order of WGH, and hence even. We have thus shown
that every class in ⟨trC1 ⟩(G) has even fixed point degrees.

For the converse we consider a class with even fixed point degrees. By the previous para-
graph, any such class is congruent modulo ⟨trC1 ⟩(G) to a class of the form

tGK1
+ · · ·+ tGKn

for pairwise non-conjugate closed subgroups K1, . . . ,Kn of G whose Weyl groups are finite and
of odd order. If the above sum had at least one summand, we assume without loss of generality
that K1 is maximal with respect to subconjugacy among the groups that occur, i.e., K1 is not
subconjugate to Ki for i = 2, . . . , n. Then for i = 2, . . . , n, the fixed point set (G/Ki)

K1 is
empty, and thus ΦK1(tGKi) = 0. Hence

ΦK1(tGK1
+ · · ·+ tGKn) = ΦK1(tGK1

) = |WGK1| .

This contradicts the assumption that all fixed point degrees are even. So the above sum must
be empty, i.e., the given class belongs to ⟨trC1 ⟩(G).

(ii) The degree homomorphism ΦH : πG0 (S) −→ Z is multiplicative, so it sends all units of
πG0 (S) to {±1}. Hence ΦH(u− 1) is even, and part (i) proves the claim. □

Now we introduce orientable global ring spectra, our main source of examples for orientable
elRO2 -algebras.

Definition 2.2. A global ring spectrum E is orientable if the class trC1 (1) in the group EC0 =
πC0 (E) is trivial.

Some important examples of orientable global ring spectra are the mod 2 global Eilenberg-
MacLane spectrum HF2, see Example 3.2, and the global Thom spectrum mO defined in [25,
Example 6.1.24]. These are specific global equivariant forms of the mod 2 Eilenberg-MacLane
spectrum and the classical real bordism spectrum. The global ring spectrum HF2 represents
Bredon homology with constant coefficients, and the global ring spectrum mO realizes the
orientable elRO2 -algebra N of equivariant bordism. We return to these examples in much
detail in Sections 3 and 6, respectively. Further examples that we discuss below are the global
Thom ring spectrum MO defined in [25, Example 6.1.7] that represents stable equivariant
bordism, see Corollary 8.6 and the remarks immediately thereafter; and the global Borel ring
spectrum associated to the mod 2 Eilenberg-MacLane spectrum, see Theorem 8.8. For these
four examples, we establish universal characterizations of the associated oriented elRO2 -algebra,
see Theorem 3.5, Theorem 7.14, Corollary 8.6 and Theorem 8.8, respectively. The global smash
product of an orientable global ring spectrum with any other global ring spectrum is again
orientable, so this yields many further examples.

The next theorem shows that orientability of a global ring spectrum has rather strong
consequences for the homotopy group global functor.

Theorem 2.3. Let E be an orientable global ring spectrum, and let G be a compact Lie group.

(i) All G-equivariant homotopy groups of E are F2-vector spaces.
(ii) The ring homomorphism η∗ : πG0 (S) −→ πG0 (E) = EG0 induced by the unit morphism

η : S −→ E sends all units of πG0 (S) to 1.
(iii) For every G-representation V and every G-equivariant based homotopy self-equivalence

ψ : SV −→ SV , the automorphism EG∗ (Sψ) of EG∗ (SV ) is the identity.

Proof. (i) The vanishing of the class trC1 (1) yields

2 = resC1 (tr
C
1 (1)) = 0
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in π0(E). Since all equivariant homotopy groups of E are modules over π0(E) via inflation,
they are all F2-vector spaces.

(ii) As G varies over all compact Lie groups, the homomorphisms η∗ : πG0 (S) −→ πG0 (E)
form a morphism of global functors η∗ : π0(S) −→ π0(E). Because trC1 (1) = 0 in πC0 (E), the
global subfunctor ⟨trC1 ⟩ of π0(S) maps to 0 under the morphism η∗. Hence by Proposition 2.1
(ii), the homomorphism η∗ sends all units in πG0 (S) to 1.

(iii) The automorphism EG∗ (Sψ) of EG∗ (SV ) coincides with multiplication by the image of
[ψ] ∈ πG0 (S) under the ring homomorphism η∗ : πG0 (S) −→ πG0 (E). Since ψ is a homotopy
self-equivalence, the class [ψ] is a unit in πG0 (S), so part (ii) proves the claim. □

Construction 2.4 (The elRO2 -algebra of an orientable global ring spectrum). We let E be an

orientable global ring spectrum. We will now define an associated elRO2 -algebra E♯. We write
any given m ∈ IA as m = k − V for an integer k and an A-representation V with trivial fixed
points. Then k is unique, and V is unique up to isomorphism. We set

E♯(A,m) = E♯(A, k − V ) = EAk (S
V ) .

A key point is that this assignment is independent up to preferred isomorphism of the choice
of V . Indeed, an isomorphism of A-representations ψ : V −→ W induces an equivariant
homeomorphism Sψ : SV −→ SW , and hence an isomorphism of equivariant homotopy groups

EAk (S
ψ) : EAk (S

V ) −→ EAk (S
W ) .

Theorem 2.3 (iii) guarantees that this isomorphism does not depend on the choice of ψ.

The restriction map along a morphism α : (B,α∗(m)) −→ (A,m) in elRO2 is defined as
follows. We choose an A-representation V and a B-representation W without fixed points so
that m = k − V and α∗(m) = l −W for integers k ≥ l. There is then an isomorphism of
A-representations

ψ : α∗(V )
∼=−→ W ⊕ Rk−l .

We define

α∗ : E♯(A,m) −→ E♯(B,α∗(m))

as the composite

EAk (S
V )

α∗

−−→ EBk (S
α∗(V ))

EBk (Sψ)−−−−−→ EBk (S
W⊕Rk−l)

−∧Sk−l←−−−−−∼=
EBl (S

W ) .

The first map is the restriction homomorphism of equivariant homotopy groups [25, Construc-
tion 3.1.15], and the final isomorphism pointing backwards is the suspension isomorphism.
Theorem 2.3 (iii) guarantees that α∗ does not depend on the choice of ψ. The multiplication
pairings are defined as the composite

E♯(A,m)× E♯(B,n) = EAk (S
V )× EBl (SW )

∧−−→ πA×B
k+l (E ∧ SV ∧ E ∧ SW )

µ∗−−−→ πA×B
k+l (E ∧ SV⊕W ) = E♯(A×B,m⊕ n) .

Here we have exploited that m+ n = (k + l)− (V ⊕W ) in IA×B .

The fixed point inclusion S0 −→ Sσ defines an element a ∈ πC0 (S ∧ Sσ) that is sometimes
called the (pre-)Euler class of the sign representation; we abuse notation and use the same
symbol for the image

a ∈ EC0 (Sσ) = E♯(C,−σ)
under the unit morphism S −→ E.
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Theorem 2.5. For every orientable global ring spectrum E, the pair (E♯, a) is an orientable

elRO2 -algebra.

Proof. We exploit that the sequence of equivariant homotopy groups

EC1 (Sσ)
resCe−−−→ E1(S

1)
trC1−−−→ EC1 (S1)

is exact. Because E is orientable, we have trC1 (1∧S1) = trC1 (1)∧S1 = 0, and we can choose a
class t ∈ EC1 (Sσ) that restricts to 1 ∧ S1. We use t to define classes tV ∈ EAd (SV ) as in (1.9),
for all representations V of elementary abelian 2-groups A, where d = dim(V ). We claim that
the following three properties hold for all A-representations W :

(i) For every subgroup B of A, the restriction homomorphism

resAB : EAk (S
W ) −→ EBk (S

W |B )

is surjective.
(ii) Suppose thatW = V ⊕λ for a nontrivial A-character λ with kernelK. Then the following

sequence is exact:

0 −→ EAk (S
V )

·aλ−−−→ EAk (S
V⊕λ)

resAK−−−→ EKk−1(S
V |K ) −→ 0

(iii) The graded F2-vector space E
A
∗ (S

W ) is generated as a graded EA∗ -module by the classes
aU · tV for all A-representations U and V such that U ⊕ V =W .

Part (ii) is the exactness property that shows that (E♯, a) is an orientable elRO2 -algebra.
The argument is similar as in the proof of Proposition 1.10: we prove all three statements

together by induction over the rank of A. The induction starts when A is the trivial group, in
which case there is nothing to show. Now we let A be a nontrivial elementary abelian 2-group,
and we assume that parts (i)–(iii) hold for all proper subgroups of A.

We start by proving (i), where we may assume that B is a proper subgroup of A. By part (iii)
for B, it suffices to show that all classes of the form x ·aU ·tV are in the image of the restriction
homomorphism, whenever U and V are B-representations such that U ⊕V =W |B , and x is a
homogeneous element of EB∗ . Because W is a sum of 1-dimensional A-representations, we may
choose an A-equivariant decomposition W = Ū ⊕ V̄ such that resAB(Ū) ∼= U and resAB(V̄ ) ∼= V .
We also choose a homomorphism r : A −→ B that is a retraction to the inclusion. Then

resAB(r
∗(x) · aŪ · tV̄ ) = x · aU · tV ,

and we have shown (i) for A. To prove (ii) we smash the cofiber sequence of based A-spaces

A/K+ −−→ S0 −−→ Sλ −→ A/K+ ∧ S1

with SV and apply A-equivariant E-homology, yielding a long exact sequence:

. . . −→ EAk (S
V )

·aλ−−−→ EAk (S
V⊕λ)

∂−−→ EAk−1(S
V ∧A/K+) −→ . . .

The Wirthmüller isomorphism identifies the group EAk−1(S
V ∧A/K+) with E

K
k−1(S

V |K ). Un-

der this identification, the boundary map ∂ becomes the restriction homomorphism resAK :

EAk (S
V⊕λ) −→ EKk−1(S

V |K ), which is surjective by (i). So the long exact sequence decom-
poses into short exact sequences, showing (ii).

We prove (iii) by induction on dim(W )−dim(WA). If A acts trivially onW , the EA∗ -module
EA∗ (S

W ) is free of rank 1 with basis the class tW , so the claim holds. If W acts nontrivially
on W , we write W = V ⊕ λ for an A-representation V and a nontrivial A-character λ, with
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kernel K. By part (i), the restriction map resAK : EAm−1(S
V ) −→ EKm−1(S

V |K ) is surjective.

So given x ∈ EAk (SW ), there is a class z ∈ EAm−1(S
V ) such that resAK(z) = resAK(x). Then

resAK(x+ z · tλ) = resAK(x) + resAK(z) = 0 .

Part (ii) provides a class y ∈ EAk (SV ) such that y ·aλ = x+z · tλ. By the inductive hypothesis,
the classes y and z are EA∗ -linear combinations of products of a-classes and t-classes. Hence
the same is true for x = y · aλ + z · tλ, and we have shown (iii). □

3. The universal property of Bredon homology

In this section we discuss Bredon elRO2 -algebras, i.e., orientable elRO2 -algebras whose Z-
graded parts consist only of a copy of F2 in dimension zero, see Definition 3.1. As the name
suggests, Bredon homology of representation spheres with constant mod 2 coefficients is an
example of a Bredon elRO2 -algebra. Our main result, Theorem 3.5, exhibits a universal prop-

erty: every Bredon elRO2 -algebra is initial among additive oriented elRO2 -algebras. It follows

that Bredon elRO2 -algebras are unique up to unique isomorphism, a fact that is not entirely
obvious, at least to the authors, from the definition.

Definition 3.1. A Bredon elRO2 -algebra is an orientable elRO2 -algebra H such that for every
elementary abelian 2-group A and all k ∈ Z we have

H(A)k = H(A, k) =

{
F2 for k = 0, and

0 for k ̸= 0.

As the following example shows, Bredon elRO2 -algebras exist. Theorem 3.5 below proves

that Bredon elRO2 -algebras are unique up to unique isomorphism.

For every elRO2 -algebra X, any two choices of pre-Euler classes differ by multiplication with
a unit in X(C, 0). Furthermore, as we discussed in Remark 1.8, the difference between two
choices of inverse Thom classes is an element of the form a · y, for y ∈ X(C, 1). If H is a

Bredon elRO2 -algebra, then H(C, 0)× = F×
2 = {1} and H(C, 1) = 0. Therefore, the pre-Euler

class and the inverse Thom class of a Bredon elRO2 -algebra are unique.

Example 3.2 (The global Eilenberg-MacLane spectrum). We let HF2 denote the classical
commutative orthogonal ring spectrum model for the Eilenberg-MacLane spectrum for the
field F2, as defined for example in [25, Construction 5.3.8]. By [25, Proposition 5.3.9], its
restriction to finite groups is an Eilenberg-MacLane ring spectrum for the constant global
functor with value F2. So HF2 represents Bredon homology and cohomology with coefficients
in the constant Mackey functor F2.

Because the transfer trC1 (1) is trivial in Bredon homology with constant mod 2 coefficients,
HF2 is an orientable global ring spectrum. By Theorem 2.5, the pair ((HF2)

♯, a) is an ori-

entable elRO2 -algebra, and hence a Bredon elRO2 -algebra in the sense of Definition 3.1.

Definition 3.3 (Additive oriented elRO2 -algebras). An oriented elRO2 -algebra (X, a, t) is addi-
tive if the class

a1tµt2 + t1aµt2 + t1tµa2

in X(C ×C, 2− (p1 ⊕ µ⊕ p2)) is trivial. Here p1, p2, µ : C ×C −→ C are the three nontrivial
characters of the group C × C, and we abbreviate api to ai, and tpi to ti.

The term ‘additive’ in the previous definition is motivated by the fact that the 2-torsion
formal group law associated to an additive elRO2 -algebra is the additive formal group law, see
Example 4.8 below.
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Example 3.4 (Bredon elRO2 -algebras are additive). We let (X, a, t) be an oriented elRO2 -
algebra. The class a1tµt2 + t1aµt2 + t1tµa2 in X(C × C, 2− (p1 ⊕ µ⊕ p2)) is in the kernel of
all three restriction maps from C ×C to C. By the fundamental exactness property, this class
is divisible by each of a1, aµ and a2. Proposition 1.6 (ii) then shows that the class is divisible
by the product a1aµa2. So there is a class z ∈ X(C × C)2 such that

z · a1aµa2 = a1tµt2 + t1aµt2 + t1tµa2 .

If the group X(C × C)2 is trivial, then the class z necessarily vanishes, and so (X, a, t) is

additive. This is the case in particular for all Bredon elRO2 -algebras.

The following main result of this section is the fact that every Bredon elRO2 -algebra is initial

among additive elRO2 -algebras. In the proof we will start using the notation

A◦ = {λ : A −→ C | λ is surjective}

for the set of nontrivial characters of an elementary abelian 2-group A.

Theorem 3.5 (Universal property of Bredon homology). Let H be a Bredon elRO2 -algebra,

and let X be an orientable elRO2 -algebra.

(i) Evaluation at the unique inverse Thom class of H is a bijection between the set of mor-

phisms of orientable elRO2 -algebras from H to X, and the set of those inverse Thom
classes t of X such that (X, a, t) is additive.

(ii) Any two Bredon elRO2 -algebras are uniquely isomorphic.

Proof. (i) The unique orientation and inverse Thom class make (H, a, t) additive, so every

morphism of orientable elRO2 -algebras sends t to an inverse Thom class of an additive orienta-
tion.

Now we prove the uniqueness. Proposition 1.10 (ii) shows that H(A, ⋆) is generated as
an IA-graded F2-algebra by the classes aλ and tλ for all nontrivial A-characters, where t is
the unique inverse Thom class; so every morphism f : H −→ X of oriented elRO2 -algebras is
determined by its effect on the pre-Euler class a and the inverse Thom class t.

Now we show the existence of the morphism for the specific example H♯ = (HF2)
♯, the

Bredon elRO2 -algebra given by the Bredon homology of representation spheres, see Example
3.2. We will exploit the presentation of the rings H♯(A, ⋆) obtained in [18, Theorem 2.5]. We
let (ā, t̄) be an additive orientation of X. We let T ⊂ A◦ be any set of nontrivial A-characters
whose product

∏
λ∈T λ is the trivial character. We claim that the class

r(T ) =
∑
λ∈T

āλ ·
( ∏
µ∈T\{λ}

t̄µ
)

in X(A, |T | − 1−
⊕

λ∈T λ) equals 0. We prove this by induction over the cardinality of T . A
non-empty subset of A◦ whose elements multiply to 1 must have at least 3 elements, so we
start the induction for T = {α, β, γ} with α · β · γ = 1. Then

r({α, β, γ}) = āαt̄β t̄γ + t̄αāβ t̄γ + t̄αt̄β āγ

= (α, γ)∗(ā1t̄µt̄2 + t̄1āµt̄2 + t̄1t̄µā2) = 0

by the additivity hypothesis, where (α, γ) : A −→ C × C.
Now we suppose that the set T has at least 4 elements. We pick two distinct elements α ̸= β

from T , and we set γ = α · β. If γ ∈ T , then the sets T \ {α, β, γ} and {α, β, γ} both have
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fewer elements than T , and for both the product of their elements is the trivial character. So
r(T \ {α, β, γ}) = 0 and r({α, β, γ}) = 0 by induction. Thus

r(T ) = t̄αt̄β t̄γ · r(T \ {α, β, γ}) + r({α, β, γ}) ·
∏

µ∈T\{α,β,γ}

t̄µ = 0 .

If γ ̸∈ T , then the sets (T \ {α, β}) ∪ {γ} and {α, β, γ} both have fewer elements than T , and
for both the product of their elements is the trivial character. So r((T \ {α, β}) ∪ {γ}) = 0
and r({α, β, γ}) = 0 by induction. Thus

āγ · r(T ) = (āαt̄β + t̄αāβ) · r((T \ {α, β}) ∪ {γ}) + r({α, β, γ}) · r(T \ {α, β}) = 0 .

Since multiplication by āγ is injective, we conclude that r(T ) = 0. This completes the inductive
step, and hence the proof of the claim.

By [18, Theorem 2.5], the IA-graded ring H♯(A, ⋆) is generated by the classes aλ and tλ for
all nontrivial A-characters λ, and the ideal of relations between these classes is generated by
the polynomials r(T ) as T runs through all minimally dependent subsets of A◦. Minimally
dependent sets of nontrivial characters in particular have the property that their elements
multiply to the trivial character. By the previous claim, all generating relations map to 0 in
X(A, ⋆). So there is a unique morphism of IA-graded F2-algebras

f(A, ⋆) : H♯(A, ⋆) −→ X(A, ⋆)

such that f(A,−λ)(aλ) = āλ and f(A, 1 − λ)(tλ) = t̄λ for all λ ∈ A◦. For varying A, these
homomorphisms are compatible with restriction along group homomorphisms, simply because
this holds for a- and t-classes and these generate H♯(A, ⋆) as an F2-algebra. We have thus
constructed the desired morphism f : H♯ −→ X.

(ii) We let H be any Bredon elRO2 -algebra. Then H has a unique orientation, which is more-

over additive. So part (i) provides a unique morphism of orientable elRO2 -algebras f : H♯ −→ H
that matches the orientations. This morphism is necessarily an isomorphism in integer degrees,
and hence an isomorphism of orientable elRO2 -algebras, see Proposition 1.5. □

4. The associated 2-torsion formal group law

As we shall now explain, the underlying F2-algebra of every oriented elRO2 -algebra (X, a, t)
naturally comes with a 2-torsion formal group law, obtained roughly speaking by expanding
the Euler class eµ of the multiplication µ : C × C −→ C in terms of the Euler classes of the
two projections. As we will see later, a lot of the structure of (X, a, t) can be recovered from
this underlying 2-torsion formal group law and the geometric fixed point rings of X.

Construction 4.1 (Localization away from t). We define the localization away from t of an

oriented elRO2 -algebra (X, a, t) by inverting all inverse Thom classes. For every elementary
abelian 2-group A, we let (t−1X)(A) be the integer graded part of the localization of the
IA-graded ring X(A, ⋆) obtained by inverting all classes of the form tλ for all nontrivial A-
characters λ. Homogeneous elements of degree k of (t−1X)(A) are thus fractions of the form
x/tV for some A-representation V , and some x ∈ X(A, k + |V | − V ). These fractions then
satisfy

x/tV = (x · tW )/tV⊕W and x/tV · y/tW = (x · y)/tV⊕W .

The localizations away from t come with restriction homomorphisms α∗ : (t−1X)(A) −→
(t−1X)(B) that are contravariantly functorial for group homomorphisms α : B −→ A, and
defined by the formula

α∗(x/tV ) = α∗(x)/tα∗(V ) .
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Definition 4.2 (Euler classes). Let (X, a, t) be an oriented elRO2 -algebra. The Euler class of
a nontrivial character λ of an elementary abelian 2-group A is the class

eλ = aλ/tλ = λ∗(a/t) ∈ (t−1X)(A)−1

of degree −1 in the localization away from t of X.

For i = 1, . . . , n, we let pi : C
n −→ C be the projection to the i-th factor. We write

ei = epi = p∗i (a/t) ∈ (t−1X)(Cn)−1

for the Euler class of pi.

Proposition 4.3. Let (X, a, t) be an oriented elRO2 -algebra and n ≥ 0. The Euler classes
e1, . . . , en form a regular sequence in the graded ring (t−1X)(Cn) that generates the kernel of
the restriction homomorphism

resC
n

1 : (t−1X)(Cn) −→ X(1) .

Proof. We argue by induction over n, beginning with n = 0 where there is nothing to show.
Now we assume n ≥ 1. Because localization is exact, the sequence

0 −→ (t−1X)(Cn)∗+1
e1·−−−−→ (t−1X)(Cn)∗

j∗−−→ (t−1X)(Cn−1)∗ −→ 0

is exact, where j = (1,−) : Cn−1 −→ Cn is the embedding as the last n − 1 factors. So e1
is a non zero-divisor, and the restriction homomorphism j∗ identifies (t−1X)(Cn)/(e1) with
(t−1X)(Cn−1). By induction hypothesis, the images of the classes e1, . . . , en−1 are a regular
sequence in (t−1X)(Cn−1) that generates the augmentation ideal. Since j∗(ei) = ei−1 for
2 ≤ i ≤ n, this completes the inductive step. □

A key tool in our arguments will involve expansions of elements of certain rings as power
series in a distinguished regular element. We will now set up some theory around this in
a systematic fashion. In the following we will use the term graded ring as short hand for
‘commutative Z-graded ring’. The next proposition is well-known; since it is central for various
of our arguments, we take the time to spell it out as a point of reference.

Proposition 4.4. Let (e1, . . . , en) be a regular sequence of homogeneous elements of a graded
ring R. Let s : S −→ R be a graded ring homomorphism whose composite with the projection
R −→ R/(e1, . . . , en) is an isomorphism.

(i) The completion of R at the ideal (e1, . . . , en) is a power series algebra over S in the
elements e1, . . . , en.

(ii) Let T be a graded ring that is complete with respect to a homogeneous ideal J . Then the
map

{ρ ∈ grRing(R, T ) : ρ(e1, . . . , en) ⊂ J} −→ grRing(S, T )× Jn

ρ 7−→ (ρs, ρ(e1), . . . , ρ(en))

is bijective.

Proof. We write I = (e1, . . . , en) for the ideal generated by the regular sequence. It is a
classical fact that because of the regularity, the unique R/I-algebra homomorphism

(R/I)[x1, . . . , xn] −→
⊕
k≥0

Ik/Ik+1

that sends xi to ei+I
2 is an isomorphism, see for example [8, §9.7, Théorème 1]. In particular,

Ik/Ik+1 is a free R/I-module on the residue classes of the monomials of exact degree k in
e1, . . . , en. Thus by induction on k, the underlying S-module of R/Ik+1 is free on the residue
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classes of the monomials of degree at most k. So R/Ik+1 is a truncated polynomial algebra
over S, and the completion of R at I is a power series algebra over S on the classes e1, . . . , en,
giving (i). This power series algebra is free when it comes to morphisms with complete targets,
yielding (ii). □

Definition 4.5. Let (e1, . . . , en) be a regular sequence of homogeneous elements of a com-
mutative graded ring R, and let s : S −→ R be a ring homomorphism whose composite with
the projection R −→ R/(e1, . . . , en) is an isomorphism. The power series expansion of R at
e1, . . . , en is the unique morphism d : R −→ SJe1, . . . , enK of graded S-algebras that sends ei
to ei for all 1 ≤ i ≤ n.

Construction 4.6. We let (X, a, t) be an oriented elRO2 -algebra and n ≥ 0. The inflation
homomorphism p∗ : X(1) −→ (t−1X)(Cn) is a section to the restriction homomorphism
resC

n

1 . Since the kernel of resC
n

1 is generated by the regular sequence of Euler classes e1, . . . , en,
Proposition 4.4 provides a unique graded X(1)-algebra homomorphism

dn : (t−1X)(Cn) −→ X(1)Je1, . . . , enK

that sends ei to ei for all 1 ≤ i ≤ n, the power series expansion in the Euler classes e1, . . . , en.

We recall that a 2-torsion formal group law over a graded commutative ring R is a power
series F (x, y) ∈ RJx, yK that is homogeneous of degree −1 with respect to the grading deg(x) =
deg(y) = −1, and that satisfies

F (x, 0) = x, F (x, y) = F (y, x), F (x, F (y, z)) = F (F (x, y), z) and F (x, x) = 0 .

In the next theorem and in what follows, we shall write µ : C×C −→ C for the multiplication
homomorphism.

Theorem 4.7. Let (X, a, t) be an oriented elRO2 -algebra. The image of the Euler class eµ
under the power series expansion

d2 : (t−1X)(C × C) −→ X(1)Je1, e2K

is a 2-torsion formal group law over the graded ring X(1), the formal group law of (X, a, t).

Proof. We let α : Cn −→ C2 be a group homomorphism, for some n ≥ 1. We claim that the
following diagram of graded X(1)-algebras commutes:

(t−1X)(C2)

d2

��

α∗
// (t−1X)(Cn)

dn

��
X(1)Je1, e2K

α♮
// X(1)Je1, . . . , enK

Here α♮ is the unique graded X(1)-algebra homomorphism that satisfies α♮(ei) = dn(epiα) for
i = 1, 2. Indeed, both composites have the same effect on the regular sequence (e1, e2) that
generates the augmentation ideal of (t−1X)(C × C). So they coincide by Proposition 4.4 (ii).
The commutativity of the diagram then yields

α♮(F (e1, e2)) = α♮(d2(eµ)) = dn(α∗(eµ)) .

We derive the four relations of a 2-torsion formal group law by specializing for five dif-
ferent choices of α. When α is the inclusion of the first factor i1 : C −→ C × C, then

i♮1 : X(1)Je1, e2K −→ X(1)Je1K sets e2 = 0, and i∗1(eµ) = e1, so we get

F (e1, 0) = i♮1(F (e1, e2)) = d1(e1) = e1 .
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When α is the diagonal ∆ : C −→ C × C, then δ♮ : X(1)Je1, e2K −→ X(1)Je1K sends both e1
and e2 to e1, and δ

∗(eµ) = 0, so we obtain

F (e1, e1) = ∆♮(F (e1, e2)) = d1(0) = 0 .

When α is the involution τ : C × C −→ C × C that interchanges the two factors, then
τ ♮ : X(1)Je1, e2K −→ X(1)Je1, e2K interchanges e1 and e2, and τ(eµ) = eµ; so we get the
commutativity relation

F (e2, e1) = τ ♮(F (e1, e2)) = d2(eµ) = F (e1, e2) .

For α = µ × C : C3 −→ C2, we have p1(µ × C) = µ ◦ p1,2, for p1,2 : C3 −→ C2 the
projection to the first two coordinates, and p2(µ×C) = p3. So the homomorphism (µ×C)♮ :
X(1)Je1, e2K −→ X(1)Je1, e2, e3K sends e1 to d3(p∗1,2(eµ)) = d2(eµ) = F (e1, e2), and it sends e2
to e3. So we obtain

F (F (e1, e2), e3) = (µ× C)♮(F (e1, e2)) = d3((µ× C)∗(eµ)) .

The analogous argument for α = C × µ yields

F (e1, F (e2, e3)) = d3((C × µ)∗(eµ)) .

Because (µ× C)∗(eµ) = (C × µ)∗(eµ) (the multiplication of C is associative), this establishes
the associativity relation F (F (e1, e2), e3) = F (e1, F (e2, e3)). □

Example 4.8 (Additive orientations yield additive formal group laws). Let (X, a, t) be an

additive elRO2 -algebra in the sense of Definition 3.3, i.e.,

a1tµt2 + t1aµt2 + t1tµa2 = 0

in X(C × C, 2− (p1 ⊕ µ⊕ p2)). Then

e1 + eµ + e2 = (a1tµt2 + t1aµt2 + t1tµa2)/t1tµt2 = 0 .

So

F (e1, e2) = d2(eµ) = d2(e1 + e2) = e1 + e2 ,

i.e., the formal group law is the additive formal group law.

5. Geometric fixed points

To establish the universal property of equivariant bordism, we shall make use of the geo-
metric fixed points of an orientable elRO2 -algebra, obtained by inverting all the a-classes of all

nontrivial characters. For orientable elRO2 -algebras that arise from global ring spectra, this
construction generalizes the geometric fixed point construction for equivariant spectra, see
Remark 5.3 below, thence the name.

We also discuss various ways in which the power series expansions of the previous section
can be extended to Laurent series expansions on geometric fixed points. The main result is the
integrality criterion of Theorem 5.8 that allows to detect when a class in the geometric fixed
point ring ΦA∗X arises from a class in X(A)∗. This criterion will be used in Theorem 5.14 to

show how morphisms of oriented elRO2 -algebras can be recovered from the induced morphisms
of geometric fixed point rings.

Construction 5.1 (Geometric fixed points). We let (X, a) be an orientable elRO2 -algebra. For
every elementary abelian 2-group A, we define the ring of A-geometric fixed points ΦA∗X as
the integer graded part of the localization of the IA-graded ring X(A, ⋆) obtained by inverting
all classes of the form aλ for all nontrivial A-characters λ. Homogeneous elements in ΦAkX
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are thus fractions of the form x/aV for some A-representation V with trivial fixed points and
some x ∈ X(A, k − V ). These elements satisfy the relations

x/aV = (x · aW )/aV⊕W and x/aV · y/aW = (x · y)/aV⊕W

for all A-representations W with WA = 0. In an orientable elRO2 -algebra, multiplication by
the classes aλ is injective; hence also the maps −/aV : X(A, k − V ) −→ ΦAkX are injective.

The geometric fixed point rings enjoy inflation homomorphisms, i.e., they are contravari-
antly functorial for epimorphisms β : B −→ A. Indeed, β∗(aλ) = aλβ , so the inflation
homomorphism β∗ : X(A, ⋆) −→ X(B, ⋆) induces a ring homomorphism β∗ : ΦA∗X −→ ΦB∗ X
of localizations. In terms of the above presentation as fractions, we have

(5.2) β∗(x/aV ) = β∗(x)/aβ∗(V ) .

We emphasize a crucial difference between ΦA∗X, the localization away from a, and the
localization (t−1X)(A) away from t discussed in Construction 4.1: the latter admit restriction
homomorphisms for all group homomorphisms, the former only admit inflations, i.e., restriction
along epimorphisms.

Remark 5.3 (Relation to geometric fixed points of equivariant spectra). As already mentioned

above, the term ‘geometric fixed points’ for the localization of an orientable elRO2 -algebra away
from the a-classes is motivated by the topological examples. Indeed, for every compact Lie
group G and every genuine G-spectrum R, a common definition of the geometric fixed point
homotopy groups is as the reduced G-equivariant R-homology of a specific based G-space ẼP,
see for example [16, (3.18)]. Here ẼP is the unreduced suspension of a classifying G-space for

the family of proper closed subgroups of G. A natural homomorphism RG∗ −→ RG∗ (ẼP) from
the equivariant homotopy groups to the geometric fixed point homotopy groups is defined as
the effect on RG∗ (−) of the inclusion of cone points S0 −→ ẼP. If R is a ring spectrum in
the homotopy category of genuine G-spectra, this map is a morphism of graded rings, and it
factors through an isomorphism from the localization of the RO(G)-graded homotopy ring of
R at the pre-Euler classes of all real G-representations V with V G = 0, see [16, Proposition
3.20].

If R is a global ring spectrum and λ a nontrivial character of an elementary abelian 2-group
A, then aλ ∈ R♯(A,−λ) = RA0 (S

λ) is precisely the pre-Euler class of the A-representation λ,
so the geometric fixed point ring ΦA∗ R

♯, in the sense of Construction 5.1, of the orientable

elRO2 -algebra (R♯, a) is the localization of the RO(A)-graded homotopy ring of R at the pre-

Euler classes. Hence the two geometric fixed point rings ΦA∗ R
♯ and RA∗ (ẼP) of an orientable

global ring spectrum are naturally isomorphic.

For a Z-graded ring R, we now start using the notation

R((θ)) = RJθK[θ−1]

for the Z-graded Laurent power series in a variable θ of degree −1, the localization of the
power series ring away from the element θ. So elements of R((θ)) of degree k are power series∑
i∈Z xiθ

i such that xi ∈ Rk+i, and xi = 0 for all almost all negative values of i.

Let (X, a, t) be an oriented elRO2 -algebra, and let K be an elementary abelian 2-group. We
will now define a Laurent power series expansion on the geometric fixed point ring

dK : ΦK×C
∗ X −→ (ΦK∗ X)((θ)) .

These homomorphisms will be instrumental in detecting effective classes in the geometric fixed
point rings, see Theorem 5.8, and in reconstructing morphisms of oriented elRO2 -algebra from
their effect on geometric fixed point rings, see Theorem 5.14.
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Construction 5.4. We let (X, a, t) be an oriented elRO2 -algebra, and we let K be an elemen-
tary abelian 2-group. The construction of the Laurent power series expansion requires certain
intermediate constructions that we summarize in the following commutative diagram:

(5.5)

ΨKX

δK
��

//
i∗1

��

(ΨKX)[e−1
2 ]

δ̄K
��

ΦK×CXoo

dKss
ΦKX (ΦKX)JθK //

θ=0
oo (ΦKX)((θ))

We introduce the graded ring

(5.6) ΨKX = X(K × C, ⋆)[t−1
2 , a−1

V : V K = 0] ,

the integer graded part of the localization of the IK×C-graded ring X(K×C, ⋆) at all a-classes
of (K×C)-representations with trivialK-fixed points, and the class t2 = p∗2(t) of the projection
to the second factor. Inverting the classes aV for all V K = 0 is the same as inverting the classes
aν for all non-zero characters of K ×C except the projection to the second factor. For ν ̸= p2,
the restriction of ν to K is nontrivial. The restriction homomorphism

i∗1 : X(K × C, ⋆) −→ X(K, ⋆)

along the embedding i1 : K −→ K × C as the first factor sends the class t2 to 1, and it sends
the class aV to the pre-Euler class of the restriction of V to K. So the restriction extends
uniquely to localizations to a morphism of graded rings

i∗1 : ΨKX −→ ΦKX

that we denote by the same symbol. The inflation homomorphism

p∗1 : X(K, ⋆) −→ X(K × C, ⋆)
along the projection p1 : K×C −→ K extends uniquely to a homomorphism on the localization

p∗1 : ΦKX −→ ΨKX

that splits i∗1. We write a2 = p∗2(a) for the pre-Euler class of the projection to the second
factor, and we set

e2 = a2/t2 ∈ ΨK−1X .

Because localization is exact, the sequence

0 −→ ΨK∗+1X
e2·−−−−→ ΨK∗ X

i∗1−−→ ΦK∗ X −→ 0

is exact. Hence e2 is regular in ΨKX, and the composite of p∗1 : ΦK∗ X −→ ΨK∗ X and the
projection ΨK∗ X −→ (ΨK∗ X)/(e2) is an isomorphism. We let

δK : ΨKX −→ (ΦKX)JθK

denote the associated power series expansion in the sense of Definition 4.5. So δK is the
unique morphism of graded ΦKX-algebras such that δK(e2) = θ. The homomorphism extends
uniquely to the localizations to a homomorphism

δ̄K : (ΨKX)[e−1
2 ] −→ (ΦKX)((θ)) .

The ring (ΨKX)[e−1
2 ] is the localization of X(K×C, ⋆) obtained by inverting all a-classes and

the class t2. Since ΦK×CX is a less drastic localization – formed by inverting all a-classes
– it affords a localization morphism ΦK×CX −→ (ΨKX)[e−1

2 ] that is localization away from
t2/a2. The composite with δ̄K is the homomorphism

dK : ΦK×CX −→ (ΦKX)((θ)) ;



THE UNIVERSAL PROPERTY OF BORDISM OF COMMUTING INVOLUTIONS 21

it is then given by
dK(x/(aV a

n
2 )) = δK(x/(aV t

n
2 )) · θ−n ,

for x ∈ X(K×C, k−(V ⊕np2)) with V K = 0. We have now introduced all ring homomorphisms
in the diagram (5.5).

We make the following definition:

Definition 5.7. Let X be an orientable elRO2 -algebra and A an elementary abelian 2-group.
A class in ΦAkX is effective if it lies in the image of the homomorphism −/1 : X(A)k −→ ΦAkX.

For every orientable elRO2 -algebra, the map −/1 : X(A)k −→ ΦAkX is injective. So if a class
is effective, then its preimage in the integer graded subring is unique. Said differently, the
maps −/1 : X(A)∗ −→ ΦA∗X form an isomorphism from the Z-graded part of X(A, ⋆) to the
subring of effective classes.

The next theorem establishes an effectivity criterion for geometric fixed point classes in
terms of the homomorphisms dK : ΦK×CX −→ (ΦKX)((θ)). Effective classes in ΦK×CX
in particular also lie in the ring ΨKX, and hence their Laurent power series expansion is
contained in the subring (ΦKX)JθK, compare the diagram (5.5). Moreover, dK is designed so
that for u ∈ X(K × C)∗, the constant coefficient is given by

dK(u/1)(0) = i∗1(u/1) = i∗1(u)/1 .

Theorem 5.8. Let (X, a, t) be an oriented elRO2 -algebra, and let A be an elementary abelian
2-group. For every y ∈ ΦAX, the following two conditions are equivalent.

(a) The class y is effective.
(b) For every isomorphism α : K×C ∼= A, the class dK(α∗(y)) in (ΦKX)((θ)) is integral, i.e.,

contained in the subring (ΦKX)JθK.

Proof. (a)=⇒(b) For every u ∈ X(A)k, the class α∗(u/1) = α∗(u)/1 lies in ΨKX, so
dK(α∗(u/1)) lies in (ΦKX)JθK, compare the commutative diagram (5.5).

(b)=⇒(a) We write y = x/aV for some A-representation V with V A = 0, some k ∈ Z, and
some x ∈ X(A, k − V ). We let λ be a nontrivial A-character, with kernel K. We choose an
isomorphism α : K × C ∼= A such that λ ◦ α = p2. We decompose α∗(V ) = U ⊕ np2 for some
(K × C)-representation U with UK = 0, and some n ≥ 0. Then

dK(α∗(y)) = dK(α∗(x)/aα∗(V )) = dK(α∗(x)/aUa
n
2 ) = δK(α∗(x)/aU t

n
2 ) · θ−n .

This class is integral by hypothesis, and δK(α∗(x)/aU t
n
2 ) is integral by definition. So we

conclude that
δK(α∗(x)/aU t

n
2 ) ∈ θn · (ΦKX)JθK .

In other words, the first n coefficients of the power series δK(α∗(x)/aU t
n
2 ) vanish. Hence the

class α∗(x)/aU t
n
2 is divisible by en2 in the ring ΨKX.

Since all the a-classes are non zero-divisors, we deduce that for some m ≥ 0 the element
α∗(x) ·tm2 is divisible by an2 in X(K×C, ⋆). Thus the element x ·(α−1)∗(tm2 ) = x ·tmλ is divisible
by (α−1)∗(an2 ) = anλ in X(A, ⋆). Because resAK(tmλ ) = 1, Proposition 1.6 (i) shows that already
x is divisible by anλ. Since n is the multiplicity of p2 in α∗(V ), it is also the multiplicity of
λ = (α−1)∗(p2) in V . We have thus shown that for every nontrivial A-character λ, the class x
is divisible by aVλ . Proposition 1.6 (ii) then shows that x is divisible by aV , say x = z · aV .
Hence y = x/aV = z/1 is effective. □

Remark 5.9 (Relation to Boardman’s work in equivariant bordism). For the two-element
group C, the statement of Theorem 5.8 simplifies: an element y ∈ ΦCX is effective if and
only if the Laurent power series d1(y) is integral. For the oriented elRO2 -algebra of equivariant



22 MARKUS HAUSMANN AND STEFAN SCHWEDE

bordism, Boardman defines a ‘stable bordism J-homomorphism’ J : ΦC∗ N −→ N∗((θ)) in [7,
§6], using different notation and geometric arguments. In this incarnation, the special case
A = C of Theorem 5.8 was proved by Boardman in [7, Theorem 11]. In this sense, our Theorem
5.8 is a vast generalization of Boardman’s result to elementary abelian 2-groups of arbitrary
rank and general oriented elRO2 -algebras.

For every oriented elRO2 -algebra, the class tµ/aµ ∈ ΦC×CX also lies in the ring ΨCX, so
that dC(tµ/aµ) = δC(tµ/aµ), and this class is a power series (as opposed to a Laurent power
series) in θ with coefficients in ΦCX.

Definition 5.10. Let (X, a, t) be an oriented elRO2 -algebra. For n ≥ 0, we define the classes
βn ∈ ΦCn+1X by

dC(tµ/aµ) =
∑
n≥0

βn · θn .

For example, β0 = i∗1(tµ/aµ) = t/a. The next theorem might seem unmotivated right now,
but it will enter crucially in the proof of our main result, Theorem 7.14. In part (ii), what
matters is not the precise formula, but the fact that the classes δC(µ

∗(βn)) can be described
purely in terms of the 2-torsion formal group law and the classes βi themselves.

Theorem 5.11. Let (X, a, t) be an oriented elRO2 -algebra with 2-torsion formal group law F .

(i) The images of the classes βn under the power series expansion d1 : ΦCX −→ X(1)((θ))
satisfy the relation

F (θ, ξ) ·
∑
n≥0

d1(βn) · ξn = 1

in the ring X(1)((θ))JξK.
(ii) The classes δC(µ

∗(βn)) ∈ (ΦCX)JθK satisfy the relation∑
n≥0

δC(µ
∗(βn)) · ξn =

∑
n≥0

βn · F (θ, ξ)n

in the ring (ΦCX)Jθ, ξK.

Proof. (i) We specialize Construction 5.4 to K = {1}. Then Ψ1X = X(C, ⋆)[t−1] =
(t−1X)(C), with the potentially confusing caveat that the class that is generically called e2
in Φ1K in Construction 5.4 is called e1 in (t−1X)(C). Under these identifications, the homo-
morphism δ1 : Ψ1X −→ X(1)JθK coincides with d1 : (t−1X)(C) −→ X(1)Je1K up to renaming
of the variables. So for all x ∈ X(C, ∗ − kσ), the relation

(5.12) d1(x/tk) · e−k1 = δ1(x/t
k)⟨e1⟩ · e−k1 = (δ1(x/t

k) · θ−k)⟨e1⟩ = d1(x/a
k)⟨e1⟩

holds in X(1)((e1)). Here, and in what follows, we write ⟨e1⟩ to indicate a renaming of the
variable from θ to e1.

The classes d2(e1) = e1 and d2(eµ) = F (e1, e2) both become invertible in the ring
X(1)((e1))Je2K, so the power series expansion d2 : (t−1X)(C2) −→ X(1)Je1, e2K from Con-
struction 4.6 extends uniquely to a morphism of graded X(1)-algebras

d2 : (t−1X)(C2)[e−1
1 , e−1

µ ] −→ X(1)((e1))Je2K ,

for which we use the same name.
The ring (t−1X)(C2)[e−1

1 , e−1
µ ] is the localization of X(C2, ⋆) obtained by inverting all t-

classes and the classes a1 and aµ. Since Ψ
CX is a less drastic localization – formed by inverting
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t2, a1 and aµ – it affords a localization morphism ℓ : ΨCX −→ (t−1X)(C2)[e−1
1 , e−1

µ ] that is
localization away from t1/a1 and tµ/aµ. This morphism is explicitly given by

ℓ(x/(ak1a
l
µt
m
2 )) = (x/(tk1t

l
µt
m
2 )) · e−k1 e−lµ .

We claim that the following diagram of graded rings commutes:

ΨCX
ℓ //

δC

��

(t−1X)(C2)[e−1
1 , e−1

µ ]

d2

��
(ΦCX)JθK

(−)⟨e2⟩

∼= // (ΦCX)Je2K
d1Je2K

// X(1)((e1))Je2K

Indeed, on the one hand, the rectangle commutes after precomposition with p∗1 : ΦCX −→
ΨCX: the two composites send p∗1(x/a

k), for x/ak ∈ ΦCX, to d1(x/a
k)⟨e1⟩ and d1(x/tk) ·e−k1 ,

respectively, which agree by (5.12). On the other hand, both composites in the rectangle send
the regular generator e2 of the kernel of i∗1 : ΨCX −→ ΦCX to the class with the same name.
So the rectangle commutes by Proposition 4.4 (ii). Now we can prove the claim:

F (e1, e2) ·
∑
n≥0

d1(βn)(e1) · en2 = d2(eµ) · d1Je2K(δC(tµ/aµ)⟨e2⟩)

= d2(eµ) · d2(ℓ(tµ/aµ)) = d2(eµ · e−1
µ ) = 1

This is the desired relation, up to renaming e1 and e2 to θ and ξ.
(ii) We consider the Z-graded ring

Ξ(X) = X(C3, ⋆)[a−1
1 , a−1

12 , a
−1
µ̄ , t−1

2 , t−1
23 , t

−1
3 ] ,

the integer graded subring of the localization of the IC3-graded ring X(C3, ⋆) by inverting

• the a-classes for the projection to the first factor, the sum of the first two factors, and
the total multiplication µ̄ : C3 −→ C,

• and the t-classes for the sum of the last two factors and the projections to the second
and to the third factor.

The restriction i∗12 : X(C3, ⋆) −→ X(C2, ⋆) to the first two factors satisfies

i∗12(a1) = a1 , i∗12(a12) = i∗12(aµ̄) = aµ , i∗12(t2) = i∗12(t23) = t2 and i∗12(t3) = 1 ;

so it descends to a homomorphism of localizations

i∗12 : Ξ(X) −→ ΨCX ,

where ΨCX was defined in (5.6). The morphisms

p∗12 , (C × µ)∗ , (µ× C)∗ : X(C2, ⋆) −→ X(C3, ⋆)

satisfy

p∗12(a1) = (C × µ)∗(a1) = a1 , p∗12(aµ) = (µ× C)∗(a1) = a12 , p∗12(t2) = t2

(C × µ)∗(aµ) = aµ̄ and (C × µ)∗(t2) = t23

(µ× C)∗(aµ) = aµ̄ and (µ× C)∗(t2) = t3 .

So all three extend to the localizations and yield homomorphisms

p∗12 , (C × µ)∗ , (µ× C)∗ : ΨCX −→ Ξ(X) .
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Because (C×µ)◦ i12 = p12 ◦ i12 = Id, the first two of these homomorphisms are sections to i∗12.
Because localization is exact, the class e3 = a3/t3 is a regular element of Ξ(X) that generates
the kernel of i∗12. We let

∂ : Ξ(X) −→ (ΨCX)JξK
be the power series expansion, in the sense of Definition 4.5, of Ξ(X) with respect to the class
e3 and the section p∗12. We will show that the three subdiagrams of the following large diagram
of graded rings commute:

ΨCX
δC //

(C×µ)∗

��

(ΦCX)JθK
F∗

��
ΦCX

µ∗ 22

µ∗ ,,

Ξ(X)
∂ // (ΨCX)JξK

δCJξK // (ΦCX)Jθ, ξK

ΨCX

(µ×C)∗

OO

δC

// (ΦCX)JθK
∼=
⟨ξ⟩

// (ΦCX)JξK

µ∗JξK

OO

Here F∗ is the graded ΦCX-algebra map that sends θ to the formal group law F (θ, ξ). And
we continue to use pointy brackets ⟨−⟩ to indicate isomorphisms that rename variables. The
left subdiagram with target Ξ(X) commutes by the relation µ ◦ (C × µ) = µ ◦ (µ× C).

Now we show the commutativity of the upper subdiagram featuring F∗. We appeal to the
uniqueness statement in Proposition 4.4 (ii). After precomposition with the homomorphism
p∗1 : ΦCX −→ ΨCX, both composites in the upper part become the homomorphism − · 1 :
ΦCX −→ (ΦCX)Jθ, ξK, the inclusion of the coefficient ring. We claim that both composites in
the upper subdiagram also agree on e2. The inflation homomorphism

p∗23 : X(C2, ⋆) −→ X(C3, ⋆)

along the projection to the last two factors satisfies

p∗23(t1) = t2 , p∗23(tµ) = t23 , p∗23(t2) = t3 ,

and thus passes to a homomorphism from the localization away from t of the source to Ξ(X).
The composite

(5.13) (t−1X)(C2)
p∗23−−−→ Ξ(X)

∂−−→ (ΨCX)JξK
δCJξK−−−→ (ΦCX)Jθ, ξK

is a morphism of X(1)∗-algebras, and it sends the classes e1 and e2 to θ and ξ, respectively.
Since the regular sequence (e1, e2) generates the augmentation ideal of (t−1X)(C × C), the
uniqueness result from Proposition 4.4 (ii) shows that the composite (5.13) agrees with

(t−1X)(C2)
d2−−→ X(1)Je1, e2K

⟨θ,ξ⟩−−−→∼= X(1)Jθ, ξK
p∗Jθ,ξK−−−−−−→ (ΦCX)Jθ, ξK .

Here p∗ : X(1) −→ ΦCX is the inflation homomorphism. So these two homomorphisms also
agree on the class eµ. Because

p2 ◦ (C × µ) = µ ◦ p23 : C3 −→ C ,

we have (C × µ)∗(e2) = p∗23(eµ) in Ξ(X). Thus

δCJξK(∂((C × µ)∗(e2))) = δCJξK(∂(p∗23(eµ))) = p∗Jθ, ξK(d2(eµ)⟨θ, ξ⟩)
= p∗Jθ, ξK(F (θ, ξ)) = F∗(θ) = F∗(dC(e2)) .

Since e2 is a regular element that generates the kernel of i∗1 : ΨCX −→ ΦCX, the uniqueness
result from Proposition 4.4 (ii) shows that the upper part of the diagram commutes.
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It remains to show the commutativity of the lower subdiagram, and one more time we appeal
to Proposition 4.4 (ii). This time both composites with the homomorphism p∗1 : ΦCX −→ ΨCX
become the composite

ΦCX
µ∗

−−−→ ΨCX
−·1−−→ (ΨCX)JξK ,

and both composites send the regular element e2 to ξ. So the lower part of the big diagram
commutes, too.

We can now prove the desired relation:∑
n≥0

dC(µ
∗(βn)) · ξn = (dC ◦ µ∗)JξK(

∑
n≥0

βn · ξn) = (δC ◦ µ∗)JξK(δC(tµ/aµ)⟨ξ⟩)

= F∗(δC(tµ/aµ)) = F∗(
∑
n≥0

βn · θn) =
∑
n≥0

βn · F (θ, ξ)n .

The third equality is the commutativity of the big diagram, applied to the element t/a. □

We conclude this section with a criterion for when a system of morphisms of geometric
fixed point rings arises from a morphism of oriented elRO2 -algebras. This will be used in the
proof of our main result, Theorem 7.14, showing that equivariant bordism is an initial oriented
elRO2 -algebra.

We let elepi2 denote the category whose objects are all elementary abelian 2-groups, and

whose morphisms are surjective group homomorphisms. An elepi2 -algebra is a contravariant

functor from elepi2 to the category of commutative Z-graded F2-algebras. For every oriented

elRO2 -algebra X, the collection of geometric fixed point rings ΦAX supports inflation homomor-

phisms (5.2) along morphisms in elepi2 , so they naturally form an elepi2 -algebra Φ•X. Geometric

fixed points are often easier to compute than the elRO2 -algebras themselves. Therefore the fol-

lowing theorem will be useful to construct morphisms of orientable elRO2 -algebras through their
geometric fixed points.

Theorem 5.14. Let (X, a, t) and (Y, ā, t̄) be oriented elRO2 -algebras. Let f• = {fA}A :

Φ•X −→ Φ•Y be a morphism of elepi2 -algebras. Suppose that the following two conditions
are satisfied:

(a) fC(t/a) = t̄/ā
(b) For every elementary abelian 2-group K, the following diagram commutes:

ΦK×CX
fK×C

//

dK
��

ΦK×CY

dK
��

(ΦKX)((θ))
fK((θ))

// (ΦKY )((θ))

Then there exists a morphism f : X −→ Y of oriented elRO2 -algebras such that ΦAf = fA for
all elementary abelian 2-groups A.

Proof. We start by observing

fA(tλ/aλ) = fA(λ∗(t/a)) =(b) λ∗(fC(t/a)) =(a) λ∗(t̄/ā) = t̄λ/āλ

for all nontrivial characters λ of an elementary abelian 2-group A.
We recall from Definition 5.7 that a class y ∈ ΦAkX is effective if it lies in the image of the

homomorphism −/1 : X(A)k −→ ΦAkX, and that the maps −/1 : X(A)∗ −→ ΦA∗X form an
isomorphism from the Z-graded part of X(A) to the subring of effective classes.
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Claim 1: for every elementary abelian 2-group A, the morphism fA : ΦAX −→ ΦAY takes
effective classes to effective classes.

To prove this claim we let y ∈ ΦAX be an effective class, and we let α : K × C ∼= A be an
isomorphism. Because the f -maps commute with inflation along α , we have

dK(α∗(fA(y))) = dK(fK×C(α∗(y))) =(b) fK((θ))(dK(α∗(y))) .

By Theorem 5.8, the class dK(α∗(y)) in (ΦKY )((θ)) is integral. Since fK((θ)) : (ΦKX)((θ)) −→
(ΦKY )((θ)) preserves integrality, the class dK(α∗(fA(y))) in (ΦKY )((θ)) is integral. Again by
Theorem 5.8, the class fA(y) is effective.

Because the ring homomorphism fA takes effective classes to effective classes, there are
unique maps f(A) : X(A)∗ −→ Y (A)∗ that make the diagram

X(A)∗

−/1
��

f(A) // Y (A)∗

−/1
��

ΦA∗X
fA

// ΦA∗ Y

commute. These maps are homomorphisms of graded rings and commute with inflations
because this is the case for the other three morphisms in the commutative diagram, and
because the vertical maps are injective.

Claim 2: For every monomorphism i : K −→ A between elementary abelian 2-groups, the
following square commutes:

X(A)∗
f(A) //

i∗

��

Y (A)∗

i∗

��
X(K)∗

f(K)
// Y (K)∗

It suffices to show this when i(K) has index 2 in A, and then we may assume without loss of
generality that A = K ×C and i = i1 : K −→ K ×C is the embedding as the first summand.
For u ∈ X(K × C)∗ the relation

fK((θ))(dK(u/1)) =(b) dK(fK×C(u/1)) = dK(f(K × C)(u)/1)

holds in the ring (ΦK∗ Y )((θ)). Since both sides of this equation are integral classes by Theorem
5.8, the relation already holds in the ring (ΦK∗ Y )JθK; in particular, the constant terms of both
sides agree, and we obtain

(f(K)(i∗1(u))/1 = fK(i∗1(u)/1) = fK(dK(u/1)(0))

= fK((θ))(dK(u/1))(0)

(b) = dK(f(K × C)(u)/1)(0) = i∗1(f(K × C)(u))/1 .

Because the map −/1 is injective, this concludes the proof of Claim 2.

We can now define the desired morphism of elRO2 -algebras f : X −→ Y . We let W be a
representation of an elementary abelian 2-group A with WA = 0. By Proposition 1.10, every
class x ∈ X(A, k − W ) is a homogeneous polynomial with coefficients in X(A)∗ of degree
k −W in the classes aλ and tλ, for all nontrivial A-characters λ. In other words, there is a
homogeneous polynomial g ∈ X(A)∗[αλ, τλ] in variables αλ and τλ of degree −λ and 1 − λ,
respectively, such that x = g(aλ, tλ), i.e., substituting the variables αλ and τλ by the classes
aλ and tλ yields x. We write f(A)♭(g) ∈ Y (A)∗[αλ, τλ] for the effect of applying the graded
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ring homomorphism f(A) : X(A)∗ −→ Y (A)∗ to the coefficients of the polynomial g. The

classes āλ and t̄λ of the elRO2 -algebra Y can then be substituted for the variables in f(A)♭(g),
yielding a class in Y (A, k −W ). There is no reason why the polynomial g that presents the
class x should be unique, so we shall need:

Claim 3: The class f(A)♭(g)(āλ, t̄λ) in Y (A, k −W ) is independent of how x = g(aλ, tλ) is
presented as a polynomial in the classes aλ and tλ.

For every homogeneous polynomial h ∈ Y (A)∗[αλ, τλ] of the appropriate degree we have

h(āλ, t̄λ)/āW = h(1, t̄λ/āλ)

in ΦAk Y , i.e., the class h(āλ, t̄λ)/āW is obtained by substituting the variables αλ and τλ by the
multiplicative unit 1 and by t̄λ/āλ, respectively. For h = f(A)♭(g), this yields

f(A)♭(g)(āλ, , t̄λ)/āW = f(A)♭(g)(1, t̄λ/āλ) = f(A)♭(g)(1, f
A(tλ/aλ))

= fA(g(1, tλ/aλ)) fA(g(aλ, tλ)/aW ) = fA(x/aW ) .

This geometric fixed point class is thus independent of how x is presented as a polynomial in
the classes aλ and tλ. Since the map −/āW : Y (A, k −W ) −→ ΦAk Y is injective, this proves
Claim 3.

With Claim 3 established, we can now define a map f(A, k − W ) : X(A, k − W ) −→
Y (A, k −W ) by

f(A, k −W )(x) = f(A)♭(g)(āλ, t̄λ) ,

where g ∈ X(A)∗[αλ, τλ] is any homogeneous polynomial of degree k − W such that x =
g(aλ, tλ). With the independence of g at hand, it is then straightforward to shows that
these assignments define an IA-graded ring homomorphism. And clearly, the map f(A,−λ) :
X(A,−λ) −→ Y (A,−λ) sends aλ to āλ, and the map f(A, 1−λ) : X(A, 1−λ) −→ Y (A, 1−λ)
sends tλ to t̄λ.

Now we check that for varying A, these homomorphisms of IA-graded rings are compatible
with restriction along homomorphisms β : B −→ A of elementary abelian 2-groups. We
already argued above that the relation β∗ ◦ f(A, ⋆) = f(B, ⋆) ◦ β∗ holds on the integer graded
subrings. The IA-graded ring X(A, ⋆) is generated by its integer graded subring and the classes
aλ and tλ for all nontrivial A-characters λ, by Proposition 1.10 (ii). So it suffices to show that
the ring homomorphisms β∗ ◦ f(A, ⋆) and f(B, ⋆) ◦ β∗ also agree on the classes aλ and tλ. We
distinguish two cases. If the B-character λβ is nontrivial, then β∗(aλ) = aλβ , and we obtain

β∗(f(A,−λ)(aλ)) = β∗(āλ) = āλβ = f(B,−(λβ))(aλβ) = f(B,−(λβ))(β∗(aλ)) .

The argument for the t-classes is the same, mutatis mutandis. If the B-character λβ is trivial,
we need to argue differently. In this case β∗(aλ) = 0 in X, and β∗(āλ) = 0 in Y , and the
relation β∗(f(A,−λ)(aλ)) = f(B,−1)(β∗(aλ)) holds as both sides are zero. Also in this case,
β∗(tλ) = 1 in X and β∗(t̄λ) = 1 in Y , because t and t̄ are inverse Thom classes. Hence
β∗(f(A, 1 − λ)(tλ)) and f(B, 0)(β∗(tλ)) are both the multiplicative unit 1. This finishes the
proof. □

6. Equivariant bordism

In this section we introduce the oriented elRO2 -algebra N of equivariant bordism, and we
collect various basic properties. The main result of this paper is the fact that N is an initial
oriented elRO2 -algebra, see Theorem 7.14 below.
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Construction 6.1. Given a finite group G and a based G-space X, we write ÑG
k (X) for the

k-th reduced G-equivariant bordism group of X. We refer to [29, §2] or [25, Section 6.2] for a
detailed background on equivariant bordism.

For an elementary abelian 2-group A, we write a given grading m ∈ IA as m = k − V for
some integer k and an A-representation V with trivial fixed points. Then we set

N (A,m) = N (A, k − V ) = ÑA
k (SV ) ,

the reduced A-equivariant bordism group of dimension k of the onepoint compactification SV .
A key point is that this definition is independent up to preferred isomorphism of the choice
of V . Indeed, an isomorphism of A-representations ψ : V −→ W induces an equivariant
homeomorphism Sψ : SV −→ SW , and hence an isomorphism of bordism groups

ÑA
k (Sψ) : ÑA

k (SV ) −→ ÑA
k (SW ) .

Theorem 2.3 (iii) and the fact that equivariant bordism is represented by an orientable global
ring spectrum (Example 6.2) guarantee that the isomorphism does not depend on the choice of
ψ. Equivariant bordism is concentrated in non-negative integer degrees, so the group N (A, k−
V ) is trivial whenever k is negative.

To define the functoriality we recall the suspension isomorphism in equivariant bordism. A

specific class d ∈ ÑA
1 (S1) is represented by the identity of S1. The suspension homomorphism

− ∧ d : ÑA
k (X) −→ ÑA

k+1(X ∧ S1)

is given by reduced product with the class d; it is an isomorphism, for example by [25, Propo-
sition 6.2.11].

Now we let α : (B,α∗(m)) −→ (A,m) be a morphism in the category elRO2 . We choose an A-
representation V and a B-representationW so thatm = k−V and α∗(m) = k−α∗(V ) = l−W
for integers k ≥ l. There is then an isomorphism of B-representations

ψ : α∗(V )
∼=−→ W ⊕ Rk−l .

We define

α∗ : N (A,m) −→ N (B,α∗(m))

as the composite

ÑA
k (SV )

α∗

−−−→ ÑB
k (Sα

∗(V ))
ÑB
k (Sψ)−−−−−→∼=

ÑB
k (SW⊕Rk−l)

−∧dk−l←−−−−−∼=
ÑB
l (SW ) .

The first homomorphism is restriction of the action on manifolds and bordisms along the homo-
morphism α. The homomorphism decorated − ∧ dk−l is an iterated suspension isomorphism.
Again by Theorem 2.3 (iii), the definition of α∗ does not depend on the choice of ψ; this
independence is also needed in verifying that the assignment is compatible with composition.

The pre-Euler class

a ∈ N (C,−σ) = ÑC
0 (Sσ)

is represented by the inclusion of the isolated fixed point {0} −→ Sσ. The inverse Thom class

t ∈ N (C, 1− σ) = ÑC
1 (Sσ)

is represented by the identity of Sσ, with equivariant smooth structure through its identification
with S(R⊕ σ) by the stereographic projection.

Example 6.2 (Equivariant bordism versus the global Thom spectrummO). The global Thom
spectrum mO is defined in [25, Example 6.1.24]; the underlying G-equivariant homotopy type
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of mO has been considered before, often in different language and notation, for example in
[31, Section 5]. The spectrum mO is the orthogonal spectrum whose V -th term is

mO(V ) = Th(Gr|V |(V ⊕ R∞)) ,

the Thom space of the tautological vector bundle of |V |-dimensional subspaces of V ⊕R∞. We
refer to [25, Example 6.1.24] for the definition of the structure maps and the E∞-multiplication
on mO.

For every compact Lie group G, the equivariant Pontryagin-Thom construction provides
a natural transformation of G-equivariant homology theories from G-equivariant bordism to
the G-homology theory represented by the global Thom spectrum mO, see [25, Construction
6.2.27]. If the group G is a product of a finite group and a torus, then the equivariant
Pontryagin-Thom construction is an isomorphism. This results goes back to Wasserman [33],
a homotopy theoretic proof for finite groups was given by tom Dieck [31, Satz 5], and a proof
in the general case can be found in [25, Theorem 6.2.33]. The reader should beware that the
equivariant Pontryagin-Thom construction is provably not an isomorphism beyond this class
of groups; for G = SU(2), the homotopy theoretic transfer from the maximal torus normalizer

to SU(2) yields a class in π
SU(2)
0 (mO) that is not in the image, see [25, Remark 6.2.34].

In any case, the Thom-Pontryagin construction is in particular an isomorphism

ΘA(X) : ÑA
∗ (X)

∼=−−→ mOA
∗ (X)

for every elementary abelian 2-group A and every based A-CW-complex X. These isomor-
phisms are furthermore compatible with products and restriction along group homomorphisms,
compare [25, Theorem 6.2.31]. Specializing to the case where X = SV is the onepoint com-
pactification of an A-representation shows that the Thom-Pontryagin construction is an iso-
morphism of elRO2 -algebras

Θ : N
∼=−−→ mO♯ .

Both in N and in mO♯, the pre-Euler class a is obtained by applying the map of based
C-spaces S0 −→ Sσ to the multiplicative unit in the C-equivariant coefficients. Since the
Thom-Pontryagin construction is natural in based equivariant maps, the pre-Euler classes of
N and mO♯ match up.

Several times in this paper we will need the identification of the geometric fixed points of
equivariant bordism in terms of fixed point data. This technique, like several others in the
subject, goes back to the pioneering work of Conner and Floyd.

Construction 6.3 (Geometric fixed points of equivariant bordism). We recall the description
of the geometric fixed point rings of equivariant bordism in terms of non-equivariant bordism
groups. We will need it for elementary abelian 2-groups A, but this fixed point description
works in the generality of compact Lie groups, see for example [25, Proposition 6.2.16]. The
result takes the form of an isomorphism of graded rings:

(6.4) φA : ΦAnN
∼=−−→

⊕
j≥0
Nn−j(GrA,⊥j )

Here GrA,⊥j is the moduli space of j-dimensional A-representations with trivial fixed points,

and Nn−j(GrA,⊥j ) is its non-equivariant bordism group. More formally, GrA,⊥j is the A-fixed
point space of the Grassmannian of j-planes in the orthogonal complement of the A-fixed
subspace of a complete A-universe. The multiplication on the target arises from the maps

GrA,⊥i ×GrA,⊥j −→ GrA,⊥i+j

that classify the direct sum of A-representations with trivial fixed points.
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Roughly speaking, the isomorphism (6.4) is defined as follows. Elements of ΦAnN are frac-

tions x/aV , where x ∈ ÑA
n (SV ) for some n ≥ 0, and some A-representation V with trivial

fixed points. We let (M,h) represent the class x, so that M is an n-dimensional smooth closed
A-manifold, and h : M −→ SV is a continuous A-map; such pairs are taken up to bordism and
modulo the subgroup of pairs where h is constant at the basepoint. Because the A-action is
smooth, the fixed set MA is a disjoint union of regularly embedded smooth submanifolds of
M of varying dimensions. The A-space SV has only two fixed points 0 and ∞, and only the
fixed points over the non-basepoint 0 will play a role. The Conner–Floyd map (6.4) sends the
bordism class [M,h] to

∑
j≥0[M

(j), νj ], where M
(j) is the union of the (n − j)-dimensional

components of MA ∩ h−1(0), and where νj :M
(j) −→ GrA,⊥j classifies the A-equivariant nor-

mal bundle of M (j) inside M . We refer to [25, Proposition 6.2.16] for more details on the
construction and for a proof that the Conner–Floyd map is an isomorphism.

The next theorem collects various key properties of equivariant bordism that are relevant
for this paper.

Theorem 6.5.

(i) The pair (N , a) is an orientable elRO2 -algebra with a unique inverse Thom class t.

(ii) The 2-torsion formal group law of the oriented elRO2 -algebra (N , a, t) is an initial 2-torsion
formal group law.

(iii) For every elementary abelian 2-group A, the morphism of N∗-algebras

λ∈A◦⊗
N∗

ΦC∗ N −→ ΦA∗N

that multiplies the inflation homomorphisms for all nontrivial A-characters is an isomor-
phism.

Proof. (i) As we detailed in Example 6.2, equivariant bordism is represented by the orientable
global ring spectrum mO. Part (i) is thus a special case of Theorem 2.5. By the general
theory, the set of inverse Thom classes of (N , a) is a torsor over the bordism group NC

1 ; since
this group is trivial, the inverse Thom class is unique.

(ii) We reduce the claim to Quillen’s theorem [24], saying that the formal group law asso-
ciated to the preferred, classical real orientation of the non-equivariant Thom spectrum MO
is initial. To this end we recall Quillen’s result in a form tailored to our purpose.

We let BO denote the classifying space of the infinite orthogonal group. The Thom spectrum
construction assigns to a continuous map f : X −→ BO from a CW-complex a Thom spectrum
Th(f), making it a functor

Th : Ho(Top/BO) −→ SH
from the homotopy category of spaces over BO to the stable homotopy category of spectra.
The functoriality equips the Thom spectrum with a morphism of spectra u(f) : Th(f) −→
Th(IdBO) = MO that is a tautological Thom class in MO-cohomology, in the sense that the
group of stable maps [Th(f),MO] = SH(Th(f),MO) is free of rank 1 as a module, under the
Thom diagonal, over the ring MO0(X) = [Σ∞

+X,MO], with u(f) as generator.
In this language, the preferred real orientation of the spectrumMO arises as the Euler class

of the continuous map β(σ − R) : BC −→ BO that classifies the group homomorphism that
sends the generator of the group C to the infinite diagonal matrix with entries (−1, 1, 1, . . . ).
Some readers might prefer to think of continuous maps to BO as classifying virtual vector
bundles of rank 0; our name ‘β(σ −R)’ for the above map reflects that it classifies the virtual
vector bundle over BC associated to the virtual C-representation σ−R. The Thom spectrum
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of β(σ − R) is then equivalent to the desuspension of the reduced suspension spectrum of the
space Sσ ∧C EC+ (which happens to be homotopy equivalent to BC), and its Thom class
u(β(σ − R)) lies in the group

[Th(β(σ − R)),MO] = [S−1 ∧ Σ∞Sσ ∧C EC+,MO] = M̃O
1
(Sσ ∧C EC+) .

Its Euler class eτ ∈ MO1(BC), the restriction of the Thom class along the zero section
BC+ −→ Sσ ∧C EC+, is the preferred real orientation of MO.

By the theory of real-oriented cohomology theories, the ringMO∗(BC×BC) is then a power
series algebra overMO∗ in the classes p∗1(eτ ) and p

∗
2(eτ ), and expanding the class (Bµ)∗(eτ ) in

p∗1(eτ ) and p
∗
2(eτ ) yields a 2-variable power series with coefficients in MO∗ that is a 2-torsion

formal group law. Quillen’s theorem [24, Theorem 3] says that this 2-torsion formal group law
is initial.

Now we use the global Thom ring spectrum MO defined in [25, Example 6.1.7] that
represents stable equivariant bordism. For every elementary abelian 2-group A, the equi-
variant homology theory represented by the global ring spectrum MO is the localization of
mOA

∗ (−) at the inverse Thom classes, compare [25, Corollary 6.1.35]. The localization maps

mOA
∗ (−) −→ MOA

∗ (−) at all representation spheres define a morphism of oriented elRO2 -

algebras (mO♯, a, t) −→ (MO♯, a, t). Here we denote the image of the unique inverse Thom

class of mO♯ by the same letter t ∈MOC
1 (S

σ); we alert the reader that in the orientable elRO2 -

algebraMO♯, the inverse Thom class is far from unique. The previous morphism exhibitsMO♯

as the localization away from t of mO♯. In particular, this morphism is an isomorphism of
underlying graded F2-algebras, and so it necessarily takes the 2-torsion formal group law of
mO♯ to the 2-torsion formal group law of MO♯. So it suffices to show that the 2-torsion formal
group law of the oriented elRO2 -algebra (MO♯, a, t) is an initial 2-torsion formal group law.

By Theorem 6.1.7 and Remark 6.1.20 of [25], the class t in MOC
1 (S

σ) is an RO(C)-graded
unit. The inverse of t is the ‘shifted Thom class’ u = σ̄C,σ ∈ MO1

C(S
σ) discussed in [25,

Remark 6.1.20]. We claim that the bundling homomorphism

(6.6) β : M̃O
1

C(S
σ) −→ M̃O

1
(Sσ ∧C EC+)

takes the C-equivariant Thom class u to the non-equivariant Thom class u(β(σ−R)) discussed
above. To prove this we refer to the C-equivariant Thom spectrum formalism, a general
reference for which is [23, Chapter X, §3]. We write BOC for the classifying C-space for
virtual C-equivariant vector bundles of rank 0. Much like in the non-equivariant situation, the
equivariant Thom construction turns C-equivariant maps X −→ BOC into genuine C-spectra
endowed with a morphism to MOC , the underlying C-spectrum of the global spectrum MO.
An explicit representative for the class u in MO1

C(S
σ) is the C-equivariant map

Sσ⊕σ −→ Th(Gr2(σ ⊕ R⊕ σ ⊕ R)) = MO(σ ⊕ R)
(x, y) 7−→ ((x, 0, y, 0), σ ⊕ 0⊕ σ ⊕ 0)

So u : Sσ−1 −→MOC is the C-equivariant Thom class of the C-equivariant map ∗ −→ BOC

that classifies the virtual C-representation 2σ − (σ ⊕ R) = σ − R. The unstable and stable
bundling maps take equivariant Thom spectra to non-equivariant Thom spectra, see [23, X
Corollary 6.3]. When applied to the C-map σ − R : ∗ −→ BOC , this identifies the image of
u : Sσ−1 = Th(σ−R) −→MOC under the stable bundling map (6.6) with the non-equivariant
stable map

u(β(σ − R)) : Sσ−1 ∧C EC+ = Th(β(σ − R)) −→ MO

obtained by thomifying β(σ−R) : BC −→ BO. This proves the claim that β(u) = u(β(σ−R)).
Naturality of the bundling homomorphisms for the C-equivariant fixed point inclusion a :
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S0 −→ Sσ then shows that the bundling homomorphism

β : MOC
−1 = MO1

C(S
0) −→ M̃O

1
(S0 ∧C EC+) =MO1(BC)

takes the C-equivariant Euler class e = a/t = a · u of the oriented elRO2 -algebra (MO♯, a, t) to
the Euler class eτ that defines the preferred classical orientation of MO.

Now we can wrap up. The formal group law of MO♯ is defined by expanding the class
µ∗(e) = µ∗(a/t) as a power series in p∗1(e) and p∗2(e). And the formal group law in Quillen’s
work is the expansion of µ∗(eτ ) as a power series in p∗1(eτ ) and p

∗
2(eτ ). Since the bundling maps

are compatible with restriction along group homomorphisms and take e to eτ , the 2-torsion
formal group law of the oriented elRO2 -algebra (MO♯, a, t) is the preferred 2-torsion formal
group law over MO∗ that features in Quillen’s theorem [24]. So we have shown claim (ii).

(iii) We consider the following commutative square of graded commutative N∗-algebras:⊗λ∈A◦

N∗
ΦC∗ N //

∼=⊗φC
��

ΦA∗N

∼= φA

��⊗λ∈A◦

N∗

(⊕
j≥0 N∗−j(Gr

C,⊥
j )

)
//⊕

j≥0 Nn−j(Gr
A,⊥
j )

The left vertical map is a tensor product of copies of the Conner–Floyd fixed point isomorphism
(6.4). The right vertical map is the isomorphism (6.4) for the group A. The lower horizontal
map is also induced by inflation along characters. More precisely, the restriction to the tensor

factor indexed by (λ, j) is induced by the continuous map GrC,jj −→ GrA,⊥j that identifies σ∞

with the λ-isotypical summand of the complete A-universe, and then takes Grassmannians of
j-planes.

Since the vertical maps in the commutative square are isomorphisms, we are reduced to
showing that the lower horizontal map is an isomorphism. This, in turn, is a combination of
two facts. Firstly, the nontrivial irreducible representations of A are all 1-dimensional, and
parameterized by the set A◦ of nontrivial A-characters. So the isotypical decomposition of
A-invariant subspaces becomes a homeomorphism∐

∑
iλ=j

( ∏
λ∈A◦

Griλ

)
∼= GrA,⊥j .

The coproduct is indexed by A◦-tuples of natural numbers iλ that add up to j. Secondly, all
non-equivariant bordism groups of spaces are free as modules over the non-equivariant bordism
ring, see for example [12, Theorem 8.3]. So the Künneth isomorphism identifies the graded
bordism groups of a product with the tensor product of the bordism groups of the factors. If we
take the grading shift by j on the j-plane summands into account, these two facts combine into
the statement that the lower horizontal map in the square is an isomorphism. This completes
the proof. □

7. The universal property of equivariant bordism

In this section we prove our main result Theorem 7.14, saying that equivariant bordism
is an initial oriented elRO2 -algebra. We will use Theorem 5.14, so we need a firm grasp on
the geometric fixed point rings of equivariant bordism. It is well-known that the C-geometric
fixed point ring ΦC∗ N of equivariant bordism is a polynomial algebra over the non-equivariant
bordism ring in infinitely many generators, one in every positive degree, see for example [13,
Lemma 25.1]. A key ingredient for the proof of Theorem 7.14 is the fact that the specific
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classes βn which were introduced purely in terms of the structure as an oriented elRO2 -algebra in
Definition 5.10 can be taken as such polynomial generators, see Theorem 7.6. Unfortunately, we
do not know a direct argument to prove this fact, so we introduce auxiliary classes ζn ∈ NC

n+1

represented by explicit C-manifolds in Construction 7.5. Then we show that the classes ζn for
n ≥ 1, together with t/a = β0 form polynomial generators for ΦCN , and that βn is congruent
to ζn modulo (β0, . . . , βn−1), see Theorem 7.6 and Theorem 7.12.

Construction 7.1. We define a group Gn as the set Zn endowed with a group structure by

(7.2) (x1, . . . , xn) · (y1, . . . , yn) = (x1 + y1, (−1)y1 · x2 + y2, . . . , (−1)yn−1 · xn + yn) .

In other words, G1 = Z, and Gn = Gn−1 ⋉ Z, the semidirect product formed with respect to
the Gn−1-action on Z via the sign of the last coordinate. We define a right action of the group
Gn on Rn by the same formula (7.2), but now with the elements xi being real numbers as
opposed to integers. This action by affine linear transformations is free, properly discontinuous
and cocompact. So the orbit space Rn/Gn is simultaneously a smooth closed n-manifold and
a classifying space for the group Gn. The mod 2 cohomology of Rn/Gn, and hence the mod 2
group cohomology of Gn, is thus a Poincaré duality algebra with duality class in dimension n.
For example, R/G1 = R/Z is a circle, and R2/G2 is a Klein bottle. For n ≥ 2, the manifold
Rn/Gn is not orientable.

The following calculation of the mod 2 cohomology algebra of the group Gn, or equivalently
of the manifold Rn/Gn, will enter into the proof that the classes ζn are polynomial generators
of ΦC∗ N , compare Theorem 7.6. We expect that this calculation is well-known, but we were
unable to find a reference. The cases n = 1 and n = 2 are classical, being the cohomology
algebras of the circle and the Klein bottle. For i = 1, . . . , n, we denote by

pi : Gn −→ F2

the projection to the i-th coordinate of Gn, taken modulo 2. We view these homomorphisms
are cohomology classes in H1(Gn;F2) = Hom(G,F2).

Proposition 7.3. The cohomology algebra H∗(Gn;F2) has an F2-basis consisting of the classes

pi1 · . . . · pim
for all 1 ≤ i1 < i2 < · · · < im ≤ n. The multiplicative structure is determined by the relations

p2i =

{
0 for i = 1, and

pi−1 · pi for 2 ≤ i ≤ n.

In particular, pnn = p1 · p2 · . . . · pn, and this class is the generator of Hn(Gn;F2).

Proof. We argue by induction on n; for G1 = Z, the result is well-known. Now we suppose
that n ≥ 2. We consider the cohomology algebra of Gn as module over the cohomology algebra
of Gn−1 by restriction along the projection

q : Gn = Gn−1 ⋉ Z −→ Gn−1 , q(y1, . . . , yn) = (y1, . . . , yn−1) .

The mod 2 cohomology of Z is concentrated in dimensions 0 and 1, where it is 1-dimensional.
So the action of Gn−1 on the mod 2 cohomology of Z through pn−1 is necessarily trivial,
and the Lyndon-Hochschild-Serre spectral sequence degenerates into a short exact sequence of
graded H∗(Gn−1;F2)-modules

0 −→ H∗(Gn−1;F2)
q∗−−−→ H∗(Gn;F2)

δ−−→ H∗−1(Gn−1;F2) −→ 0 .

Since H1(Gn;F2) = Hom(Gn,F2) is the direct sum of q∗(H1(Gn−1;F2)) and the span of the
homomorphism pn : Gn −→ F2, the connecting homomorphism must satisfy δ(pn) = 1. Hence



34 MARKUS HAUSMANN AND STEFAN SCHWEDE

H∗(Gn;F2) is free as a H∗(Gn−1;F2)-module on the classes 1 and pn. So the claim about the
F2-basis and those multiplicative relations that do not involve pn follow by induction.

To prove the remaining multiplicative relation p2n = pn−1 · pn, we use naturality for the
group homomorphism

h : Gn −→ F2 ⋉ Z/4 , h(y1, . . . , yn) = (yn−1 + 2Z, yn + 4Z)
to the semidirect product of F2 acting by sign on Z/4, also known as the dihedral group of
order 8. The cohomology ring of this dihedral group is well-known, see for example [1, Chapter
IV, Theorem 2.7]; we only need the information that the two homomorphisms

α, β : F2 ⋉ Z/4 −→ F2

given by α(x, y+4Z) = x+ y+2Z and β(x, y+4Z) = y+2Z satisfy the cup product relation
α ·β = 0. Because α◦h = pn−1+pn and β ◦h = pn, naturality yields the desired multiplicative
relation

pn−1 · pn + p2n = (pn−1 + pn) · pn = h∗(α · β) = 0 . □

The next proposition gives a criterion for recognizing C-equivariant bordism classes as
polynomial generators of ΦC∗ N . It is very similar to [7, Lemma 4] which gives a characteristic
number criterion to detect when elements of N∗(BO) can serve as polynomial generators. This
result ought to be well-known to experts, but we do not know of a reference in this form.

Proposition 7.4. Let M be a smooth closed (n + 1)-dimensional C-manifold. Let F be the
union of the n-dimensional components of MC , and let ν : F −→ RP∞ classify the normal
line bundle of F inside M . Suppose that ν∗[F ] ̸= 0 in Hn(RP∞,F2), where [F ] ∈ Hn(F ;F2) is
the mod 2 fundamental class. Then [M ]/1 is indecomposable in ΦC∗ N as an algebra over N∗.

Proof. By the Conner–Floyd isomorphism (6.4)

φC : ΦC∗ N
∼=−−→

⊕
j≥0

N∗−j(Grj) ,

the class [M ]/1 is indecomposable in ΦC∗ N if and only if the projection of φC [M ] to the linear
summand j = 1 in the direct sum decomposition can serve as a generator in an N∗-basis
of N∗(RP∞). By the geometric description of φC , the projection to the linear summand is
represented by the pair (F, ν) consisting of the n-dimensional fixed point components and the
map classifying their normal line bundles inside M . For every space X, the map

N∗(X) −→ H∗(X;F2) , [f :W −→ X] 7−→ f∗[W ] ,

passes to an isomorphism
N∗(X)⊗N∗ F2

∼= H∗(X;F2) .

So for X = RP∞ = Gr1, a pair (W, f) consisting of a smooth closed n-manifold W and a
continuous map f :W −→ RP∞ represents a generator in an N∗-basis of N∗(RP∞) if and only
if f∗[W ] is the nonzero element of Hn(RP∞;F2). Altogether, this proves the proposition. □

Construction 7.5 (The ζ-classes). We define a left action of the group Gn−1 on the projective
space RP 2 by

(s1, . . . , sn−1) · [x : y : z] = [x : y : (−1)sn−1 · z] .
By taking balanced product with Rn−1 we obtain a smooth closed (n+ 1)-manifold

Wn+1 = Rn−1 ×Gn−1 RP 2 .

We define a smooth involution τ :Wn+1 −→Wn+1 by

τ [s1, . . . , sn−1, [x : y : z]] = [s1, . . . , sn−1, [−x : y : z]] .
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We write

ζn = [Wn+1, τ ]/1 ∈ ΦCn+1N
for the bordism class of the C-manifold (Wn+1, τ), or rather the effective class in the geometric
fixed point ring that it represents.

Theorem 7.6. The classes ζn for n ≥ 1 and the class t/a form a set of polynomial generators
of the C-geometric fixed points of equivariant bordism as an algebra over N∗.

Proof. We verify the criterion of Proposition 7.4. The fixed points of the involution τ :
Wn+1 −→Wn+1 are

(Wn+1)
C = Rn−1 ×Gn−1

(RP 2)C

= Rn−1 ×Gn−1 (P (0⊕ R2) ∪ {R⊕ 0⊕ 0})
∼=
(
Rn−1 ×Gn−1

P (0⊕ R2)
)
∪ Rn−1/Gn−1 .

This fixed point manifold has two connected components, one of dimension n and one of
dimension n− 1. For our present purposes, we only care about the n-dimensional component

Rn−1 ×Gn−1
P (0⊕ R2) ,

and we can ignore the other one. To apply Proposition 7.4, we need to identify the normal
line bundle of this component.

We let pn : Gn −→ {±1} denote the group homomorphism given by pn(s1, . . . , sn) = (−1)sn .
We embed the total space of the line bundle over Rn/Gn associated to pn into the manifold
Wn+1 by

Rn ×Gn p∗n(σ) −→ Rn−1 ×Gn−1 P (R3) = Wn+1

[s1, . . . , sn;u] 7−→ [s1, . . . , sn−1, [u : sin(sn · π) : cos(sn · π)]] .

This map is a smooth open embedding with image Rn−1 ×Gn−1
(RP 2 \ {R ⊕ 0 ⊕ 0}), and it

identifies the zero section Rn/Gn in the source with the n-dimensional fixed point component
Rn−1×Gn−1

P (0⊕R2). So this embedding witnesses that the normal line bundle of Rn−1×Gn−1

P (0⊕ R2) inside Wn+1 is the line bundle over Rn/Gn associated to the character pn.
Proposition 7.4 thus shows that the bordism class ofWn+1 can serve as one of the polynomial

generators for ΦC∗ N , provided we show that the map Rn/Gn −→ RP∞ that classifies the
line bundle associated to pn is nonzero in mod 2 homology Hn(−;F2). Or equivalently, the
classifying map is nonzero in mod 2 cohomology Hn(−;F2). Since the n-manifold Rn/Gn is
also a classifying space for the group Gn, we may show that the group homomorphism pn
induces a nontrivial map in mod 2 group cohomology in dimension n. By Proposition 7.3,
the group cohomology class in H1(Gn;F2) represented by pn has the property that its n-th
cup power is the generator of the top cohomology group Hn(Gn;F2). This concludes the
argument. □

Our next aim is to relate the classes βn introduced in Definition 5.10 as the coefficients of
the power series dC(tµ/aµ) to the geometrically defined classes ζn. To this end, we shall make
use of the ‘division operator’.

Construction 7.7 (Division operator). We let (X, a, t) be an oriented elRO2 -algebra. For an
elementary abelian 2-group K and k ∈ Z, we define an additive map

(7.8) Γ : X(K × C)k −→ X(K × C)k+1 ;
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we refer to Γ as a division operator. We write i1 : K −→ K × C and p1 : K × C −→ K
for the embedding of the first factor, and the projection to the first factor, respectively. For
u ∈ X(K × C)k, we have the relation

i∗1(t2 · (u+ p∗1(i
∗
1(u)))) = i∗1(u) + i∗1(p

∗
1(i

∗
1(u))) = 0 .

So there is a unique class Γ(u) ∈ X(K × C)k+1 such that

(7.9) a2 · Γ(u) = t2 · (u+ p∗1(i
∗
1(u)))

in the group X(K × C, (k + 1)− p2).

The following proposition relates the division operator to the power series expansion dK :
ΦK×CX −→ (ΦKX)((θ)) that we introduced in Construction 5.4.

Proposition 7.10. Let (X, a, t) be an oriented elRO2 -algebra. For every elementary abelian
2-group K and all homogeneous elements u ∈ X(K ×C), the power series expansion of u/1 is
given by the formula

dK(u/1) =
∑

n≥0
i∗1(Γ

n(u))/1 · θn .

Proof. The class u/1 belongs to ΨKX, so the Laurent power series dK(u/1) is contained in
the integral subring (ΦK∗ X)JθK, by construction. We will show that the formula for dK(u/1)
holds in the ring (ΦK∗ X)JθK modulo θm, for all m ≥ 0. We argue by induction on m, starting
with m = 0, where there is nothing to show. Now we suppose that m ≥ 1. By the inductive
hypothesis, dK(Γ(u)/1) is congruent modulo θm−1 to∑

n≥0
i∗1(Γ

n(Γ(u)))/1 · θn .

Hence

dK(u/1) (7.9) = dK((p∗1(i
∗
1(u)) + e2 · Γ(u))/1)

= i∗1(u)/1 + θ · dK(Γ(u)/1)

≡ i∗(u)/1 + θ ·
∑

n≥0
i∗1(Γ

n(Γ(u)))/1 · θn modulo θm

=
∑

n≥0
i∗1(Γ

n(u))/1 · θn

This completes the inductive step, and hence the proof. □

For equivariant bordism, the division operator Γ : NK×C
k −→ NK×C

k+1 has a geometric
interpretation that we now recall. Variations and special cases of the following proposition
have been used in the literature on equivariant bordism, so we make no claim to originality.
For example, the special case K = 1 is treated in [13, Lemma 25.3].

Proposition 7.11. Let K be an elementary abelian 2-group. LetM be a k-dimensional smooth
closed (K × C)-manifold. The class Γ[M ] is represented by the (k + 1)-manifold

R×Z M = (R×M)/(x,m) ∼ (x+ 1, (−1, 1) ·m)

with (K × C)-action by

(κ, κ′) · [x,m] = [κ′ · x, (κ, 1) ·m] .

Proof. The class t2 · ([M ] + p∗1(i
∗
1[M ])) is represented by the (K × C)-manifold Sp2 × (M ⨿

p∗1(i
∗
1M)) with the first projection as reference map to Sp2 . The class a2 ·[R×ZM ] is represented

by the (K×C)-manifold R×ZM with the constant map with value 0 as reference map to Sp2 .
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Since all a-classes are regular, the map ÑK×C
∗ (Sp2) −→ ΦK×C

∗ N is injective. Moreover, the
fixed point map (6.4)

φK×C : ΦK×C
∗ N

∼=−−→
⊕

j≥0
N∗−j(Gr

K×C,⊥
j )

is bijective. So it suffices to show that the two representatives for classes in ÑK×C
k+1 (Sp2) have

the same fixed point invariants.
The (K × C)-fixed points of the mapping torus R×Z M decompose into two parts:

(R×Z M)K×C ∼= MK×C ∪MK×1

The first summand is embedded via

MK×C −→ R×Z M , x 7−→ [1/2, x] ;

its normal bundle is isomorphic to the Whitney sum of the normal bundle of MK×C inside
M and the trivial line bundle associated with the representation p2. The second summand is
embedded via

MK×1 −→ R×Z M , x 7−→ [0, x] ;

its normal bundle is isomorphic to the Whitney sum of the inflation along p1 : K × C −→ K
of the normal bundle of MK×1 inside M , and the trivial line bundle associated with the
representation p2. The (K × C)-fixed points of Sp2 × (M ⨿ p∗1(i∗1M)) over 0 ∈ Sp2 are

{0} × (M ⨿ p∗1(i∗1M))K×C ∼= MK×C ∪MK×1 ;

these are diffeomorphic fixed points with isomorphic normal bundles. This proves the claim.
□

Theorem 7.12.

(i) In the oriented elRO2 -algebra (N , a, t), the classes βn and ζn are related by the formula

ζn = βn + β0βn−1

in ΦCn+1N , for n ≥ 1.
(ii) The classes βn for n ≥ 0 form a set of polynomial generators of the C-geometric fixed

points of equivariant bordism as an algebra over N∗.

Proof. (i) We write P ∈ NC×C
2 for the bordism class of the projective space RP 2 with (C×C)-

action by
(κ, κ′) · [x : y : z] = [κ′x : y : κz] .

By Proposition 7.11 and induction on n, the class Γn(P ) in NC×C
n+2 is represented by

R×Z (Rn−1 ×Gn−1
RP 2) ∼= Rn ×Gn RP 2 ,

where Gn acts on RP 2 by

(s1, . . . , sn) · [x : y : z] = [x : y : (−1)snz] ,
and where C × C acts on the balanced product by

(κ, κ′) · [s1, . . . , sn, [x : y : z]] = [κs1, s2 . . . , sn, [κ
′x : y : z]] .

Restricting the action along i1 : C −→ C×C shows that i∗1(Γ
n(P )) is represented by (Wn+2, τ),

i.e., i∗1(Γ
n(P )) = ζn+1.

Now we claim that the relation

(7.13) P/1 = tµ/aµ · t2/a2 + t1/a1 · t2/a2 + t1/a1 · tµ/aµ
holds in the group ΦC×C

2 N . To prove this, we verify that the two classes have the same image
under the fixed point isomorphism φC×C , defined in (6.4), that records the fixed points and
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their normal data. If λ is a character of a finite group, and V a G-representation that does not
contain λ, then λ is an isolated fixed point in the projective space P (V ⊕ λ). Moreover, the
normal G-representation at this fixed point is isomorphic to V ⊗ λ. The given (C ×C)-action
on RP 2 is that of the projective space of p2 ⊕ R⊕ p1. It has three isolated fixed points, with
normal representations p1 ⊕ µ, p1 ⊕ p2, and µ⊕ p2, respectively.

For a nontrivial A-character λ, the class tλ ∈ ÑA
1 (Sλ) is represented by the identity of Sλ,

which has an isolated fixed point over the non-basepoint, with normal representation λ. So

the fixed point isomorphism (6.4) takes the class tλ/aλ ∈ ΦA1 N to the element of N0(Gr
A,⊥
1 )

in the summand for j = 1 represented by λ, considered as a point in GrA,⊥1 . So the fixed point
invariant of P/1 is

φC×C(P/1) = [µ] · [p2] + [p1] · [p2] + [p1] · [µ]
= φC×C(tµ/aµ · t2/a2 + t1/a1 · t2/a2 + t1/a1 · tµ/aµ) .

This proves the relation (7.13).
Now we apply the Laurent power series expansion dC : ΦC×CN −→ (ΦCN )((θ)) to (7.13).

The ring ΦC×CN is an algebra over ΦCN via the inflation p∗1, so dC(t1/a1) = dC(p
∗
1(t/a)) =

t/a = β0. Moreover, dC(t2/a2) = θ−1. So

dC(P/1) = dC(tµ/aµ · t2/a2 + t1/a1 · t2/a2 + t1/a1 · tµ/aµ)

= (dC(tµ/aµ) + β0) · θ−1 + β0 · dC(tµ/aµ) =
∑
n≥0

(βn+1 + β0βn) · θn .

Proposition 7.10 yields the relation

dC(P/1) =
∑

n≥0
i∗1(Γ

n(P ))/1 · θn =
∑

n≥0
ζn+1 · θn .

Comparing coefficients of θn yields ζn+1 = βn+1 + β0βn for all n ≥ 0, as claimed.
(ii) The classes t/a = β0 and ζn/1 for n ≥ 1 are polynomial N∗-algebra generators of ΦCN

by Theorem 7.6. Since βn is congruent to ζn modulo (β0, . . . , βn−1), by part (i), also the
classes βn for n ≥ 0 form polynomial generators for ΦC∗ N as an N∗-algebra. □

We are now ready to prove the main theorem of this paper.

Theorem 7.14 (Universal property of equivariant bordism). The oriented elRO2 -algebra N of

equivariant bordism is an initial oriented elRO2 -algebra.

Proof. We need to show that there is a unique morphism of oriented elRO2 -algebras from

(N , a, t) to any given oriented elRO2 -algebra (Y, ā, t̄). In accordance with the notation for
pre-Euler and inverse Thom classes, we shall write β̄n for the β-classes for the theory (Y, ā, t̄).

If f : N −→ Y is a morphism of oriented elRO2 -algebras, then f(1) : N∗ −→ Y (1)∗ must
take the formal group law of (N , a, t) to that of (Y, ā, t̄). The formal group of (N , a, t) is
initial by Theorem 6.5 (ii), so f(1) is uniquely determined by this property. For an elementary
abelian 2-group A, we make the geometric fixed point ring ΦA∗ Y into an N∗-algebra via the
composite of f(1) : N∗ −→ Y (1)∗ and the inflation homomorphism p∗A : Y (1)∗ −→ ΦA∗ Y . The
morphism ΦCf : ΦCN −→ ΦCY satisfies (ΦCf)◦p∗C = p∗C ◦f(1), so it is a morphism of graded

N∗-algebras. Since the β-classes are defined intrinsically via the structure of oriented elRO2 -
algebras, the relation (ΦCf)(βn) = β̄n holds. By Theorem 7.12 (ii), the classes βn generate
ΦC∗ N as an N∗-algebra, so the morphism ΦCf is uniquely determined.

Now we let A be any elementary abelian 2-group. Then for every nontrivial A-character
λ, the relation (ΦAf) ◦ λ∗ = λ∗ ◦ (ΦCf) holds. Since ΦCf is uniquely determined and ΦAN
is generated as an N∗-algebra by the images of the homomorphisms λ∗ : ΦCN −→ ΦAN , by
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Theorem 6.5 (iii), also the morphism ΦAf is uniquely determined. Since the maps −/aV :
Y (A, k − V ) −→ ΦAk Y are injective, the morphism ΦAf uniquely determines the morphism of
IA-graded rings f(A, ⋆) : N (A, ⋆) −→ Y (A, ⋆). This concludes the proof of uniqueness.

To construct a morphism of oriented elRO2 -algebras from (N , a, t) to (Y, ā, t̄), we turn the

uniqueness argument around. Since the 2-torsion formal group law of the oriented elRO2 -algebra
(N , a, t) is initial, there is a unique homomorphism of graded F2-algebras f

1 : N∗ −→ Y (1)∗
that classifies the 2-torsion formal group law of (Y, ā, t̄). In other words, f1 is the unique
morphism that when applied to the coefficients of the 2-torsion formal group law of (N , a, t)
yields the one of (Y, ā, t̄).

Again we make the geometric fixed point ring ΦAY into an N -algebra via the composite
of f1 : N∗ −→ Y (1)∗ and the inflation homomorphism p∗A : Y (1)∗ −→ ΦAY . By Theorem 7.6,
the geometric fixed points ΦC∗ N are polynomial over N∗ on the classes βn. So there is a unique
N∗-algebra homomorphism

fC : ΦCN −→ ΦCY

that sends the class βn in ΦCN to the class β̄n in ΦCY , for all n ≥ 0.
Now we let λ be a nontrivial character of an elementary abelian 2-group A. Because

fC ◦ p∗C = p∗C ◦ f1, the composite of

N∗
p∗C−−−→ ΦCN fC−−−→ ΦCY

λ∗

−−−→ ΦAY

equals p∗A ◦ f1 : N∗ −→ ΦAY . In particular, the composite λ∗ ◦ fC ◦ p∗C is independent of
λ. By Theorem 6.5 (iii), ΦAN is the coproduct, in the category of commutative graded N∗-
algebras, of copies of ΦCN , indexed by the set A◦ of nontrivial characters. So there is a unique
morphism of graded rings

fA : ΦAN −→ ΦAY

such that fA ◦ λ∗ = λ∗ ◦ fC for all nontrivial A-characters.
We will now show that the collection of morphisms f• = {fA : ΦAN −→ ΦAY }A satisfies

the hypotheses of Theorem 5.14. To show that the morphisms are compatible with inflations,
we let α : B −→ A be any epimorphism between elementary abelian 2-groups. Then

fB ◦ α∗ ◦ λ∗ = fB ◦ (λα)∗ = (λα)∗ ◦ fC = α∗ ◦ λ∗ ◦ fC = α∗ ◦ fA ◦ λ∗

for every nontrivial A-character λ. By Theorem 6.5 (iii), the images of the homomorphisms
λ∗ : ΦCN −→ ΦAN generate ΦAN as an N∗-algebra, so this proves that fB ◦ α∗ = α∗ ◦ fA.

Condition (a) of Theorem 5.14 holds because fC(t/a) = fC(β0) = β̄0 = t̄/ā. Verifying
condition (b) is the most involved part of this proof, and we establish it through a sequence
of claims.

Claim 1: The following diagram commutes:

ΦCN

fC

��

d1 // N∗((θ))

f1((θ))

��
ΦCY

d1

// Y (1)((θ))

Theorem 5.11 (i) provides the relation

FN (θ, ξ) ·
∑
n≥0

d1(βn) · ξn = 1
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in the ring N ((θ))JξK. We apply the homomorphism f1((θ))JξK to this equation and exploit that
the pushforward of the formal group law FN along f1 : N∗ −→ Y (1)∗ is FY . This yields

FY (θ, ξ) ·
∑
n≥0

f1((θ))(d1(βn)) · ξn = 1 = FY (θ, ξ) ·
∑
n≥0

d1(β̄n) · ξn

in the ring Y (1)((θ))JξK. The second equality is Theorem 5.11 (i) for (Y, ā, t̄). Since multi-
plicative inverses are unique, the two infinite sums on both sides must be equal. Comparing
coefficients of ξn yields f1((θ))(d1(βn)) = d1(β̄n) = d1(f

C(βn)). Since the classes βn generate
ΦCN as an N∗-algebra, this proves that the diagram of Claim 1 indeed commutes.

Claim 2: The following diagram commutes:

ΦCN

fC

��

µ∗
// ΦC×CN dC // (ΦCN )((θ))

fC((θ))

��
ΦCY

µ∗
// ΦC×CY

dC

// (ΦCY )((θ))

Here, as before, µ : C ×C −→ C is the multiplication. Theorem 5.11 (ii) provides the relation∑
n≥0

dC(µ
∗(βn)) · ξn =

∑
n≥0

βn · FN (θ, ξ)n

in the ring (ΦCN )Jθ, ξK. We apply the homomorphism fCJθ, ξK to this equation and exploit
that the pushforward of the formal group law FN along f1 : N∗ −→ Y (1)∗ is FY . This yields∑

n≥0

fCJθK(dC(µ∗(βn))) · ξn =
∑
n≥0

fC(βn) · FY (θ, ξ)n

=
∑
n≥0

β̄n · FY (θ, ξ)n =
∑
n≥0

dC(µ
∗(β̄n)) · ξn .

The third equality is Theorem 5.11 (ii) for (Y, ā, t̄). Comparing coefficients of ξn yields

fCJθK(dC(µ∗(βn))) = dC(µ
∗(β̄n)) = dC(µ

∗(fC(βn))) .

Because the classes βn generate ΦC∗ N as an N∗-algebra, this proves that the diagram of Claim
2 indeed commutes.

Claim 3: For every elementary abelian 2-group K and every nontrivial character λ : K ×
C −→ C, the following diagram commutes:

ΦCN

fC

��

λ∗
// ΦK×CN dK // (ΦKN )((θ))

fK((θ))

��
ΦCY

λ∗
// ΦK×CY

dK

// (ΦKY )((θ))

We distinguish three cases, each based on a different kind of naturality argument. Firstly, if
λ = p2 is the projection to the second factor, then dK ◦ λ∗ = p∗K((θ)) ◦ d1 by naturality of the
power series expansions dK in the group K. So

fK((θ)) ◦ dK ◦ λ∗ = fK((θ)) ◦ p∗K((θ)) ◦ d1 = p∗K((θ)) ◦ f1((θ)) ◦ d1
Claim 1 = p∗K((θ)) ◦ d1 ◦ fC = dK ◦ λ∗ ◦ fC .
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Secondly, we suppose that λ = ν ◦ p1 for some nontrivial K-character ν : K −→ C. By
design, the composite dK ◦ p∗1 : ΦKN −→ ΦK×CN is the inclusion ι : ΦKN −→ (ΦKN )((θ))
as the constant Laurent power series. So

dK ◦ λ∗ = dK ◦ p∗1 ◦ ν∗ = ι ◦ ν∗ ,

and hence

fK((θ)) ◦ dK ◦ λ∗ = fK((θ)) ◦ ι ◦ ν∗ = ι ◦ fK ◦ ν∗ = ι ◦ ν∗ ◦ fC = dK ◦ λ∗ ◦ fC .

The third and final case is when λ = µ ◦ (ν × C) for a nontrivial K-character ν. Then

dK ◦ λ∗ = dK ◦ (ν × C)∗ ◦ µ∗ = ν∗((θ)) ◦ dC ◦ µ∗

by naturality of the power series expansions dK in the group K. So

fK((θ)) ◦ dK ◦ λ∗ = fK((θ)) ◦ ν∗((θ)) ◦ dC ◦ µ∗ = ν∗((θ)) ◦ fC((θ)) ◦ dC ◦ µ∗

Claim 2 = ν∗((θ)) ◦ dC ◦ µ∗ ◦ fC = dK ◦ λ∗ ◦ fC .

Now we can prove condition (b) of Theorem 5.14. For any nontrivial character λ : K×C −→
C, Claim 3 and the fact that fK×C ◦ λ∗ = λ∗ ◦ fC show that the two homomorphisms

fK((θ)) ◦ dK , dK ◦ fK×C : ΦK×CN −→ (ΦKY )((θ))

agree after precomposition with λ∗ : ΦCN −→ ΦK×CN . By Theorem 6.5 (iii), the images
of these homomorphisms λ∗ generate ΦK×CN as an N∗-algebra, so this proves the desired
relation fK((θ)) ◦ dK = dK ◦ fK×C . □

8. Invertibly oriented elRO2 -algebras and global 2-torsion group laws

In this section we explain the relationship between the oriented elRO2 -algebras discussed in
this paper and the global 2-torsion group laws in the sense of the first author’s paper [17].

The bottom line is that global 2-torsion group laws ‘are’ oriented elRO2 -algebras whose inverse
Thom class is invertible. Because inverse Thom classes can be universally inverted as described
in Construction 4.1, this exhibits the category of global 2-torsion group laws as a reflective
subcategory of the category of oriented elRO2 -algebras.

Definition 8.1 (Invertible inverse Thom classes). An inverse Thom class t of an orientable

elRO2 -algebra X is invertible if for every nontrivial character λ of an elementary abelian 2-group
A and all m ∈ IA, the multiplication map

tλ · − : X(A,m) −→ X(A,m+ 1− λ)

is an isomorphism. An invertibly oriented elRO2 -algebra is an oriented elRO2 -algebra whose
inverse Thom class is invertible.

An invertible inverse Thom class essentially collapses the IA-gradings to integer gradings:
for every elementary abelian 2-group A, the IA-graded ring X(A, ⋆) is a polynomial ring over
its Z-graded subring in the variables tλ for λ ∈ A◦:

X(A, ⋆) = X(A)∗[tλ : λ ∈ A◦] .

In the presence of an invertible inverse Thom class t, one can therefore translate the structure
and properties of an orientable elRO2 -algebra into structure and properties of the el2-algebra

made up by the integer graded subrings. For orientable elRO2 -algebras arising from global
ring spectra, invertibility in the sense of Definition 8.1 is equivalent to invertibility in the
RO(C)-graded homotopy ring, see Proposition 8.4.
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We recall from [17, Definition 4.1] that a global 2-torsion group law is an el2-F2-algebra G
equipped with a coordinate, i.e., a class e ∈ G(C) such that for every nontrivial character λ of
an elementary abelian 2-group A, the sequence

0 −→ G(A)∗+1
eλ·−−−−→ G(A)∗

resAK−−−→ G(K)∗ −→ 0

is exact, where eλ = λ∗(e) and K is the kernel of λ.

As described in Construction 4.1, we can turn an oriented elRO2 -algebra (X, a, t) into an el2-
F2-algebra t

−1X by inverting all t-classes. When A = 1 is a trivial group, we have (t−1X)(1)∗ =
X(1)∗.

Theorem 8.2.

(i) For every oriented elRO2 -algebra (X, a, t), the el2-algebra t
−1X is a global 2-torsion group

law with respect to the coordinate e = a/t.
(ii) The functor

t−1 : (oriented elRO2 -algebras) −→ (global 2-torsion group laws)

(X, a, t) 7−→ (t−1X, a/t)

has a fully faithful right adjoint. The essential image of the right adjoint is the subcategory
of invertibly oriented elRO2 -algebras.

Proof. (i) We have eλ = λ∗(a/t) = aλ/tλ in (t−1X)(A)−1. Because localization is exact, the
short exact sequences

0 −→ X(A,m+ 1)
aλ·−−−−→ X(A,m+ 1− λ) resAK−−−→ X(K, resAK(m)) −→ 0

for varying m ∈ IA become a short exact sequence

0 −→ (t−1X)(A)|m|+1
eλ·−−−−→ (t−1X)(A)|m|

resAK−−−→ (t−1X)(K)|m| −→ 0 .

This verifies the defining exactness property of a global 2-torsion group law.
(ii) The right adjoint

ψ : (global 2-torsion group laws) −→ (oriented elRO2 -algebras)

to t−1 is obtained as follows. Given any global 2-torsion group law (G, e), we define an elRO2 -
algebra G[t] at A by

G[t](A, ⋆) = G(A)[tλ : λ ∈ A◦] .

Here each tλ is a polynomial variable in degree (A, 1 − λ), for each nontrivial A-character
λ. If α : B −→ A is a homomorphism between elementary abelian 2-groups, we define
β∗ : X(A, ⋆) −→ Y (B, ⋆) as the given restriction homomorphism β∗ : G(A) −→ G(B) on
coefficient rings, and by setting

β∗(tλ) =

{
tλβ if λβ is nontrivial, and

1 if λβ is trivial.

We omit the straightforward verification that these data define an elRO2 -algebra. By design,
the polynomial generator t in G[t](C, ⋆) = G(C)[t] is an invertible inverse Thom class of this

elRO2 -algebra. Moreover, the exactness property of the orientation e shows that the class

a = e · t ∈ G(C)[t]−σ = G[t](C,−σ)

is a pre-Euler class, so ψ(G, e) = (G[t], et, t) is an invertibly oriented elRO2 -algebra.
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The unit of the adjunction ηX : (X, a, t) −→ ψ(t−1X, a/t) = ((t−1X)[t], (a/t) ·t, t) is defined
at an elementary abelian 2-group A by

ηX(A, k − V )(x) = (x/tV ) · tV ,

where k ∈ Z, and V is an A-representation with trivial fixed points. We omit the straightfor-
ward verification that this indeed defines a morphism of oriented elRO2 -algebras. Moreover, if
the inverse Thom class t is invertible, then ηX is an isomorphism.

Since the orientation of ψ(G, e) is invertible, localization away from t has no effect on the
underlying rings, and the restriction of G[t] to the integer graded subrings returns the orig-
inal el2-algebra G, with its original coordinate (et)/t = e. More formally: the functor ψ is
right inverse to the functor t−1, and a natural isomorphism G −→ t−1(ψ(G, e)) is given by the
identifications of the rings G(A) as the integer graded subrings of G(A)[t]. We omit the veri-
fication that the inverse isomorphism ϵG : t−1(ψ(G, e)) −→ G and the natural transformation
η : Id −→ ψ ◦ t−1 satisfy the triangle equalities of an adjunction. In any adjunction for which
the counit is a natural isomorphism, the right adjoint is fully faithful.

The right adjoint ψ takes values in invertibly oriented elRO2 -algebras. And if (X, a, t) is

an invertibly oriented elRO2 -algebra, then the adjunction unit (X, a, t) −→ ψ(t−1X, a/t) is an

isomorphism at all integer graded subrings, and hence an isomorphism of elRO2 -algebras. Thus
(X, a, t) is in the essential image of the right adjoint. □

Remark 8.3. As explained by the first author in [17], every global 2-torsion group law has a 2-

torsion formal group law over its underlying ring. Every oriented elRO2 -algebra also comes with
a formal group law over its underlying ring, as explained in Theorem 4.7. Comparing definitions
reveals that for every oriented elRO2 -algebra (X, a, t), the formal group law of (t−1X, a/t)
defined in [17] is the one that we introduced in Theorem 4.7.

The formal group law construction from a global 2-torsion group law also admits a fully
faithful right adjoint; the right adjoint embeds the category of 2-torsion formal group laws
as the full subcategory of complete global 2-torsion group laws, compare [17, Example 4.7].
Altogether, the category of 2-torsion formal group laws embeds fully faithfully into the category
of oriented elRO2 -algebras, as the ones that are both invertibly oriented and complete. The
following diagram of categories and functors summarizes the situation:

(2-torsion formal group laws)� _

��

ψ

∼=
// (complete invertibly oriented elRO2 -algebras)� _

��
(global 2-torsion group laws) ∼=

ψ //

⊣

OO

(invertibly oriented elRO2 -algebras)� _

��

⊣

OO

(oriented elRO2 -algebras)

⊣

OO

In Definition 8.1 we defined when an inverse Thom class of an elRO2 -algebra is invertible. For
global ring spectra, invertibility is equivalent to invertibility in the RO(C)-graded homotopy
ring:

Proposition 8.4. For every oriented global ring spectrum (E, t), the following conditions are
equivalent.

(a) The class t is an RO(C)-graded unit, i.e., there exists a class s ∈ πCσ−1(E) such that
s · t = 1.

(b) The class t is an invertible as an inverse Thom class of the orientable elRO2 -algebra (E♯, a).
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Proof. (a)=⇒(b) We let λ : A −→ C be any nontrivial character of an elementary abelian
2-group. Then λ∗(s) ∈ EAλ−1 = πAλ−1(E) is a homotopy class such that

λ∗(s) · tλ = λ∗(s · t) = 1 .

We write n ∈ IA as n = k−V for k ∈ Z and some A-representation V with trivial fixed points.
Then the multiplication map

− · λ∗(s) : EAk+1(S
V⊕λ) −→ EAk (S

V )

is inverse to

− · tλ : E♯(A,n) = EAk (S
V ) −→ EAk+1(S

V⊕λ) = E♯(A,n+ 1− λ) .
In particular, multiplication by tλ is bijective.

(b)=⇒(a) We consider the commutative diagram with exact rows:

πC0 (E)
resC1 //

−·t
��

π0(E)
trC1 // πCσ−1(E)

a· //

−·t
��

πC−1(E)
resC1 //

−·t
��

π−1(E)

πC1−σ(E)
resC1

// π0(E)
trC1

// πC0 (E)
a·
// πC−σ(E)

resC1

// π−1(E)

Of the three maps labeled as multiplication by t, the outer two lie in the range graded by the
submonoid IC of RO(C) that is encoded by the elRO2 -algebra E♯. Hence those are isomorphisms
by the invertibility hypothesis (a). By the five lemma, the middle map is thus an isomorphism,
too. So the multiplicative unit 1 in πC0 (E) has an inverse, which is the desired RO(C)-graded
inverse of t. □

Construction 8.5 (Stable equivariant bordism). For a compact Lie group G, stable equivari-
ant bordism is a G-equivariant homology theory NG:S

∗ first considered by Bröcker and Hook
[9, §2]. It is a specific localization of G-equivariant bordism at geometrically defined classes
associated to G-representations. If we restrict attention to elementary abelian 2-groups A,
then the localization that defines stable equivariant bordism is exactly inverting the inverse
Thom classes for the oriented elRO2 -algebra N of equivariant bordism:

NA:S
∗ = (t−1N )(A)∗

Equivariant bordism N is an initial oriented elRO2 -algebra by Theorem 7.14; and the local-

ization morphism N −→ t−1N is initial among morphisms of oriented elRO2 -algebras that send
the unique orientation of N to an invertible inverse Thom class. Together, these universal
properties immediately yield the following corollary about stable equivariant bordism:

Corollary 8.6 (Universal property of stable equivariant bordism). Stable equivariant bordism

(t−1N , a, t) is an initial invertibly oriented elRO2 -algebra. The global 2-torsion group law of
stable equivariant bordism is an initial global 2-torsion group law.

Combining Corollary 8.6 with the main result of Bröcker and Hook [9] yields an independent
proof of a recent result of the first author, namely that the global 2-torsion group law carried
by the global Thom spectrum MO is initial, see [17, Theorem D]. Indeed, Theorem 4.1 of
[9] says that for every compact Lie group G, stable equivariant bordism is isomorphic to the
equivariant homology theory represented by the global Thom spectrum MO of [25, Example
6.1.7]; see also [25, Remark 6.2.38] for a different proof. The underlying G-spectra of the
global object MO are the real analogues of tom Dieck’s ‘homotopical equivariant bordism’
spectra [32], and they have been much studied since the 70’s. So via [9, Theorem 4.1], our
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Corollary 8.6 becomes the statement that the global 2-torsion group law associated to MO is
initial; in other words, we recover Theorem D of [17]. We want to emphasize that this earlier
result of the first author was a key motivation for the present project, and some of our present
arguments are inspired by arguments from [17]. Our proof here differs from the one in [17] in
that we make no use of equivariant formal groups.

Example 8.7 (Mod 2 global Borel homology). The forgetful functor from the global sta-
ble homotopy category to the non-equivariant stable homotopy category has a lax symmetric
monoidal right adjoint, the global Borel functor b : SH −→ GH, see Theorem 4.5.1 and Con-
struction 4.5.21 of [25]. For every spectrum R and every compact Lie group G, the underlying
G-spectrum of the global Borel spectrum bR represents G-equivariant Borel R-cohomology,
i.e., R-cohomology of the homotopy orbit construction, thence the name. Because the Borel
functor is lax symmetric monoidal, it takes non-equivariant homotopy ring spectra to global
ring spectra.

In particular, the global Borel spectrum b(HF2) of the non-equivariant mod 2 Eilenberg-
MacLane spectrum is a global ring spectrum. The adjunction unit η : HF2 −→ b(HF2) from
the mod 2 global Eilenberg-MacLane spectrum is a morphism of global ring spectra. Since
HF2 is orientable, so is b(HF2). The group πC1 (b(HF2)) is isomorphic to H−1(BC,F2), and
hence trivial. So the orientable global ring spectrum b(HF2) has a unique inverse Thom class,
which is necessarily the image of the unique inverse Thom class of HF2 under the morphism
η : HF2 −→ b(HF2). Since the unique inverse Thom class of HF2 is additive, the unique
inverse Thom class of b(HF2) is additive, too.

All real vector bundles are orientable in mod 2 cohomology. In particular, there is a Thom
class in H1(Sσ ∧C EC+;F2) for the line bundle over BC associated to the sign representation.
By the Thom isomorphism, the image of this Thom class under the isomorphism

H1(Sσ ∧C EC+;F2) ∼= πCσ−1(b(HF2))

is an RO(C)-graded inverse to the unique inverse Thom class. So the unique inverse Thom
class of b(HF2) is invertible, by Proposition 8.4.

Theorem 8.8 (Universal property of mod 2 Borel homology). Let Y be an orientable elRO2 -
algebra. Evaluation at the unique inverse Thom class of the global Borel spectrum b(HF2) is

a bijection between the set of morphisms of orientable elRO2 -algebras from b(HF2)
♯ to Y , and

the set of orientations of Y that are both additive and invertible.

Proof. We claim that the morphism of oriented elRO2 -algebras

η♯ : H = ((HF2)
♯, a, t) −→ (b(HF2)

♯, a, t)

exhibits the target as the localization of the source away from its unique inverse Thom class;
more precisely: the induced morphism of global 2-torsion group laws t−1(η♯) obtained by
localization away from t is an isomorphism. To prove this, we write b(HF2)

♮ for the el2-
algebra made from the integer graded homotopy rings of the global Borel spectrum b(HF2).
Because t acts invertibly in the global Borel theory, we must show that the unique extension

η̃ : t−1H −→ b(HF2)
♮

of η♯ is an isomorphism of el2-algebras. To this end, it suffices to show that η̃ is an isomorphism
in integer gradings for the elementary abelian 2-groups Cn for all n ≥ 0. The IA-graded ring
H(A, ⋆) is generated as an F2-algebra by the classes aλ and tλ for all nontrivial A-characters
λ, by Proposition 1.10. So the integer graded ring (t−1H)(A)∗ is generated by the classes
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eλ = aλ/tλ for all nontrivial A-characters λ. If three such characters satisfy a multiplicative
relation α · β · γ = 1, then additivity of the orientation yields the relation

aαtβtγ + tαaβtγ + tαtβaγ = 0 .

Dividing by tαtβtγ yields the relation eα + eβ + eγ = 0 in (t−1H)(A)−1. In particular, for all
n ≥ 0, the integer graded ring (t−1H)(Cn) is generated by the Euler classes e1, . . . , en of the
projections pi : C

n −→ C to the n factors.
On the other hand, b(HF2)

♮(Cn) is the mod 2 cohomology ring of B(Cn), which is an
F2-polynomial algebra on the corresponding Euler classes e1, . . . , en of the projections. So the
map η̃(Cn) : (t−1H)(Cn) −→ b(HF2)

♮(Cn) is surjective. Since the Euler classes e1, . . . , en do
not satisfy any nontrivial polynomial relations in the target, the Euler classes do not satisfy any
nontrivial polynomial relations in the source either. So both rings are F2-polynomial algebras
on the Euler classes e1, . . . , en, and the map is an isomorphism.

Now we can conclude the argument. The source of the morphism η♯ is a Bredon elRO2 -algebra

in the sense of Definition 3.1; so by Theorem 3.5, it is initial among oriented elRO2 -algebras
equipped with an additive orientation. Since the target of η♯ is a localization of the source away
from the inverse Thom class t, the target is an initial oriented elRO2 -algebra whose orientation
is both additive and invertible. □

9. Epilogue: reproving classical results on equivariant bordism

In this final section we describe the relationship between the framework we develop in this
paper and previous work on equivariant bordism rings, specifically that by Conner–Floyd [12],
Alexander [2], and Firsching [15]. We show that these classical results can be readily deduced

from our formalism, and in fact generalize to a large class of oriented elRO2 -algebras.

9.1. The Conner–Floyd exact sequence. We start with a generalization of the Conner–
Floyd exact sequence [12, Theorem 28.1] for bordism of involutions. For this, we let (X, a, t)

be an oriented elRO2 -algebra, and A an elementary abelian 2-group. As we used many times
throughout this paper, the map −/1 : X(A)∗ −→ ΦA∗X is injective. For A = C, it is
furthermore straightforward to describe the structure of the cokernel.

Proposition 9.1. For every oriented elRO2 -algebra (X, a, t) the cokernel of the monomorphism
−/1 : X(C)∗ −→ ΦCX is free as an X(1)∗-module with basis the classes (t/a)n for n ≥ 1.

Proof. The fundamental exact sequence and induction on n shows that X(C, ∗ − nσ) is the
direct sum of the image of ·an : X(C)∗ −→ X(C, ∗ − nσ) and a free graded X(1)∗-module
spanned by an−iti for i = 1, . . . , n. Since ΦC∗ X is the colimit of these groups along multiplica-
tion by a, the claim follows by passage to colimit in n. □

Proposition 9.1 also shows that if ΦCX is free as a graded module over X(1)∗, then X(C)∗ is
projective as a gradedX(1)∗-module. If, in addition, the F2-algebraX(1)∗ is graded-connected,
then this implies that X(C)∗ is even free as a graded X(1)∗-module.

9.2. Alexander’s theorem. It was already observed by Conner and Floyd as a consequence
of their exact sequence [12, Theorem 28.1] that the C-equivariant bordism ring is free as a
graded module over the non-equivariant bordism ring. Alexander provided an explicit N∗-
basis of NC

∗ in [2, Theorem 1.2]. We generalize Alexander’s result to certain kinds of oriented

elRO2 -algebras, with a different, and arguably simpler, proof.
We recall the division operator Γ : X(C)k −→ X(C)k+1 from construction (7.8), which

is characterized by the equation a · Γ(x) = t · x + ϵ∗(x). Here ϵ : C −→ C is the trivial
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homomorphism, so that ϵ∗ is the composition of restriction to the trivial group, followed by
inflation.

Proposition 9.2. Let (X, a, t) be an oriented elRO2 -algebra. Suppose that X(1)∗ is graded-
connected as an F2-algebra. Let (bi)i∈I be a family of homogeneous elements of X(C)∗ of
positive degrees. Then the following conditions are equivalent:

(a) The classes 1 and Γn(bi) for n ≥ 0 and i ∈ I form a basis of X(C)∗ as a graded module
over X(1)∗.

(b) The classes 1 and bi/1 for i ∈ I form a basis of ΦC∗ X as a graded module over the
polynomial ring X(1)∗[t/a].

Proof. Condition (a) and Proposition 9.1 together imply that the classes (t/a)n and Γn(bi)/1
for n ≥ 0 and i ∈ I form a basis of X(C)∗ as a graded module over X(1)∗. The defining
relation of the division operator yields

Γ(x)/1 = (t/a) · x/1 + ϵ(x) · (t/a) .
If the dimension of the class x is positive, this shows that Γ(x)/1 is congruent to (t/a) · x/1
modulo the graded ideal of positive degree elements in X(1). By induction on n we see that
Γn(x)/1 is congruent to (t/a)n · x/1 modulo the ideal of positive degree elements in X(1). In
particular, the class Γn(bi)/1 is congruent to (t/a)n · bi. Since X(C)∗ is bounded below and
X(1)∗ is a graded-connected F2-algebra, this shows that the classes (t/a)

n and (t/a)n · bi/1 for
n ≥ 0 and i ∈ I also form a basis of X(C)∗ as a graded module over X(1)∗. Hence the classes
1 and bi/1 for i ∈ I form a basis of X(C)∗ as a graded module over X(1)∗[t/a], i.e., condition
(b) holds. The other implication is proved by reversing the argument. □

Corollary 9.3. Let (X, a, t) be an oriented elRO2 -algebra. Suppose that X(1)∗ is graded-
connected as an F2-algebra. Let (yi)i∈I be a family of homogeneous elements of X(C)∗ of
positive degree such that ΦC∗ X is a polynomial algebra over X(1)∗ on the classes (yi)i∈I and
the class t/a. Then the classes 1 and the classes Γn(yi1 · . . . · yir ) for all n ≥ 0, r ≥ 1 and
i1, . . . , ir ∈ I form a basis of X(C)∗ as a graded module over X(1)∗.

Proof. We let B be the set of all monomials of degree at least one in the classes yi/1 for all
i ∈ I. The hypothesis that ΦC∗ X is polynomial over X(1)∗ on the classes (yi)i∈I and t/a is
equivalent to the property that B is a basis of ΦC∗ X as module over X(1)∗[t/a]. Proposition
9.2 (a) then yields the claim. □

For equivariant bordism, we obtain Alexander’s N∗-basis of NC
∗ by letting yi ∈ NC

i be the
bordism class of projective space P (σ ⊕Ri), for i = 2, 3, . . . . The C-fixed points of P (σ ⊕Ri)
have two components: an isolated fixed point P (σ), and the space RP i−1 with normal bundle
the tautological line bundle. So Proposition 7.4 shows that the classes yi/1 for i ≥ 1 and a/t
form a set of polynomial generators of ΦC∗ N , as desired. So Corollary 9.3 applies, and we
recover [2, Theorem 1.2].

We can also apply Corollary 9.3 to the classes ζi ∈ NC
i+1 from Construction 7.5, for i ≥ 1.

This way we obtain a different N∗-basis of NC
∗ , given by 1 and the classes Γn(ζi1 · . . . · ζir ) for

all n ≥ 0, r ≥ 1 and i1, . . . , ir ≥ 1.

9.3. Firsching’s pullback square. Finally we explain how a generalization of the main
results of Firsching’s paper [15] drops out of our theory. In the following theorem we will write

xλ = tλ/aλ ∈ ΦA1 X ,

where λ is any nontrivial A-character. And we write (ΦA∗X)[x−1
λ ] for the localization of the

geometric fixed point ring away from the classes xλ for all nontrivial A-characters λ.
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Theorem 9.4. Let (X, a, t) be an oriented elRO2 -algebra. Let A be an elementary abelian
2-group such that for some (hence any) index two subgroup K of A and every nontrivial K-
character µ, the class xµ = tµ/aµ is a regular element of the ring ΦK∗ X. Then the following
square is a pullback of Z-graded rings:

X(A)∗
−/1 //

��

ΦA∗X

��
(t−1X)(A)∗

z/tV 7→z/aV ·x−1
V

// (ΦA∗X)[x−1
λ : λ ∈ A◦]

Proof. We claim that for every index two subgroup K of A and every K-character µ, the class
tµ is a regular element in the IK-graded ring X(K, ⋆). Indeed, suppose that y · tµ = 0 for some
y ∈ X(K, k − V ) with k ∈ Z and V K = 0. Then

0 = (y · tµ)/(aV · aµ) = (y/aV ) · (tµ/aµ)

in ΦA∗X. So y/aV = 0 by the regularity hypothesis. Because the map −/aV is injective, this
implies y = 0. Because all the classes tµ for µ ∈ K◦ are regular, we also deduce that for every
A-representation U , the class resAK(tU ) = tU |K is a regular element in X(K, ⋆).

Now we turn to the proof of the theorem. Since the horizontal maps in the square are
injective, we only need to show the following claim: let y ∈ ΦAkX be a class whose image in

(ΦA∗X)[x−1
λ ] is in the image of (t−1X)(A)k. Then the class y is effective. We suppose that

y = y′/aW for some A-representation W with trivial fixed points, and y′ ∈ X(A, k − W ).
By assumption there is another A-representation V with trivial fixed points and a class z ∈
X(A, k−V ) such that (z/aV ) · x−1

V = y = y′/aW in the localization (ΦA∗X)[x−1
λ ]. Hence there

is another A-representation U with trivial fixed points such that

(aW · z · tU )/aW⊕V⊕U = (z/aV ) · xU = (y′/aW ) · xV · xU = (y′ · tV · tU )/aW⊕V⊕U

in the geometric fixed point ring ΦA∗X. Since −/aW⊕V⊕U is injective, this forces

z · tU · aW = y′ · tV⊕U

in X(A, k − (W ⊕ V ⊕ U)). Now we let λ be an A-character with kernel K, and we let m be
the multiplicity of λ in W . Then the left hand side of the previous equation is divisible by amλ .
Because the class resAK(tV⊕U ) is regular in X(K, ⋆), Proposition 1.6 (i) shows that also y′ is
divisible by amλ . Proposition 1.6 (ii) then shows y′ is divisible by aW , i.e., y′ = y′′ · aW for a
unique y′′ ∈ X(A, k). Thus the class y = y′/aW = y′′/1 is effective. □

For the oriented elRO2 -algebra N of equivariant bordism, all the geometric fixed point rings
ΦKN are polynomial algebras over the non-equivariant bordism ring N∗, and hence they do
not contain any zero-divisors. So Theorem 9.4 shows that for every elementary abelian 2-group
A, the followings square is a pullback:

NA
∗

//

��

ΦA∗N

��
NA:S

∗
// (ΦA∗N )[x−1

λ : λ ∈ A◦]

Here NA:S
∗ = t−1N is stable A-equivariant bordism, see Construction 8.5. Firsching writes

e−1
λ for xλ, and he uses the A-homology theory represented by the global Thom spectrum MO
instead of NA:S

∗ ; these equivariant homology theories are isomorphic by [9, Theorem 4.1]. So
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modulo notation and the identification of ΦA∗N with a polynomial N∗-algebra, this is the main
result Theorem 3.18 of [15].
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