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EQUIVARIANT PROPERTIES OF SYMMETRIC PRODUCTS

STEFAN SCHWEDE

Introduction

We let Sp∞(X) denote the infinite symmetric product of a based space X. It
comes with a filtration by finite symmetric products Spn(X) = Xn/Σn. We de-
note by

Spn = {Spn(Sm)}m≥0

the spectrum whose terms are the nth symmetric products of spheres. A celebrated
theorem of Dold and Thom [7] asserts that Sp∞(Sm) is an Eilenberg-MacLane
space of type (Z,m) for m ≥ 1; so Sp∞ is an Eilenberg-Mac Lane spectrum for the
group Z. The resulting filtration

S = Sp1 ⊆ Sp2 ⊆ · · · ⊆ Spn ⊆ · · ·

of the Eilenberg-Mac Lane spectrum Sp∞, starting with the sphere spectrum S, has
been much studied. The subquotient Spn/Spn−1 is stably contractible unless n is
a prime power. If n = pk for a prime p, then Spn/Spn−1 is p-torsion, and its mod-p
cohomology has been worked out by Nakaoka [19]. For p = 2 these subquotient
spectra feature in the work of Mitchell and Priddy on stable splitting of classifying
spaces [18], and in Kuhn’s solution of the Whitehead conjecture [10]. Arone and
Dwyer relate these spectra to the partition complex, the homology of the dual Lie
representation, and the Tits building [1].

While the symmetric product filtration has been a major focus of research since
the 1980s, essentially nothing was known when one adds group actions into the
picture. This paper is about equivariant features of the symmetric product filtra-
tion, for actions of compact Lie groups G. If V is a finite dimensional orthogonal
G-representation, then G acts continuously on the one-point compactification SV ,
and hence on Spn(SV ) and Sp∞(SV ) by functoriality of symmetric products. As V
varies over all such G-representations, the G-spaces Spn(SV ) form a G-spectrum
that represents a “genuine” G-equivariant stable homotopy type. For understand-
ing these equivariant homotopy types it is extremely beneficial not to study one
compact Lie group at a time, but to use the “global” perspective. Here “global”
refers to simultaneous and compatible actions of all compact Lie groups. Various
ways to formalize this idea have been explored (compare [12, Chapter II], [9, Sec-
tion 5], [4]); we use a different approach via orthogonal spectra.
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In Definition 2.7 we introduce the notion of global functor, a useful language to
describe the collection of equivariant homotopy groups of an orthogonal spectrum
as a whole, i.e., when the compact Lie group is allowed to vary. The category of
global functors is a symmetric monoidal abelian category that takes up the role
in global homotopy theory played by abelian groups in ordinary homotopy theory,
or by G-Mackey functors in G-equivariant homotopy theory. As a consequence of
Theorem 2.12 we will see that a global functor is a certain kind of “global Mackey
functor” that assigns abelian groups to all compact Lie groups and comes with
restriction maps along continuous group homomorphisms and transfer maps along
inclusions of closed subgroups.

In this language, we can then identify the global functor π0(Sp
n) as a quotient

of the Burnside ring global functor A by a single relation. We define an element tn
in the Burnside ring of the nth symmetric group by

tn = n · 1 − trΣn

Σn−1
(1) ∈ A(Σn).

As an element in the Grothendieck group of finite Σn-sets, the class tn corresponds
to the formal difference of a trivial Σn-set with n elements and the tautological Σn-
set {1, . . . , n}. Since tn has zero augmentation, the global subfunctor 〈tn〉 generated
by tn lies in the augmentation ideal global functor I. The restriction of tn to the
Burnside ring of Σn−1 equals tn−1, so we obtain a nested sequence of global functors

0 = 〈t1〉 ⊂ 〈t2〉 ⊂ · · · ⊂ 〈tn〉 ⊂ · · · ⊂ I ⊂ A .

As part of our main result, Theorem 3.12, we prove the following theorem.

Theorem. For every n ≥ 1 the morphism of global functors i∗ : A = π0(S) −→
π0(Sp

n) induced by the embedding i : S = Sp1 −→ Spn passes to an isomorphism
of global functors

A/〈tn〉 ∼= π0(Sp
n) .

It is then a purely algebraic exercise to describe πG
0 (Sp

n) as an explicit quotient
of the Burnside ring A(G): one has to enumerate all relations in A(G) obtained by
applying restrictions and transfers to the class tn. We do this in Proposition 4.1
and then work out the examples of p-groups and some symmetric groups. The
author thinks that the explicit answer for πG

0 (Sp
n) is far less enlightening than the

global description of π0(Sp
n). Since all the inclusions 〈tn−1〉 ⊂ 〈tn〉 are proper,

the subquotients Spn/Spn−1 are all globally non-trivial, in sharp contrast to the
non-equivariant situation.

Our calculation of π0(Sp
n) is a consequence of a global homotopy pushout square

(see Theorem 3.8), showing that Spn is obtained from Spn−1 by coning off a certain
morphism from the suspension spectrum of the global classifying space of the family
of non-transitive subgroups of Σn. This homotopy pushout square is a global equi-
variant refinement of a non-equivariant homotopy pushout established by Lesh [11].

Another consequence of our calculations is a possibly unexpected feature of the
equivariant homotopy groups πG

0 (Sp
∞) when G has a positive dimension. We let

I∞ denote the global subfunctor of A generated by all the classes tn for n ≥ 1. Also
in Theorem 3.12 we show that the embedding S −→ Sp∞ induces an isomorphism
of global functors

A/I∞ ∼= π0(Sp
∞) .
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For every compact Lie group G the restriction map

resGe : πG
0 (Sp

∞) −→ πe
0(Sp

∞) ∼= Z

to the non-equivariant zeroth homotopy group is a split epimorphism onto a free
abelian group of rank 1. When the group G is finite, then this restriction map is an
isomorphism and all G-equivariant homotopy groups of Sp∞ vanish in dimensions
different from 0. So through the eyes of finite groups, Sp∞ is an Eilenberg-MacLane
spectrum for the constant global functor Z. This does not, however, generalize to
compact Lie groups of positive dimension. In that generality, the restriction map
resGe can have a non-trivial kernel; equivalently, the value of the global functor I∞
at some compact Lie groups is strictly smaller than the augmentation ideal. We
discuss these phenomena in more detail at the end of Section 4.

1. Orthogonal spaces

In this section we recall orthogonal spaces from a global equivariant perspective.
We work in the category T of compactly generated spaces in the sense of [17], i.e.,
k-spaces (also called Kelley spaces) that satisfy the weak Hausdorff condition. An
inner product space is a finite dimensional R-vector space V equipped with a scalar
product. We write O(V ) for the orthogonal group of V , i.e., the Lie group of linear
isometries of V . We denote by L the category with objects the inner product spaces
and morphisms the linear isometric embeddings. This is a topological category as
follows: if ϕ : V −→ W is one linear isometric embedding, then the action of the
orthogonal group O(W ), by postcomposition, induces a bijection

O(W )/O(ϕ⊥) ∼= L(V,W ) , A ·O(ϕ⊥) 
−→ A ◦ ϕ ,

where ϕ⊥ = W − ϕ(V ) is the orthogonal complement of the image of ϕ. We
topologize L(V,W ) so that this bijection is a homeomorphism, and this topology is
independent of ϕ. So if n = dim(V ), then L(V,W ) is homeomorphic to the Stiefel
manifold of orthonormal n-frames in W .

Definition 1.1. An orthogonal space is a continuous functor Y : L −→ T to the
category of spaces. A morphism of orthogonal spaces is a natural transformation.
We denote by spc the category of orthogonal spaces.

The systematic use of inner product spaces to index objects in homotopy theory
seems to go back to Boardman’s thesis [2]. The category L (or its extension that
also contains countably infinite dimensional inner product spaces) is denoted I by
Boardman and Vogt [3], and this notation is also used in [15]; other sources use the
symbol I. Accordingly, orthogonal spaces are sometimes referred to as I -functors,
I -spaces, or I-spaces. Our justification for using yet another name is twofold:
on the one hand, we shift the emphasis away from a focus on non-equivariant
homotopy types and toward viewing an orthogonal space as representing compatible
equivariant homotopy types for all compact Lie groups. Second, we want to stress
the analogy between orthogonal spaces and orthogonal spectra, the former being
an unstable global world and the latter a corresponding stable global world.

We let G be a compact Lie group. By a G-representation we mean an or-
thogonal G-representation, i.e., an inner product space V equipped with a con-
tinuous G-action by linear isometries. For every orthogonal space Y and every
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G-representation V , the value Y (V ) inherits a G-action from V through the func-
toriality of Y . For a G-equivariant linear isometric embedding ϕ : V −→ W the
induced map Y (ϕ) : Y (V ) −→ Y (W ) is G-equivariant.

Now we discuss the equivariant homotopy set πG
0 (Y ) of an orthogonal space Y ;

this is an unstable precursor of the zeroth equivariant stable homotopy group of an
orthogonal spectrum.

Definition 1.2. Let G be a compact Lie group. A G-universe is an orthogonal G-
representation U of countably infinite dimension with the following two properties:

• the representation U has non-zero G-fixed points,
• if a finite dimensional representation V embeds into U , then a countable
infinite sum of copies of V also embeds into U .

A G-universe is complete if every finite dimensional G-representation embeds into it.

AG-universe is characterized, up to equivariant isometry, by the set of irreducible
G-representations that embed into it. A universe is complete if and only if every
irreducible G-representation embeds into it. In the following we fix, for every
compact Lie group G, a complete G-universe UG. We let s(UG) denote the poset,
under inclusion, of finite dimensional G-subrepresentations of UG.

We let Y be an orthogonal space and define its G-equivariant path components as

(1.3) πG
0 (Y ) = colimV ∈s(UG) π0

(
Y (V )G

)
.

As the group varies, the homotopy sets πG
0 (Y ) have contravariant functoriality in

G: every continuous group homomorphism α : K −→ G between compact Lie
groups induces a restriction map α∗ : πG

0 (Y ) −→ πK
0 (Y ), as we shall now explain.

We denote by α∗ the restriction functor from G-spaces to K-spaces (or from G-
representations to K-representations), i.e., α∗Z (respectively, α∗V ) is the same
topological space as Z (respectively, the same inner product space as V ) endowed
with K-action via

k · z = α(k) · z .

Given an orthogonal space Y , we note that for every G-representation V , the K-
spaces α∗(Y (V )) and Y (α∗V ) are equal (not just isomorphic).

The restriction α∗(UG) is a K-universe, but if α has a non-trivial kernel, then
this K-universe is not complete. When α is injective, then α∗(UG) is a complete
K-universe, but typically different from the chosen complete K-universe UK . To
deal with this we explain how a G-fixed point y ∈ Y (V )G, for an arbitrary G-
representation V , gives rise to an unambiguously defined element 〈y〉 in πG

0 (Y ).
The point here is that V need not be a subrepresentation of the chosen universe
UG and the resulting class does not depend on any additional choices. To construct
〈y〉 we choose a linear isometric G-embedding j : V −→ UG and look at the image
Y (j)(y) under the G-map

Y (V )
Y (j)−−−−→ Y (j(V )) .

Here we have used the letter j to also denote the isometry j : V −→ j(V ) to the
image of V ; since j(V ) is a finite dimensional G-invariant subspace of UG, we obtain
an element

〈y〉 = [Y (j)(y)] ∈ πG
0 (Y ) .

It is crucial, although not particularly difficult, that 〈y〉 does not depend on the
choice of embedding j.
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Proposition 1.4. Let Y be an orthogonal space, G a compact Lie group, V a
G-representation, and y ∈ Y (V )G a G-fixed point.

(i) The class 〈y〉 in πG
0 (Y ) is independent of the choice of linear isometric em-

bedding j : V −→ UG.
(ii) For every G-equivariant linear isometric embedding ϕ : V −→ W the relation

〈Y (ϕ)(y)〉 = 〈y〉 holds in πG
0 (Y ).

Proof.

(i) We let j′ : V −→ UG be another G-equivariant linear isometric embedding. If
the images j(V ) and j′(V ) are orthogonal, then H : V ×[0, 1] −→ j(V )⊕j′(V )
defined by

H(v, t) =
√
1− t2 · j(v) + t · j′(v)

is a homotopy from j to j′ through G-equivariant linear isometric embeddings.
Thus

t 
−→ Y (H(−, t))(y)

is a path in Y (j(V ) ⊕ j′(V ))G from Y (j)(y) to Y (j′)(y), so [Y (j)(y)] =
[Y (j′)(y)] in πG

0 (Y ). In general we can choose a third G-equivariant linear
isometric embedding l : V −→ UG whose image is orthogonal to the images
of j and j′. Then [Y (j)(y)] = [Y (l)(y)] = [Y (j′)(y)] by the previous para-
graph.

(ii) If j : W −→ UG is an equivariant linear isometric embedding, then so is
jϕ : V −→ UG. Since we can use any equivariant isometric embedding to
define the class 〈y〉, we get

〈Y (ϕ)(y)〉 = [Y (j)(Y (ϕ)(y))] = [Y (jϕ)(y)] = 〈y〉 . �

We can now define the restriction map associated to a continuous group homo-
morphism α : K −→ G by

α∗ : πG
0 (Y ) −→ πK

0 (Y ) , [y] 
−→ 〈y〉 .
This makes sense because every G-fixed point of Y (V ) is also a K-fixed point of
α∗(Y (V )) = Y (α∗V ). For a second continuous group homomorphism β : L −→ K
we have

β∗ ◦ α∗ = (αβ)∗ : πG
0 (Y ) −→ πL

0 (Y ) .

Since restriction along the identity homomorphism is the identity, the collection
of equivariant homotopy sets πG

0 (Y ) becomes a contravariant functor in the group
variable. A key fact is that inner automorphisms act trivially.

Proposition 1.5. For every orthogonal space Y , every compact Lie group G, and
every g ∈ G, the restriction map c∗g : πG

0 (Y ) −→ πG
0 (Y ) along the inner automor-

phism

cg : G −→ G , cg(h) = g−1hg

is the identity of πG
0 (Y ).

Proof. We consider a finite dimensional G-subrepresentation V of UG and a G-
fixed point y ∈ Y (V )G that represents an element in πG

0 (Y ). Then the map lg :
c∗g(V ) −→ U given by left multiplication by g is a G-equivariant linear isometric
embedding. So

c∗g[y] = [Y (lVg )(y)] = [g · y] = [y] ,
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by the very definition of the restriction map, where lVg : c∗g(V ) −→ V . The second
equation is the definition of the G-action on Y (V ) through the G-action on V . The
third equation is the hypothesis that y is G-fixed. �

We denote by Rep the category whose objects are the compact Lie groups and
whose morphisms are conjugacy classes of continuous group homomorphisms. We
can summarize the discussion thus far by saying that for every orthogonal space
Y the restriction maps make the equivariant homotopy sets {πG

0 (Y )} into a con-
travariant functor

π0(Y ) : Rep −→ (sets) .

In fact, the restriction maps along continuous homomorphisms give all natural
operations: As we show in [21], every natural transformation πG

0 −→ πK
0 of set

valued functors on the category of orthogonal spaces is of the form α∗ for a unique
conjugacy class of continuous group homomorphism α : K −→ G.

If V is any inner product space, then the evaluation functor sending an orthog-
onal space Y to Y (V ) is represented by the hom functor L(V,−). Consequently,
if V is a G-representation, then the functor

spc −→ T , Y 
−→ Y (V )G

that sends an orthogonal space Y to the space of G-fixed points of Y (V ) is repre-
sented by an orthogonal space LG,V , the free orthogonal space generated by (G, V ).
The value of LG,V at an inner product space W is

LG,V (W ) = L(V,W )/G ,

the orbit space of the right G-action on L(V,W ) by (ϕ · g)(v) = ϕ(g · v). Every
G-fixed point y ∈ Y (V )G gives rise to a morphism ŷ : LG,V −→ Y of orthogonal
spaces, defined at W as

ŷ(W ) : L(V,W )/G −→ Y (W ) , ϕ ·G 
−→ Y (ϕ)(y) .

The morphism ŷ is uniquely determined by the property ŷ(V )(IdV ·G) = y in
Y (V )G.

We calculate the zeroth equivariant homotopy sets of a free orthogonal space.
The tautological class

(1.6) uG,V ∈ πG
0 (LG,V )

is the path component of the G-fixed point

IdV ·G ∈ (L(V, V )/G)G = (LG,V (V ))G ,

the G-orbit of the identity of V .

Theorem 1.7. Let K and G be compact Lie groups and V a faithful G-representa-
tion. Then the map

Rep(K,G) −→ πK
0 (LG,V ) , [α : K −→ G] 
−→ α∗(uG,V )

is bijective.

Proof. We construct the inverse explicitly. We consider any element

[ϕG] ∈ πK
0 (LG,V ) ;

here W ∈ s(UK), and ϕ ∈ L(V,W ) is such that the orbit ϕG ∈ L(V,W )/G is
K-fixed. Thus kϕG = ϕG for every element k ∈ K. Since G acts faithfully
on V , there is a unique α(k) ∈ G with kϕ = ϕα(k), and this defines a continuous
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homomorphism α : K −→ G. If we replace ϕ by ϕg for some g ∈ G, then α
changes into its g-conjugate. If we replace W by a larger K-representation in the
poset s(UK), then α does not change.

Now we consider a path

ω : [0, 1] −→ (L(V,W )/G)K

starting with ϕG. Since the projection L(V,W ) −→ L(V,W )/G is a locally trivial
fiber bundle, we can choose a continuous lift

ω̃ : [0, 1] −→ L(V,W )

with ω̃(0) = ϕ and ω̃(t)G = ω(t) for all t ∈ [0, 1]. Then each t determines a
continuous homomorphism αt : K −→ G by kω̃(t) = ω̃(t)αt(k), and the assignment

[0, 1] −→ Hom(K,G) , t 
−→ αt

to the space of continuous group homomorphisms (with the topology of uniform
convergence) is itself continuous. But that means that α0 and α1 are conjugate
by an element of G, compare [6, VIII, Lemma 38.1]. In particular, the conjugacy
class of α only depends on the path component of ϕG in the space (L(V,W )/G)K.
Altogether this shows that the map

πK
0 (LG,V ) −→ Rep(K,G) , [ϕG] 
−→ [α]

is well-defined. It is straightforward from the definitions that this map is inverse
to evaluation at uG,V . �

We end this section by discussing certain orthogonal spaces that are closely
related to the symmetric product filtration.

Construction 1.8. For an inner product space V we set

S(V, n) =

{
(v1, . . . , vn) ∈ V n :

n∑
i=1

vi = 0 ,

n∑
i=1

|vi|2 = 1

}
.

In other words, S(V, n) is the unit sphere in the kernel of the summation map from
V n to V . The symmetric group Σn acts from the right on S(V, n) by permuting
the coordinates, i.e.,

(v1, . . . , vn) · σ = (vσ(1), . . . , vσ(n)) .

We define
(BglFn)(V ) = S(V, n)/Σn ,

the orbit space of the Σn-action. A linear isometric embedding ϕ : V −→ W
induces the map

(BglFn)(ϕ) = S(ϕ, n)/Σn , (v1, . . . , vn)Σn 
−→ (ϕ(v1), . . . , ϕ(vn))Σn .

We call BglFn the global classifying space of the family Fn of non-transitive sub-
groups of the symmetric group Σn. Proposition 1.11 below justifies this terminology.

Remark 1.9. The reduced natural Σn-representation (also called the standard Σn-
representation) is the vector space

νn = {(x1, . . . , xn) ∈ Rn : x1 + . . .+ xn = 0}
with the standard scalar product and left Σn-action by permutation of coordinates,

σ · (x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) .
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In the proof of the following proposition we exploit that for every inner product
space V (possibly infinite dimensional), the kernel of the summation map V n −→ V
is isometrically and (O(V )×Σn)-equivariantly isomorphic to V ⊗νn. Hence S(V, n)
is (O(V )× Σn)-equivariantly homeomorphic to S(V ⊗ νn).

We show now that for every compact Lie group K the K-space (BglFn)(UK) =
S(UK , n)/Σn is a certain classifying space, thereby justifying the term “global clas-
sifying space” for BglFn. We denote by Fn(K) the family of those closed subgroups
Γ of K × Σn whose trace H = {σ ∈ Σn | (1, σ) ∈ Γ} is a non-transitive subgroup
of Σn. For the purpose of the next proposition we combine the left K-action and
the right Σn-action on S(UK , n) into a left action of K × Σ by

(1.10) (k, σ) · (v1, . . . , vn) = (k · vσ−1(1), . . . , k · vσ−1(n)) .

Proposition 1.11. Let K be a compact Lie group and n ≥ 2. Then the (K×Σn)-
space S(UK , n) is a universal space for the family Fn(K) of subgroups of K × Σn.

Proof. We let Γ be a closed subgroup of K×Σn. If the trace H = {σ ∈ Σn | (1, σ) ∈
Γ} is a transitive subgroup of Σn, then all H-fixed points of S(UK , n) are diagonal,
i.e., of the form (v, . . . , v) for some v ∈ UK . Since the components must add up
to 0, this forces v = 0, which cannot happen for tuples in the unit sphere. So if H
is a transitive subgroup, then S(UK , n) has no H-fixed points, and hence no Γ-fixed
points either.

Now we suppose that the trace H is not transitive. We view the subgroup
Γ ≤ K × Σn as a generalized graph: we denote by L the image of Γ under the
projection K × Σn −→ K and define a group homomorphism β : L −→ WΣn

H to
the Weyl group of the trace H by

β(l) = {σ ∈ Σn | (l, σ) ∈ Γ} ∈ WΣn
H .

We can recover Γ as the graph of β, i.e.,

Γ =
⋃

l∈L
{l} × β(l) .

We let L act on (νn)
H by restriction along β; then β∗((νn)

H) is a non-zero L-
representation because H is non-transitive. Since UK is a complete K-universe, the
underlying L-universe is also complete; hence so is the L-universe UK ⊗β∗((νn)

H).
So

(S(UK ⊗ νn))
Γ = S((UK ⊗ β∗((νn)

H))L)

is an infinite dimensional unit sphere, and hence is contractible. �

We define a specific class in the equivariant homotopy set πΣn
0 (BglFn). We set

b = (1/n, . . . , 1/n) ∈ Rn

and let ei be the ith vector of the canonical basis of Rn. Then b − ei lies in the
reduced natural Σn-representation νn. Because |b− ei|2 = n−1

n , the vector

Dn =
1√
n− 1

(b− e1, . . . , b− en) ∈ (νn)
n

lies in the unit sphere S(νn, n). The Σn-orbit of Dn (with respect to the right
action permuting the “outer” coordinates) is Σn-fixed (with respect to the left
action permuting the “inner” coordinates), i.e.,

Dn · Σn ∈ (S(νn, n)/Σn)
Σn = ((BglFn)(νn))

Σn .
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We denote by

(1.12) un = 〈Dn · Σn〉 ∈ πΣn
0 (BglFn)

the class represented by this Σn-fixed point. The next theorem says that the class
un generates the homotopy set Rep-functor π0(BglFn).

Theorem 1.13. For every n ≥ 2, every compact Lie group K, and every element
x of πK

0 (BglFn) there is a continuous group homomorphism α : K −→ Σn such
that α∗(un) = x.

Proof. An element of πK
0 (BglFn) is represented by a K-representation V in s(UK)

and a K-fixed Σn-orbit

v · Σn ∈ S(V, n)/Σn = (BglFn)(V ) .

We let H denote the Σn-stabilizer of v, a non-transitive subgroup of Σn. We define
a continuous homomorphism β : K −→ WΣn

H to the Weyl group of H by

β(k) = {σ ∈ Σn | kv = vσ} .

As the Σn-stabilizer of a point in V n, the group H is a Young subgroup of Σn, i.e.,
the product of the symmetric groups of all the orbits of the tautologicalH-action on
{1, . . . , n}. Thus the projection q : NΣn

H −→ WΣn
H has a multiplicative section

s : WΣn
H −→ NΣn

H. We define α : K −→ Σn as the composite homomorphism

K
β−−→ WΣn

H
s−−→ NΣn

H
incl−−→ Σn

and claim that

α∗(un) = [v · Σn] in πK
0 (BglFn) .

We turn S(V, n) into a left (K × Σn)-space as in (1.10) and let Γ ≤ K × Σn

denote the graph of α. Since α(k) ∈ β(k) for every k ∈ K, the vector v is fixed
by Γ. Increasing the K-representation V does not change the stabilizer group of
the vector v nor the class represented by the orbit v · Σn in πK

0 (BglFn); we can
thus assume without loss of generality that there is a K-equivariant linear isometric
embedding ϕ : α∗(νn) −→ V . As the K-representations V exhaust a complete K-
universe, the (K×Σn)-spaces S(V, n) approximate a universal space for the family
Fn(K), by Proposition 1.11. The graph Γ of α belongs to Fn(K), so after increasing
the K-representation V , if necessary, we can assume that the dimension of the fixed
point sphere S(V, n)Γ is at least 1, so that this fixed point space is path connected.
The class α∗(un) is represented by the Σn-orbit of the point

S(ϕ, n)(Dn) ∈ S(V, n)Γ,

and the original class in πK
0 (BglFn) is represented by the vector v. Any path

between S(ϕ, n)(Dn) and v in the fixed point space S(V, n)Γ projects to a path of
K-fixed points between the orbits

S(ϕ, n)(Dn) · Σn , v · Σn ∈ (S(V, n)/Σn)
K = ((BglFn)(V ))

K
.

This proves that α∗(un) = [v · Σn], and it finishes the proof. �

Remark 1.14. The orthogonal space BglF2 is isomorphic to the free orthogonal
space generated by (Σ2, σ), where σ is the one dimensional sign representation of
Σ2 on R. An isomorphism of orthogonal spaces

LΣ2,σ
∼= BglF2
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is induced at an inner product space V by the Σ2-equivariant natural homeomor-
phism

L(σ, V ) ∼= S(V, 2) , (ϕ : σ −→ V ) 
−→
(
ϕ(1/

√
2),−ϕ(1/

√
2)
)

.

This isomorphism sends the tautological class uΣ2,σ (see (1.6)) in πΣ2
0 (LΣ2,σ) to

the class u2 ∈ πΣ2
0 (BglF2). So by Theorem 1.7 every element of πK

0 (BglF2) is of
the form α∗(u2) for unique conjugacy classes of continuous group homomorphism
α : K −→ Σ2. For n ≥ 3, however, α is typically not unique up to conjugacy, and
π0(BglFn) is not a representable Rep-functor.

2. Orthogonal spectra

In this section we recall orthogonal spectra, the objects that represent stable
global homotopy types. Orthogonal spectra are used, at least implicitly, in [15], and
the term “orthogonal spectrum” was introduced in [13], where a non-equivariant
stable model structure for orthogonal spectra was constructed. Before giving the
formal definition of orthogonal spectra we try to motivate it. An orthogonal space
Y assigns values to all finite dimensional inner product spaces. Informally speaking,
the global homotopy type is encoded in the G-spaces obtained as the “homotopy
colimit of Y (V ) over all G-representations V .” So besides the values Y (V ), we
use the O(V )-action (which is turned into a G-action when G acts on V ) and
the information about inclusions of inner product spaces. All this information is
conveniently encoded as a continuous functor from the category L.

An orthogonal spectrum X is a stable analog of this: it assigns a based space
X(V ) to every inner product space, and it keeps track of an O(V )-action on X(V )
(to get G-homotopy types when G acts on V ) and of a way to stabilize by suspen-
sions. When doing this in a coordinate free way, the stabilization data assign to a
linear isometric embedding ϕ : V −→ W a continuous based map

ϕ� : X(V ) ∧ Sϕ⊥ −→ X(W )

that “varies continuously with ϕ.” To make the continuous dependence rigorous one
exploits that the orthogonal complements ϕ⊥ vary in a locally trivial way; i.e., they
are the fibers of an “orthogonal complement” vector bundle over the space L(V,W )
of linear isometric embeddings. All the structure maps ϕ� together define a map on
the smash product of X(V ) with the Thom space of this complement bundle, and
the continuity in ϕ is formalized by requiring continuity of that map. The Thom
spaces together form the morphism spaces of a based topological category, and the
data of an orthogonal spectrum can conveniently be packaged as a continuous based
functor on this category.

Construction 2.1. We let V and W be inner product spaces. The orthogonal
complement vector bundle over the space L(V,W ) is the subbundle of the trivial
vector bundle W × L(V,W ) with total space

ξ(V,W ) = { (w,ϕ) ∈ W × L(V,W ) | 〈w,ϕ(v)〉 = 0 for all v ∈ V } .

The fiber over ϕ : V −→ W is the orthogonal complement of the image of ϕ.
We let O(V,W ) be the one-point compactification of the total space of ξ(V,W );

since the base space L(V,W ) is compact, O(V,W ) is also the Thom space of the
bundle ξ(V,W ). Up to non-canonical homeomorphism, we can describe the space
O(V,W ) differently as follows: if dimV = n and dimW = n+m, then L(V,W ) is
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homeomorphic to the homogeneous space O(n+m)/O(m) and O(V,W ) is home-
omorphic to O(n+m)+ ∧O(m) S

m.
The spaces O(V,W ) are the morphism spaces of a based topological category.

Given a third inner product space U , the bundle map

ξ(V,W )× ξ(U, V ) −→ ξ(U,W ) , ((w,ϕ), (v, ψ)) 
−→ (w + ϕ(v), ϕψ)

covers the composition in L. Passage to one-point compactification gives a based
map

◦ : O(V,W ) ∧O(U, V ) −→ O(U,W ),

which is the composition in the categoryO. The identity of V is (0, IdV ) inO(V, V ).

Definition 2.2. An orthogonal spectrum is a based continuous functor from O to
the category of based spaces. A morphism is a natural transformation of functors.
We denote by Sp the category of orthogonal spectra.

We denote by SV the one-point compactification of an inner product space V ,
with the base point at infinity. If X is an orthogonal spectrum and V and W are
inner product spaces, we define the structure map

σV,W : X(V ) ∧ SW −→ X(V ⊕W )

as the composite

X(V ) ∧ SW X(V )∧((0,−),iV )−−−−−−−−−−−→ X(V ) ∧O(V, V ⊕W )
X−−→ X(V ⊕W ),

where iV : V −→ V ⊕W is the inclusion of the first summand. If a compact Lie
group G acts on V and W by linear isometries, then X(V ) becomes a based G-space
by restriction of the action of O(V, V ) = O(V )+, and the structure map σV,W is
G-equivariant.

Remark 2.3. Given an orthogonal spectrum X and a compact Lie group G, the
collection of G-spaces X(V ) and the structure maps σV,W form an orthogonal G-
spectrum in the sense of [14] that we denote by XG. However, only very special
orthogonalG-spectra arise in this way from an orthogonal spectrum. More precisely,
an orthogonal G-spectrum Y is isomorphic to XG for some orthogonal spectrum X
if and only if for every trivial G-representation V , the G-action on Y (V ) is trivial.
An orthogonal G-spectrum that does not satisfy this condition is the equivariant
suspension spectrum of a based G-space with non-trivial G-action. In Remark 2.16
below we isolate some conditions on the Mackey functor homotopy groups of an
orthogonal G-spectrum that hold for all G-spectra of the special form XG.

As we just explained, an orthogonal spectrum X has an underlying orthogo-
nal G-spectrum for every compact Lie group G. As such, it has equivariant sta-
ble homotopy groups, whose definition we now recall. As before, s(UG) denotes
the poset, under inclusion, of finite dimensional G-subrepresentations of the com-
plete G-universe UG. For k ≥ 0 we consider the functor from s(UG) to sets that
sends V ∈ s(UG) to

[Sk+V , X(V )]G ,

the set of G-equivariant homotopy classes of based G-maps from Sk+V to X(V )
(where k+V is shorthand for Rk⊕V with trivial G-action on Rk). The map induced
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by an inclusion V ⊆ W in s(UG) sends the homotopy class of f : Sk+V −→ X(V )
to the class of the composite

Sk+W ∼= Sk+V ∧ SW−V f∧SW−V

−−−−−−−→ X(V ) ∧ SW−V

σV,W−V−−−−−→ X(V ⊕ (W − V )) = X(W ) ,

where W − V is the orthogonal complement of V in W . The kth equivariant
homotopy group πG

0 (X) is then defined as

(2.4) πG
k (X) = colimV ∈s(UG) [S

k+V , X(V )]G ,

the colimit of this functor over the poset s(UG). For k < 0, the definition is
essentially the same, but we take a colimit over s(UG) of the sets [S

V , X(R−k⊕V )]G.
When the fixed points V G have dimension at least 2, then [SV , X(V )]G comes with
a commutative group structure, and the maps out of it are homomorphisms. The
G-subrepresentations V with dim(V G) ≥ 2 are cofinal in the poset s(UG), so the
abelian group structures on [SV , X(V )]G for dim(V G) ≥ 2 assemble into a well-
defined and natural abelian group structure on the colimit πG

0 (X). The argument
for πG

k (X) is similar.

Definition 2.5. A morphism f : X −→ Y of orthogonal spectra is a global equiv-
alence if the induced map πG

k (f) : πG
k (X) −→ πG

k (Y ) is an isomorphism for all
compact Lie groups G and all integers k.

The global stable homotopy category is the category obtained from the category
of orthogonal spectra by formally inverting the global equivalences. The global
equivalences are the weak equivalences of the global model structure on the category
of orthogonal spectra; see [21]. So the methods of homotopical algebra are available
for studying global equivalences and the associated global homotopy category.

Now we set up the formalism of global functors, the natural (in fact, the tau-
tological) home of the collection of equivariant homotopy groups of an orthogonal
spectrum. In this language we then describe the equivariant homotopy groups
πG
0 (Sp

n) of the symmetric product spectrum Spn as a whole, i.e., when the com-
pact Lie group G is varying: the global functor π0(Sp

n) is the quotient of the
Burnside ring global functor by a single basic relation.

Definition 2.6 (Global Burnside category). The global Burnside categoryA has all
compact Lie groups as objects; the morphisms from a group G to K are defined as

A(G,K) = Nat(πG
0 , π

K
0 ) ,

the set of natural transformations of functors, from orthogonal spectra to sets,
between the equivariant homotopy group functors πG

0 and πK
0 . The composition

in A is a composition of natural transformations.

It is not a priori clear that the natural transformations from πG
0 to πK

0 form a
set (as opposed to a proper class), but this follows from the representability result
in Proposition 2.11 below. The functor πK

0 is abelian group valued, so the set
A(G,K) is an abelian group under an objectwise addition of transformations. The
composition is additive in each variable, so A(G,K) is a pre-additive category.

The Burnside category A is skeletally small: isomorphic compact Lie groups are
also isomorphic in the category A, and every compact Lie group is isomorphic to a
closed subgroup of an orthogonal group O(n).
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Definition 2.7. A global functor is an additive functor from the global Burnside
category A to the category of abelian groups. A morphism of global functors is a
natural transformation.

As a category of additive functors out of a skeletally small pre-additive category,
the category of global functors is abelian with enough injectives and projectives.
The global Burnside category A is designed so that the collection of equivariant
homotopy groups of an orthogonal spectrum is tautologically a global functor. Ex-
plicitly, the global homotopy group functor π0(X) of an orthogonal spectrum X is
defined on objects by

π0(X)(G) = πG
0 (X)

and on morphisms by evaluating natural transformations at X.
It is less obvious that conversely every global functor is isomorphic to the ho-

motopy group global functor π0(X) of some orthogonal spectrum X. We show this
in [21] by constructing Eilenberg-MacLane spectra from global functors. In fact,
the full subcategories of globally connective (respectively, globally coconnective)
orthogonal spectra define a non-degenerate t-structure on the triangulated global
stable homotopy category, and the heart of this t-structure is (equivalent to) the
abelian category of global functors.

The abstract definition of the global Burnside categoryA is convenient for formal
considerations and for defining the global functor π0(X) associated to an orthogonal
spectrum X, but to facilitate calculations we should describe the groups A(G,K)
more explicitly. As we shall explain, the operations between the equivariant ho-
motopy groups come from two different sources: restriction maps along continuous
group homomorphisms and transfer maps along inclusions of closed subgroups. A
quick way to define the restriction maps, and to deduce some of their properties,
is to interpret πG

0 (X) as the G-equivariant homotopy set, as defined in (1.3), of a
certain orthogonal space.

Construction 2.8. We recall the functor

Ω• : Sp −→ spc

from orthogonal spectra to orthogonal spaces. Given an orthogonal spectrum X,
the value of Ω•X at an inner product space V is

(Ω•X)(V ) = map(SV , X(V )) .

If ϕ : V −→ W is a linear isometric embedding, the induced map

ϕ∗ : (Ω•X)(V ) = map(SV , X(V )) −→ map(SW , X(W )) = (Ω•X)(W )

is by “conjugation and extension by the identity.” In more detail: given a continuous
based map f : SV −→ X(V ) we define ϕ∗(f) : S

W −→ X(W ) as the composite

SW ∼= SV ∧ Sϕ⊥ f∧Sϕ⊥

−−−−−→ X(V ) ∧ Sϕ⊥ σ
V,ϕ⊥−−−−→ X(V ⊕ ϕ⊥) ∼= X(W ) ,

where each of the two unnamed homeomorphisms uses ϕ to identify V ⊕ ϕ⊥ with
W . In particular, the orthogonal group O(V ) acts on (Ω•X)(V ) by conjugation.
The assignment (ϕ, f) 
→ ϕ∗(f) is continuous in both variables and functorial in ϕ.
In other words, we have defined an orthogonal space Ω•X.

The functor Ω• has a left adjoint, defined as follows. To every orthogonal space
Y we can associate an unreduced suspension spectrum Σ∞

+ Y whose value on an
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inner product space is given by

(Σ∞
+ Y )(V ) = Y (V )+ ∧ SV ;

the structure map

O(V,W ) ∧ Y (V )+ ∧ SV −→ Y (W )+ ∧ SW

is given by

(w,ϕ) ∧ y ∧ v 
−→ Y (ϕ)(y) ∧ (w + ϕ(v)) .

If Y is the constant orthogonal space with value A, then Σ∞
+ Y specializes to the

usual suspension spectrum of A with a disjoint base point added.

If G acts on V by linear isometries, then the G-fixed subspace of (Ω•X)(V ) is
the space of G-equivariant based maps from SV to X(V ). The path components of
this space are precisely the equivariant homotopy classes of based G-maps, i.e.,

π0

(
((Ω•X)(V ))G

)
= π0

(
mapG(SV , X(V ))

)
= [SV , X(V )]G .

Passing to the colimit over the poset s(UG) gives

πG
0 (Ω

•X) = πG
0 (X) ,

i.e., the G-equivariant homotopy group of the orthogonal spectrum X equals the
G-equivariant homotopy set (as previously defined in (1.3)) of the orthogonal space
Ω•X. So by specializing the restriction maps for orthogonal spaces we obtain
restriction maps

α∗ : πG
0 (X) −→ πK

0 (X)

for every continuous group homomorphism α : K −→ G. These restriction maps
are again contravariantly functorial and depend only on the conjugacy class of α
(by Proposition 1.5). Moreover, α∗ is additive, i.e., a group homomorphism.

The transfer maps

trGH : πH
0 (X) −→ πG

0 (X)

are the classical ones that arise from the orthogonal G-spectrum underlying X; they
are defined whenever H is a closed subgroup of G and constructed by an equivari-
ant Thom-Pontryagin construction [16, Section IX.3], [20]. Transfers are additive
and natural for homomorphisms of orthogonal spectra; since we only consider de-
gree 0 transfers (as opposed to more general “dimension shifting transfers”), the
transfer trGH is trivial whenever H has infinite index in its normalizer in G.

As we shall now explain, the suspension spectrum functor “freely builds in” the
extra structure that is available at the level of πG

0 for orthogonal spectra (as opposed
to orthogonal spaces), namely the abelian group structure and transfers. We let Y
be an orthogonal space and G a compact Lie group. We define a stabilization map

(2.9) σG : πG
0 (Y ) −→ πG

0 (Σ
∞
+ Y )

as the effect of the adjunction unit Y −→ Ω•(Σ∞
+ Y ) on the G-equivariant homotopy

set πG
0 , using the identification πG

0 (Ω
•(Σ∞

+ Y )) = πG
0 (Σ

∞
+ Y ). More explicitly: if V

is a finite dimensional G-subrepresentation of the complete G-universe UG and
y ∈ Y (V )G a G-fixed point, then σG[y] is represented by the G-map

SV y∧−−−−→ Y (V )+ ∧ SV = (Σ∞
+ Y )(V ) .

The stabilization maps (2.9) commute with restriction, since they arise from a
morphism of orthogonal spaces.
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For a closed subgroup L of a compact Lie group K, the normalizer NKL acts
on L by conjugation, and hence on πL

0 (Y ) by restriction along the conjugation
maps. Restriction along an inner automorphism is the identity, so the action of
NKL factors over an action of the Weyl group WKL = NKL/L on πL

0 (Y ). After
passing to the stable classes along the map σL : πL

0 (Y ) −→ πL
0 (Σ

∞
+ Y ), we can then

transfer from L to K. For an element k ∈ NKL and a class x ∈ πL
0 (Y ) we have

trKL (σL(c∗k(x))) = trKL (c∗k(σ
L(x))) = c∗k(tr

K
L (σL(x))) = trKL (σL(x))

because transfer commutes with restriction along the conjugation maps

ck : L −→ L, respectively, ck : K −→ K,

defined by ck(h) = k−1hk. So transferring from L to K in the global functor
π0(Σ

∞
+ Y ) equalizes the action of the Weyl group WKL on πL

0 (Y ).

Proposition 2.10. Let Y be an orthogonal space. Then for every compact Lie
group K the equivariant homotopy group πK

0 (Σ∞
+ Y ) of the suspension spectrum of

Y is a free abelian group with a basis given by the elements

trKL (σL(x)),

where L runs through all conjugacy classes of closed subgroups of K with the finite
Weyl group and x runs through a set of representatives of the WKL-orbits of the
set πL

0 (Y ).

Proof. We consider the functor on the product poset s(UK)2 sending (V, U) to the
set [SV , Y (U)+ ∧ SV ]K . The diagonal is cofinal in s(UK)2, and thus the induced
map

πK
0 (Σ∞

+ Y ) = colimV ∈s(UG)[S
V , Y (V )+ ∧ SV ]K

−→ colim(V,U)∈s(UK )2 [S
V , Y (U)+ ∧ SV ]K

is an isomorphism. The target can be calculated in two steps, so the group we are
after is isomorphic to

colimU∈s(UK)

(
colimV ∈s(UK)[S

V , Y (U)+ ∧ SV ]K
)
= colimU∈s(UK) π

K
0

(
Σ∞

+ Y (U)
)
.

We may thus show that the latter group is free abelian with the specified basis.
The rest of the argument is well known, and a version of it can be found in [12, V

Corollary 9.3]. The tomDieck splitting [26, Satz 2] provides an isomorphism⊕
(L)

πWL
0 (Σ∞

+ (EWL× Y (U)L)) ∼= πK
0 (Σ∞

+ Y (U)) ,

where the sum is indexed over all conjugacy classes of closed subgroups L andWL =
WKL is the Weyl group of L in K. By [26, Section 4] the group πWL

0 (Σ∞
+ (EWL×

Y (U)L)) vanishes if the Weyl group WL is infinite; so only the summands with
finite Weyl group contribute to πK

0 . On the other hand, if the Weyl group WL is
finite, then the group πWL

0 (Σ∞
+ (EWL× Y (U)L)) is free abelian with a basis given

by the set WL\π0(Y (U)L), the WL-orbit set of the path components of Y (U)L.
Since colimits commute among themselves, we conclude that

πK
0

(
Σ∞

+ Y
) ∼= colim πK

0

(
Σ∞

+ Y (U)
) ∼= colim

⊕
(L)

Z{WL\π0(Y (U)L)}

∼=
⊕
(L)

Z{WL\(colimπ0(Y (U)L))} =
⊕
(L)

Z{WL\πL
0 (Y )} ,
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where all colimits are over the poset s(UG) and the sums are indexed by conjugacy
classes with finite Weyl groups. To verify that this composite isomorphism takes
the class trKL (σL(x)) in πK

0

(
Σ∞

+ Y
)
to the basis element corresponding to the orbit

of x ∈ πL
0 (Y ) in the summand indexed by L, one needs to recall the definition of

the isomorphism in tom Dieck’s splitting from [26]; we omit this. �

Now we prove a representability result. The stable tautological class

eG,V = σG(uG,V ) ∈ πG
0 (Σ

∞
+ LG,V )

arises from the unstable tautological class uG,V defined in (1.6) by applying the
stabilization map (2.9); so it is represented by the G-map

SV −→ (L(V, V )/G)+ ∧ SV = (Σ∞
+ LG,V )(V ) , v 
−→ (IdV ·G) ∧ v .

Proposition 2.11. Let G and K be compact Lie groups and V a faithful G-
representation. Then evaluation at the stable tautological class is an isomorphism

A(G,K)
∼=−−→ πK

0 (Σ∞
+ LG,V ) , τ 
−→ τ (eG,V ),

to the zeroth K-equivariant homotopy group of the orthogonal spectrum Σ∞
+ LG,V .

Hence the morphism

A(G,−) −→ π0(Σ
∞
+ LG,V )

classified by the stable tautological class eG,V is an isomorphism of global functors.

Proof. We show first that every natural transformation τ : πG
0 −→ πK

0 is determined
by the element τ (eG,V ). We let X be any orthogonal spectrum and x ∈ πG

0 (X) a
G-equivariant homotopy class. Without loss of generality the class x is represented
by a continuous based G-map

f : SV⊕W −→ X(V ⊕W )

for some G-representation W . This G-map is adjoint to a morphism of orthogonal
spectra

f̂ : Σ∞
+ LG,V⊕W −→ X that satisfies f̂∗(eG,V ⊕W ) = x in πG

0 (X) .

We consider the morphism of orthogonal spaces r : LG,V⊕W −→ LG,V that restricts
a linear isometry from V ⊕W to V . The relation

πG
0 (r)(uG,V⊕W ) = uG,V

shows that the composite

Rep(K,G)
[α] �→α∗(uG,V ⊕W )−−−−−−−−−−−→ πK

0 (LG,V⊕W )
πK
0 (r)−−−−→ πK

0 (LG,V )

is evaluation at the class uG,V . Evaluation at uG,V ⊕W and at uG,V are both bi-
jective by Theorem 1.7, so πK

0 (r) is bijective for all compact Lie groups K. By
Proposition 2.10, the induced morphism of suspension spectra

Σ∞
+ r : Σ∞

+ LG,V ⊕W −→ Σ∞
+ LG,V
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thus induces an isomorphism on πK
0 (−) for all compact Lie groups K, and it sends

eG,W⊕V to eG,V . The diagram

πG
0 (Σ

∞
+ LG,V )

τ

��

πG
0 (Σ

∞
+ LG,V⊕W )

τ

��

(Σ∞
+ r)∗

∼=
�� f̂∗ �� πG

0 (X)

τ

��
πK
0 (Σ∞

+ LG,V ) πK
0 (Σ∞

+ LG,W⊕V )
(Σ∞

+ r)∗

∼=��
f̂∗

�� πK
0 (X)

commutes and the two left horizontal maps are isomorphisms. Since

x = f̂∗((Σ
∞
+ r)−1

∗ (eG,V )) ,

naturality yields that

τ (x) = τ (f̂∗((Σ
∞
+ r)−1

∗ (eG,V ))) = f̂∗((Σ
∞
+ r)−1

∗ (τ (eG,V ))) .

So the transformation τ is determined by the value τ (eG,V ).
It remains to construct, for every element y ∈ πK

0 (Σ∞
+ LG,V ), a natural trans-

formation τ : πG
0 −→ πK

0 with τ (eG,V ) = y. The previous paragraph dictates
what to do: we represent a given class x ∈ πG

0 (X) by a continuous based G-map
f : SV⊕W −→ X(V ⊕W ) as above and set

τ (x) = f̂∗((Σ
∞
+ r)−1

∗ (y))) .

We omit the verification that the element τ (x) only depends on the class x and
that τ is indeed natural. �

We show now that restriction and transfer maps generate all natural operations
between the zero dimensional equivariant homotopy group functors for orthogonal
spectra. Given compact Lie groups K and G, we consider pairs (L, α) consisting of

• a closed subgroup L ≤ K whose Weyl group WKL is finite, and
• a continuous group homomorphism α : L −→ G.

The conjugate of (L, α) by a pair of group elements (k, g) ∈ K×G is the pair (kL, cg◦
α ◦ ck) consisting of the conjugate subgroup kL and the composite homomorphism

kL
ck−−→ L

α−−→ G
cg−−→ G .

Since inner automorphisms induce the identity on equivariant homotopy groups,

trKkL ◦ (cg ◦ α ◦ ck)∗ = trKL ◦α∗ : πG
0 (X) −→ πK

0 (X) ;

i.e., conjugate pairs define the same operation on equivariant homotopy groups.

Theorem 2.12. Let G and K be compact Lie groups.

(i) Let V be a faithful G-representation. Then the homotopy group πK
0 (Σ∞

+ LG,V )
is a free abelian group with basis given by the classes

trKL (α∗(eG,V ))

as (L, α) runs over a set of representatives of all (K × G)-conjugacy classes
of pairs consisting of a closed subgroup L of K with finite Weyl group and a
continuous homomorphism α : L −→ G.

(ii) The morphism group A(G,K) in the global Burnside category is a free abelian
group with basis the operations trKL ◦α∗, where (L, α) runs over all conjugacy
classes of pairs consisting of a closed subgroup L of K with finite Weyl group
and a continuous homomorphism α : L −→ G.
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Proof.

(i) The map

Rep(K,G) −→ πK
0 (LG,V ) , [α : K −→ G] 
−→ α∗(uG,V ),

is bijective according to Theorem 1.7. Proposition 2.10 thus says that
πK
0 (Σ∞

+ LG,V ) is a free abelian group with a basis given by the elements

trKL (σL(α∗(uG,V ))) = trKL (α∗(σG(uG,V ))) = trKL (α∗(eG,V )),

where L runs through all conjugacy classes of closed subgroups of K with
finite Weyl group and α runs through a set of representatives of the WKL-
orbits of the set Rep(L,G). The claim follows because (K × G)-conjugacy
classes of such pairs (L, α) biject with pairs consisting of a conjugacy class of
subgroups (L) and a WKL-equivalence class in Rep(L,G).

(ii) We let V be any faithful G-representation. By part (i) the composite

Z{[L, α] | |WKL| < ∞, α : L −→ G} −→ Nat(πG
0 , π

K
0 )

ev−−→ πK
0 (Σ∞

+ LG,V )

is an isomorphism, where the first map takes a conjugacy class [L, α] to
trKL ◦α∗, and the second map is evaluation at the stable tautological class
eG,V . The evaluation map is an isomorphism by Proposition 2.11, so the first
map is an isomorphism, as claimed. �

Theorem 2.12 (ii) is almost a complete calculation of the global Burnside cate-
gory, but one important piece of information is still missing: how does one express
the composite of two operations, each given in the basis of Theorem 2.12, as a
sum of basis elements? Restrictions are contravariantly functorial and transfers are
transitive, i.e., for every closed subgroup K of H we have

trGH ◦ trHK = trGK : πK
0 (X) −→ πG

0 (X) .

So the key question is how to express a transfer followed by a restriction in terms
of the specified basis.

Every group homomorphism is the composite of an epimorphism and a subgroup
inclusion. Transfers commute with inflation (i.e., restriction along epimorphisms):
for every surjective continuous group homomorphism α : K −→ G and every sub-
group H of G the relation

α∗ ◦ trGH = trKL ◦(α|L)∗

holds as maps πH
0 (X) −→ πK

0 (X), where L = α−1(H) and α|L : L −→ H is the
restriction of α. So the remaining issue is to rewrite the composite

πH
0 (X)

trGH−−−→ πG
0 (X)

resGK−−−−→ πK
0 (X)

of a transfer map and a restriction map, where H and K are two closed subgroups
of a compact Lie group G. The answer is given by the double coset formula,

(2.13) resGK ◦ trGH =
∑
[M ]

χ	(M) · trKK∩gH ◦c∗g ◦ resHKg∩H .

The double coset formula was proved by Feshbach for Borel cohomology theories [8,
Theorem II.11] and later generalized to equivariant cohomology theories by Lewis
and May [12, IV Section 6]. The sum in the double coset formula (2.13) runs over
all connected components M of orbit type manifolds, the group element g ∈ G that
occurs is such that KgH ∈ M , and χ	(M) is the internal Euler characteristic of M .
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Only finitely many of the orbit type manifolds are non-empty, so the double coset
formula is a finite sum.

In this paper we only need the double coset formula when H has a finite index
in G, and then (2.13) simplifies. For any other subgroup K of G the intersection
K ∩ gH then has a finite index in K, so only finite index transfers are involved
in the double coset formula. Since G/H is finite, so is the set K\G/H of double
cosets, and all orbit type manifold components are points. So all internal Euler
characteristics that occur are 1 and the double coset formula specializes to

resGK ◦ trGH =
∑

[g]∈K\G/H

trKK∩gH ◦c∗g ◦ resHKg∩H ;

the sum runs over a set of representatives of the K-H-double cosets.
The explicit description of the groups A(G,K) allows us to relate our notion of

global functor to other “global” versions of Mackey functors, which are typically
introduced by specifying generating operations and relations between them. For
example, our category of global functors is equivalent to the category of functors
with regular Mackey structure in the sense of Symonds [25, Section 3].

Example 2.14. We list some explicit examples of global functors; for more details
we refer to [21].

(i) For every compact Lie group G, the represented global functor A(G,−) is
realized by the suspension spectrum of a free orthogonal space LG,V , by Proposi-
tion 2.11. In the special case G = e of the trivial group we refer to this represented
global functor as the Burnside ring global functor and denote it by A = A(e,−).
The value A(K) at a compact Lie group K is a free abelian group with the basis
indexed by conjugacy classes of closed subgroups of K with the finite Weyl group.
When K is finite, then the Weyl group condition is vacuous and A(K) is naturally
isomorphic to the Burnside ring of K; compare Remark 2.15 below.

The Burnside ring global functor is realized by the sphere spectrum S, given by
S(V ) = SV with the canonical homeomorphisms SV ∧ SW ∼= SV⊕W as structure
maps. The equivariant homotopy groups of the sphere spectrum are thus the equi-
variant stable stems. The action on the unit 1 ∈ π0(S) is an isomorphism of global
functors

A
∼=−−→ π0(S)

from the Burnside ring global functor to the zeroth homotopy global functor of
the sphere spectrum. For finite groups, this is originally due to Segal [23], and for
general compact Lie groups to tomDieck, as a corollary to his splitting theorem
(see Satz 2 and Satz 3 of [26]).

(ii) Given an abelian groupM , the constant global functor is given byM(G) = M
and all restriction maps are identity maps. The transfer trGH : M(H) −→ M(G)
is multiplication by the Euler characteristic of the homogeneous space G/H. In
particular, if H is a subgroup of the finite index of G, then trGH is multiplication by
the index [G : H].

(iii) The representation ring global functor RU assigns to a compact Lie group
G the representation ring RU(G), the Grothendieck group of finite dimensional
complex G-representations. The fact that the representation rings form a global
functor is classical in the restricted realm of finite groups, but somewhat less familiar
for compact Lie groups in general. The restriction maps α∗ : RU(G) −→ RU(K)
are induced by the restriction of representations along a homomorphism α : K −→
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G. The transfer trGH : RU(H) −→ RU(G) along a closed subgroup inclusion
H ≤ G is the smooth induction of Segal [22, Section 2]. If H has finite index in G,
then this induction sends the class of an H-representation V to the induced G-
representation mapG(H,V ); in general, induction may send actual representations
to virtual representations. In the generality of compact Lie groups, the double coset
formula for RU was proved by Snaith [24, Theorem2.4]. We show in [21] that the
representation ring global functor RU is realized by the periodic global K-theory
spectrum.

(iv) Given any generalized cohomology theory E (in the non-equivariant sense),
we can define a global functor E by setting

E(G) = E0(BG) ,

the zeroth E-cohomology of a classifying space of the group G. The contravariant
functoriality in group homomorphisms comes from the covariant functoriality of
classifying spaces. The transfer maps for a subgroup inclusion H ≤ G comes from
the stable transfer map

Σ∞
+ BG −→ Σ∞

+ BH .

The double coset formula was proved in this context by Feshbach [8, Theorem II.11].
The global functor G 
→ E0(BG) is realized by a preferred global homotopy type:
in [21] we introduce a “global Borel theory” functor b from the non-equivariant
stable homotopy category to the global stable homotopy category such that the
global functor π0(bE) is isomorphic to E. The functor b is in fact right adjoint to
the forget functor from the global stable homotopy to the non-equivariant stable
homotopy category.

Remark 2.15. The full subcategory Afin of the global Burnside category A
spanned by finite groups has a different, more algebraic description, as we shall
now recall. This alternative description is often taken as the definition in algebraic
treatments of global functors. We define an algebraic Burnside category B whose
objects are all finite groups. The abelian group B(G,K) of morphisms from a group
G to K is the Grothendieck group of finite K-G-bisets where the right G-action is
free. The composition

◦ : B(K,L)×B(G,K) −→ B(G,L)

is induced by the balanced product over K; i.e., it is the biadditive extension of

(S, T ) 
−→ S ×K T .

Here S has a left L-action and a commuting free rightK-action, whereas T has a left
K-action and a commuting free right G-action. The balanced product S×K T then
inherits a left L-action from S and a free right G-action from T . Since the balanced
product is associative up to isomorphism, this defines a pre-additive category B.

An isomorphism of pre-additive categories Afin ∼= B is given by the identity on
objects and by the group isomorphisms Afin(G,K) −→ B(G,K) sending a basis
element trGH ◦α∗ to the class of the right free K-G-biset

K ×(L,α) G = (K ×G) / (kl, g) ∼ (k, α(l)g) .

The category of “global functors on finite groups,” i.e., additive functors from Afin

to abelian groups, is thus equivalent to the category of inflation functors in the
sense of [27, page 271]. In the context of finite groups, these inflation functors and
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several other variations of the concept “global Mackey functor” have been much
studied in algebra and representation theory.

Remark 2.16. In Remark 2.3 we observed that only very special kinds of or-
thogonal G-spectra are part of a “global family,” i.e., isomorphic to an orthogonal
G-spectrum of the form XG for some orthogonal spectrum X. The previous ob-
structions were in terms of point set level conditions, and now we can also isolate
obstructions to “being global” in terms of the Mackey functor homotopy groups of
an orthogonal G-spectrum.

If we fix a compact Lie group G and let H run through all closed subgroups of
G, then the collection of H-equivariant homotopy groups πH

0 (X) of an orthogonal
spectrum X forms a Mackey functor for the group G, with respect to the restric-
tion, conjugation, and transfer maps. One obstruction for a general orthogonal
G-spectrum Y to be global, i.e., equivariantly stably equivalent to XG for some or-
thogonal spectrum X, is that the G-Mackey functor H 
→ πH

0 (Y ) can be extended
to a global functor.

An extension of a G-Mackey functor to a global functor requires us to specify
values for groups that are not subgroups of G, but it also imposes restrictions on
the existing data. In particular, the G-Mackey functor homotopy groups can be
complemented by restriction maps along arbitrary group homomorphisms between
the subgroups of G. As the extreme case this includes a restriction map p∗ :
πe
∗(X) −→ πG

∗ (X) associated to the unique homomorphism p : G −→ e, splitting
the restriction map resGe : πG

∗ (X) −→ πe
∗(X). So one obstruction to being global is

that resGe must be a splittable epimorphism.
Another point is that for an orthogonal spectrum X (as opposed to a general

orthogonal G-spectrum), the action of the Weyl group WGH on πH
0 (X) factors

through the outer automorphism group of H. In other words, if g centralizes H,
then c∗g is the identity of πH

0 (X). The most extreme case of this is when H = e is
the trivial subgroup of G. Every element of G centralizes e, so for G-spectra of the
form XG, the conjugation maps on the value at the trivial subgroup are all identity
maps.

3. The global homotopy type of symmetric products

Now we start the equivariant analysis of the symmetric product filtration. The
main result is a global homotopy pushout square of orthogonal spectra (3.9), show-
ing that Spn can be obtained from Spn−1 by coning off, in the global stable ho-
motopy category, a certain morphism from the suspension spectrum of BglFn.
Non-equivariantly, such a homotopy pushout square was exhibited by Lesh; see
Theorem 1.1 and Proposition 7.4 of [11]. In Theorem 3.12 we then exploit the
Mayer-Vietoris sequence of the global homotopy pushout square to calculate the
global functors π0(Sp

n) inductively.
We define an orthogonal space C(BglFn) by

(C(BglFn))(V ) = D(V, n)/Σn ,

where

D(V, n) =

{
(v1, . . . , vn) ∈ V n :

n∑
i=1

vi = 0 ,

n∑
i=1

|vi|2 ≤ 1

}

is the unit disc in the kernel of summation map. Since a unit disc is the cone on the
unit sphere, C(BglFn) is the unreduced cone of the global classifying space BglFn,
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whence the notation. Next we define a certain morphism of orthogonal spectra

Φ : Σ∞
+ C(BglFn) −→ Spn

that takes the orthogonal subspectrum Σ∞
+ BglFn to Spn−1, and that can be thought

of as a highly structured, parametrized Thom-Pontryagin collapse map. I owe this
construction to Markus Hausmann. Before giving the details we try to explain the
main idea. For every inner product space V , the map Φ(V ) has to assign to each
tuple (y1, . . . , yn) ∈ D(V, n) a based map Φ(V )(y1, . . . , yn) : S

V −→ Spn(V ) that
does not depend on the order of y1, . . . , yn. We would like to take Φ(V )(y1, . . . , yn)
as the product of the Thom-Pontryagin collapse maps in balls of a sufficiently small
radius centered at the points y1, . . . , yn. This would work fine for an individual inner
product space V , but such maps would not form a morphism of orthogonal spectra
as V increases.

The fix to this problem is to combine the collapse maps with orthogonal projec-
tion onto the subspace spanned by y1, . . . , yn. However, this orthogonal projection
does not depend continuously on the tuple y at those points where the dimension
of the span of y1, . . . , yn jumps. So instead of the orthogonal projection to the span
we use a certain positive semidefinite self-adjoint endomorphism P (y) of V that
has similar features and varies continuously with y.

Construction 3.1 (Collapse maps). We let V be an inner product space and
denote by sa+(V ) the space of positive semidefinite, self-adjoint endomorphisms
of V , i.e., R-linear maps F : V −→ V that satisfy

• 〈F (v), v〉 ≥ 0 for all v ∈ V , and
• 〈F (v), w〉 = 〈v, F (w)〉 for all v, w ∈ V .

We note that sa+(V ) is a convex subset of End(V ), and hence is contractible. We
fix the natural number n ≥ 2 and set the radius for the collapse maps to

ρ =
1

2 · n3/2
.

We define a scaling function

s : [0, ρ) −→ [0,∞) by s(x) = x/(ρ− x) .

What matters is not the precise form of the function s, but only that it is a home-
omorphism from [0, ρ) to [0,∞). We define a parametrized collapse map

c : sa+(V )× SV −→ SV

by

c(F, v) =

{
v + s(|F (v)|) · F (v) if v �= ∞ and |F (v)| < ρ, and

∞ else.

Lemma 3.2.

(i) For all (F, v) ∈ sa+(V )× SV the relation |c(F, v)| ≥ |v| holds.
(ii) The map c is continuous.

Proof.

(i) There is nothing to show if c(F, v) = ∞, so we may assume that v �= ∞ and
|F (v)| < ρ. Since F is self-adjoint, V is the orthogonal direct sum of the
image and kernel of F . So we can write

v = a + b ,
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where a ∈ im(F ), b ∈ ker(F ), and b is orthogonal to im(F ). The orthogonal
decomposition

c(F, v) = v + s(|F (v)|) · F (v) =
(
a+ s(|F (a)|) · F (a)

)
+ b

allows us to conclude that

|c(F, v)|2 = |a+ s(|F (a)|) · F (a)|2 + |b|2

= |a|2 + 2s(|F (a)|) · 〈a, F (a)〉
+ s(|F (a)|)2 · |F (a)|2 + |b|2 ≥ |a|2 + |b|2 = |v|2 .

The inequality uses that F is positive semidefinite. Taking square roots proves
the claim.

(ii) We consider a sequence (Fk, vk) that converges in sa+(V ) × SV to a point
(F, v). We need to show that the sequence c(Fk, vk) converges to c(F, v) in SV .
If v = ∞, then |vk| converges to ∞; hence so does c(Fk, vk) by part (i). So we
suppose that v �= ∞ for the rest of the proof. Then we can assume without
loss of generality that vk �= ∞ for all k. We distinguish three cases.

Case 1. |F (v)| < ρ. Then |Fk(vk)| < ρ for almost all k. So c(Fk, vk) converges to
c(F, v) because the formula in the definition of c is continuous in both parameters F
and v.

Case 2. |F (v)| = ρ. If |Fk(vk)| ≥ ρ, then c(Fk, vk) = ∞. Otherwise

|c(Fk, vk)| = |vk + s(|Fk(vk)|) · Fk(vk)| ≥ s(|Fk(vk)|) · |Fk(vk)| − |vk| .

The sequences |vk| and |Fk(vk)| converge to the finite numbers |v|, respectively, ρ;
on the other hand, s(|Fk(vk)|) converges to ∞. So the sequence |c(Fk, vk)| also
converges to ∞, which means that the sequence c(Fk, vk) converges to ∞ = c(F, v).

Case 3. |F (v)| > ρ. Then |Fk(vk)| > ρ for almost all k. So c(Fk, vk) = ∞ for
almost all k, and this sequence converges to c(F, v) = ∞. �

Construction 3.3. We define a continuous map

P : V n −→ sa+(V ) by P (y)(v) = P (y1, . . . , yn)(v) =

n∑
j=1

〈v, yj〉 · yj .

Each of the summands 〈−, yj〉 · yj is self-adjoint, and hence so is P (y). Because

〈P (y)(v), v〉 =

n∑
j=1

〈v, yj〉2 ≥ 0,

the map P (y) is also positive semidefinite. If the family (y1, . . . , yn) happens to be
orthonormal, then P (y) is the orthogonal projection onto the span of y1, . . . , yn.
In general, P (y) need not be idempotent, but its image is always the span of the
vectors y1, . . . , yn, and hence its kernel is the orthogonal complement of that span.

For every linear isometric embedding ϕ : V −→ W and an endomorphism F ∈
sa+(V ), we define ϕF ∈ sa+(W ) by “conjugation and extension by 0”; i.e., we set

(ϕF )(ϕ(v) + w) = ϕ(F (v))
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for all (v, w) ∈ V × ϕ⊥. Then

ϕ(P (y))(ϕ(v) + w) = ϕ(P (y)(v)) =
n∑

j=1

〈ϕ(v), ϕ(yj)〉 · ϕ(yj)(3.4)

= P (ϕ(y))(ϕ(v) + w) ,

i.e., ϕ(P (y)) = P (ϕ(y)) as endomorphisms of W .
It will be convenient to extend the meaning of the minus symbol and allow one

to subtract a vector from infinity. We define a continuous map

� : SV × V −→ SV by v � z =

{
v − z for v �= ∞, and

∞ for v = ∞.

We emphasize that only the first argument of the operator � is allowed to be
infinity; in particular, we cannot subtract ∞ from itself. We define a continuous
map

Φ̃(V ) : D(V, n)× SV −→ Spn(SV ) by

Φ̃(V )(y, v) = [c(P (y), v � y1), . . . , c(P (y), v � yn)] .

The map Φ̃(V ) sends D(V, n)×{∞} to the base point. For every permutation σ ∈
Σn we have P (y · σ) = P (y) and hence

Φ̃(V )(y · σ, v) = Φ̃(V )(y, v) .

So Φ̃(V ) factors over a continuous map

Φ(V ) : (C(BglFn)(V ))+ ∧ SV = (D(V, n)/Σn)+ ∧ SV −→ Spn(SV ) .

Lemma 3.5. As V varies over all inner product spaces, the maps Φ(V ) form a
morphism of orthogonal spectra

Φ : Σ∞
+ C(BglFn) −→ Spn .

Proof. For every linear isometric embedding ϕ : V −→ W , every F ∈ sa+(V ), and
all (v, w) ∈ V × ϕ⊥ with |F (v)| < ρ we have

c(ϕF, ϕ(v) + w) = (ϕ(v) + w) + s(|(ϕF )(ϕ(v) + w)|) · (ϕF )(ϕ(v) + w)

= ϕ(v) + w + s(|ϕ(F (v))|) · ϕ(F (v)) = ϕ(c(F, v)) + w(3.6)

in SW . Hence for all y ∈ D(V, n),

c(P (ϕ(y)), (ϕ(v) + w)� ϕ(yi)) =(3.4) c (ϕ(P (y)), (ϕ(v) + w)� ϕ(yi))

= c (ϕ(P (y)), ϕ(v � yi) + w)

=(3.6) ϕ(c(P (y), v � yi)) + w .

This shows that the square

O(V,W )×D(V, n)× SV O(V,W )×Φ̃(V ) ��

��

O(V,W )× Spn(SV )

��

((w,ϕ), [v1, . . . , vn])�

��
D(W,n)× SW

Φ̃(W )

�� Spn(SW ) [w + ϕ(v1), . . . , w + ϕ(vn)]

commutes, where the vertical maps are the structure maps. �
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We claim that the morphism Φ takes the orthogonal subspectrum Σ∞
+ (BglFn)

into the subspectrum Spn−1. We will need that kind of argument again later, so
we formulate it more generally.

Lemma 3.7. Let V be an inner product space and y ∈ S(V, n). For t ∈ [0, 1] we
define Ft ∈ sa+(V ) by Ft = (1− t) ·P (y)+ t · IdV . Then for every v ∈ SV the point

[c(Ft, v � y1), . . . , c(Ft, v � yn)] ∈ Spn(SV )

belongs to the subspace Spn−1(SV ).

Proof. Since
∑n

i=1 |yi|2 = 1 there is at least one i ∈ {1, . . . , n} with |yi|2 ≥ 1/n.
The Cauchy-Schwarz inequality gives

|yi| · |Ft(yi)| ≥ |〈yi, Ft(yi)〉|

= t〈yi, yi〉 + (1− t)

n∑
j=1

〈yi, yj〉2 ≥ t|yi|2 + (1− t)|yi|4 .

Dividing by |yi| yields

|Ft(yi)| ≥ t|yi| + (1− t)|yi|3 ≥ t

n1/2
+

1− t

n3/2
≥ 1

n3/2
= 2ρ .

The relation

n∑
j=1

|Ft(yi − yj)| ≥

∣∣∣∣∣∣
n∑

j=1

Ft(yi − yj)

∣∣∣∣∣∣
= |n · Ft(yi)− Ft(y1 + · · ·+ yn)| = n|Ft(yi)|

shows that there is a j ∈ {1, . . . , n} such that

|Ft(yi)− Ft(yj)| = |Ft(yi − yj)| ≥ |Ft(yi)| ≥ 2ρ .

So every v ∈ V has distance at least ρ from Ft(yi) or from Ft(yj). Hence c(Ft, v�yi)
or c(Ft, v � yj) is the base point at infinity of SV . �

For t = 0, Lemma 3.7 shows that for every v ∈ SV , the point

Φ(V )(y · Σn, v) = [c(P (y), v � y1), . . . , c(P (y), v � yn)]

belongs to the subspace Spn−1(SV ). So the map Φ(V ) takes the subspace
(Σ∞

+ BglFn)(V ) to Spn−1(SV ). We denote by

Ψ : Σ∞
+ BglFn −→ Spn−1

the restriction of the morphism Φ : Σ∞
+ C(BglFn) −→ Spn to the suspension spec-

trum of BglFn. The two vertical maps in the following commutative square (3.9)
are levelwise equivariant h-cofibrations. So the following theorem effectively says
that the square is a global homotopy pushout.
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Theorem 3.8. The morphism induced on vertical quotients by the commutative
square of orthogonal spectra

(3.9)

Σ∞
+ BglFn

Ψ ��

��

Spn−1

��
Σ∞

+ C(BglFn)
Φ

�� Spn

is a global equivalence.

Proof. We show that for every inner product space V the map

Φ(V )/Ψ(V ) : D̄(V, n)/Σn ∧ SV −→ Spn(SV )/Spn−1(SV )

is O(V )-equivariantly based homotopic to an equivariant homeomorphism, where
D̄(V, n) = D(V, n)/S(V, n). We define continuous maps

Gi :
(
[0, 1]×D(V, n) \ {1} × S(V, n)

)
× SV −→ SV

for 1 ≤ i ≤ n by

Gi(t, y, v) = c

(
(1− t) · P (y), v � yi

1− t|y|

)
.

Here the domain of the definition of Gi is the space of those tuples (t, y, v) ∈
[0, 1]×D(V, n)× SV such that t < 1 or |y| < 1.

We claim that the map

(G1, . . . , Gn) : [0, 1)×D(V, n)× SV −→ (SV )n

takes the subspace [0, 1)× S(V, n)× SV of the source into the wedge inside of the
product (SV )n. Indeed, because Φ(V ) takes (S(V, n)/Σn)+ ∧ SV into Spn−1(SV ),
for every v ∈ V there is an i ∈ {1, . . . , n} with

c(P (y), ((1− t)v)� yi) = ∞ ,

i.e., |P (y)((1− t)v − yi)| ≥ ρ. Because∣∣∣∣(1− t) · P (y)

(
v − yi

1− t

)∣∣∣∣ = |P (y)((1− t)v − yi)| ≥ ρ ,

this implies that Gi(t, y, v) = ∞.
We warn the reader that the maps Gi do not extend continuously to [0, 1] ×

D(V, n) × SV ! However, smashing all Gi together remedies this. In other words,
we claim that the map(

[0, 1]×D(V, n) \ {1} × S(V, n)
)
× SV G1∧···∧Gn−−−−−−−−→ (SV )∧n

has a continuous extension (necessarily unique)

Ḡ : [0, 1]×D(V, n)× SV −→ (SV )∧n

that sends {1}×S(V, n)×SV to the base point. To prove the claim, we consider any
sequence (tm, ym, vm)m≥1 in

(
[0, 1]×D(V, n) \ {1}×S(V, n)

)
×SV that converges
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to a point (1, y, v) with |y| = 1. We claim that there are i, j ∈ {1, . . . , n} such that
|yi − yj | ≥ 4ρ. Indeed, if that were not the case, then we would have

2n =

(
n

n∑
i=1

|yi|2
)

− 2

〈
n∑

i=1

yi,
n∑

j=1

yj

〉
+

⎛
⎝n

n∑
j=1

|yj |2
⎞
⎠

=
n∑

i,j=1

(
|yi|2 − 2〈yi, yj〉+ |yj |2

)
=

n∑
i,j=1

|yi − yj |2 < (4ρ)2n2 = 4/n ,

a contradiction.
Since limm−→∞ ym = y, we deduce that |ymi − ymj | ≥ 2ρ for all sufficiently

large m. For these m there is then a k ∈ {i, j} such that

|(1− tm|ym|)vm − ymk | ≥ ρ ,

and hence

|Gk(tm, ym, vm)| =

∣∣∣∣c
(
(1− tm) · P (ym), vm � ymk

1− tm|ym|

)∣∣∣∣
≥

∣∣∣∣vm − ymk
1− tm|ym|

∣∣∣∣ ≥ ρ

1− tm|ym| .

The first inequality is Lemma 3.2 (i). Since the sequences (tm) and |ym| converge
to 1, the length of the vector

(G1(tm, ym, vm), . . . , Gn(tm, ym, vm))

tends to infinity with m, so it converges to the base point at infinity of SV n

=
(SV )∧n.

We have now completed the verification that the map Ḡ : [0, 1]×D(V, n)×SV −→
(SV )∧n is continuous. Because the endomorphism P (y) does not depend on the
order of the components of the tuple y, the maps Gi satisfy

Gi(t, y · σ, v) = Gσ(i)(t, y, v) ,

so the map Ḡ descends to a well-defined continuous and O(V )-equivariant map

[0, 1]×
(
D̄(V, n)/Σn ∧ SV

)
−→ (SV )∧n/Σn = Spn(SV )/Spn−1(SV ) ,

which is the desired equivariant homotopy. This homotopy starts with the map
Φ(V )/Ψ(V ) and ends with the map

D̄(V, n)/Σn ∧ SV −→ Spn(SV )/Spn−1(SV ),

(y · Σn, v) 
−→
(
v − y1

1− |y|

)
∧ · · · ∧

(
v − yn

1− |y|

)
;

this map is a continuous bijection from a compact space to a Hausdorff space, hence
a homeomorphism. �

We recall from (1.12) the definition of the unstable homotopy class un ∈ πΣn
0

(BglFn). The stabilization map (2.9) lets us define a Σn-equivariant stable homo-
topy class

wn = σΣn(un) ∈ πΣn
0 (Σ∞

+ BglFn) .

The last ingredient for our main calculation is to determine the image of wn under
the morphism of orthogonal spectra

Ψ : Σ∞
+ BglFn −→ Spn−1 .
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Proposition 3.10. The relation

Ψ∗(wn) = i∗

(
trΣn

Σn−1
(1)

)
holds in the group πΣn

0 (Spn−1), where i : S −→ Spn−1 is the inclusion.

Proof. The class Ψ∗(wn) is represented by the composite Σn-map

(3.11) Sνn
(d1,...,dn)·Σn∧−−−−−−−−−−−−→ (S(νn, n)/Σn)+ ∧ Sνn

Ψ(νn)−−−−→ Spn−1(Sνn) ,

where νn is the reduced natural Σn-representation and

(d1, . . . , dn) =
1√
n− 1

(b− e1, . . . , b− en) ∈ S(νn, n) .

We define an equivariant homotopy to a different map that is easier to understand.
The space sa+(νn) of positive semidefinite self-adjoint endomorphisms of νn

is convex, so we can interpolate between P (d1, . . . , dn) and the identity of νn
in sa+(νn) by the linear homotopy

t 
−→ Ft = (1− t) · P (d1, . . . , dn) + t · Idνn
.

This induces a homotopy

K : [0, 1]× Sνn −→ Spn(Sνn) , K(t, v) = [c(Ft, v � d1), . . . , c(Ft, v � dn)] .

For every permutation σ ∈ Σn we have σ · di = dσ(i), and hence

σ(P (d1, . . . , dn)) =(3.4) P (σ ·d1, . . . , σ ·dn) = P (dσ(1), . . . , dσ(n)) = P (d1, . . . , dn)

as endomorphisms of νn. Thus also
σ(Ft) = Ft and hence

σ · c(Ft, v � di) =(3.6) c(σ(Ft), σ · (v � di)) = c(Ft, (σ · v)� (σ · di))
= c(Ft, (σ · v)� dσ(i)) ,

so σ · K(t, v) = K(t, σ · v), i.e., the homotopy K is Σn-equivariant. A priori, the
homotopy takes values in the nth symmetric product; however, Lemma 3.7 applied
to V = νn and y = (d1, . . . , dn) shows that K(t, v) belongs to Spn−1(Sνn).

The homotopy K starts with the composite (3.11), so the map

K(1,−) : Sνn −→ Spn−1(Sνn) given by

K(1, v) =
[
c(IdV , v � d1), . . . , c(IdV , v � dn)

]
is another representative of the class Ψ∗(wn). Because

|di − dj | =

√
2

n− 1
≥ 1

n3/2
= 2ρ

for all i �= j, the interiors of the ρ-balls around the points d1, . . . , dn are disjoint.
So for every v ∈ Sνn at most one of the points c(IdV , v � d1), . . . , c(IdV , v � dn) is
different from the base point of Sνn at infinity. The map K(1,−) thus equals the
composite

Sνn
J−−→ Sνn

i−−→ Spn−1(Sνn),

where the first map is defined by

J(v) =

{
c(IdV , v � di) =

v−di

1−|v−di|/ρ if v �= ∞ and |v − di| < ρ, and

∞ else.
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The map J is a Σn-equivariant Thom-Pontryagin collapse map around the image
of the equivariant embedding

Σn/Σn−1 −→ νn , σΣn−1 
−→ dσ(n) .

So J represents the class trΣn

Σn−1
(1) in the equivariant 0-stem πΣn

0 (S). �

Now we can put the pieces together and prove our main calculation. We let In
denote the global subfunctor of the Burnside ring global functor A generated by
the element tn = n · 1− trΣn

Σn−1
(1) in A(Σn), and we let I∞ denote the union of the

global functors In for all n ≥ 1.

Theorem 3.12. The inclusion of orthogonal spectra Spn−1 −→ Spn induces an
epimorphism

π0(Sp
n−1) −→ π0(Sp

n)

of the zeroth homotopy global functors whose kernel is generated, as a global functor,
by the class

i∗
(
n · 1 − trΣn

Σn−1
(1)

)
∈ πΣn

0 (Spn−1) ,

where i : S −→ Spn−1 is the inclusion. For every n ≥ 1 and n = ∞ the action of the
Burnside ring global functor on the class i∗(1) ∈ πe

0(Sp
n) passes to an isomorphism

of global functors

A/In ∼= π0(Sp
n) .

Proof. For every inner product space V the embedding Spn−1(SV ) −→ Spn(SV )
has the O(V )-equivariant homotopy extension property. The cone inclusion q :
BglFn −→ C(BglFn) also has the levelwise homotopy extension property, and
hence so does the induced morphism j = Σ∞

+ q : Σ∞
+ BglFn −→ Σ∞

+ C(BglFn)
of the suspension spectra. So Theorem 3.8 says that the commutative square of
orthogonal spectra (3.9) is a global homotopy pushout square. Taking equivariant
stable homotopy groups thus results in an exact Mayer-Vietoris sequence that ends
in the exact sequence of global functors

π0(Σ
∞
+ BglFn)

( j∗
Ψ∗)−−−→ π0(Σ

∞
+ C(BglFn))⊕ π0(Sp

n−1)
(−Φ∗,incl∗)−−−−−−−→ π0(Sp

n) −→ 0 .

(3.13)

By Proposition 1.13 the Rep-functor π0(BglFn) is generated by the element un in

πΣn
0 (BglFn). So by Proposition 2.10 the global functor π0(Σ

∞
+ BglFn) is generated

by the element wn = σΣn(un) in πΣn
0 (Σ∞

+ BglFn). The orthogonal space C(BglFn)
is contractible; so its suspension spectrum Σ∞

+ C(BglFn) is globally equivalent to the
sphere spectrum. Thus π0(Σ

∞
+ C(BglFn)) is isomorphic to the Burnside ring global

functor A, and it is freely generated by the class 1 = σe(u) in πe
0(Σ

∞
+ C(BglFn)),

where u ∈ πe
0(C(BglFn)) is the unique element. We record that

j∗(wn) = (Σ∞
+ q)∗(σ

Σn(un)) = σΣn(q∗(un)) = σΣn(p∗(u))

= p∗(σe(u)) = p∗(1) ,

where p : Σn −→ e is the unique homomorphism. The relation q∗(un) = p∗(u)

holds because the set πΣn
0 (C(BglFn)) has only one element.
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Since the global functor π0(Σ
∞
+ C(BglFn)) is freely generated by the class 1,

there is a unique morphism s : π0(Σ
∞
+ C(BglFn)) −→ π0(Σ

∞
+ BglFn) such that

s(1) = resΣn
e (wn). Then

j∗(s(1)) = resΣn
e (j∗(wn)) = resΣn

e (p∗(1)) = 1 .

Morphisms out of the global functor π0(Σ
∞
+ C(BglFn)) are determined by their

effect on the universal class, so we conclude that j∗ ◦ s = Id. In particular, j∗ is an
epimorphism and the Mayer-Vietoris sequence (3.13) restricts to an exact sequence
of global functors

ker(j∗)
Ψ∗−−−→ π0(Sp

n−1)
incl∗−−−→ π0(Sp

n) −→ 0 .

The other composite s ◦ j∗ is an idempotent endomorphism of π0(Σ
∞
+ BglFn), and

it satisfies

s(j∗(wn)) = s(p∗(1)) = p∗(s(1)) = p∗(resΣn
e (wn)) .

The kernel of j∗ is thus generated as a global functor by

(s ◦ j∗ − Id)(wn) = p∗(resΣn
e (wn)) − wn .

The global functor Ψ∗(ker(j∗)) is then generated by the class

Ψ∗(p
∗(resΣn

e (wn))− wn) = p∗
(
resΣn

e

(
i∗

(
trΣn

Σn−1
(1)

)))
− i∗

(
trΣn

Σn−1
(1)

)
= i∗

(
p∗

(
resΣn

e

(
trΣn

Σn−1
(1)

))
− trΣn

Σn−1
(1)

)
= i∗

(
n · 1− trΣn

Σn−1
(1)

)
.

The first equality uses Proposition 3.10. This proves the first claim.
The second claim is then obtained by induction over n, using that In−1 ⊂ In.

For n = ∞ we use that the canonical map

colimn π0(Sp
n) −→ π0(Sp

∞)

is an isomorphism because each embedding Spn−1 −→ Spn is levelwise an equivari-
ant h-cofibration. �

4. Examples

In this last section we make the description of the global functor π0(Sp
n) of

Theorem 3.12 more explicit by exhibiting a generating set for the group In(G), the
kernel of the map A(G) ∼= πG

0 (S) −→ πG
0 (Sp

n), in terms of the subgroup structure
of G. We use this to determine πG

0 (Sp
n), for all n, when G is a p-group, a symmetric

group Σk for k ≤ 4, and the alternating group A5. The purpose of these calculations
is twofold: we want to illustrate that πG

0 (Sp
n) can be worked out explicitly in terms

of the poset of conjugacy classes of subgroups of G and their relative indices; and
we want to convince the reader that the explicit answer for the group πG

0 (Sp
n) is

much less natural than the global description of π0(Sp
n) given by Theorem 3.12.

For a pair of closed subgroups K ≤ H of a compact Lie group G such that K
has the finite index in H we denote by tHK ∈ A(G) the class

tHK = [H : K] · trGH(1) − trGK(1) .

For example, tn = tΣn

Σn−1
. The notation is somewhat imprecise because it does not

record the ambient group G, but that should always be clear from the context. In
the next proposition these classes feature under the hypothesis that the Weyl group
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of H in G is finite (so that trGH(1) is a non-trivial class in the Burnside ring of G).
However, the group K may have the infinite Weyl group, in which case trGK(1) = 0
and tHK simplifies to [H : K] · trGH(1).

Proposition 4.1. For every n ≥ 2 and every compact Lie group G, the abelian
group In(G) is generated by the classes tHK as (H,K) runs through a set of rep-
resentatives of all G-conjugacy classes of nested pairs K ≤ H of closed subgroups
of G such that

• [H : K] ≤ n and
• the Weyl group WGH is finite.

Proof. By definition In is the image of the morphism of global functors

A(Σn,−) −→ A

represented by tn ∈ A(Σn). By Theorem 2.12 (ii) the group A(Σn, G) is generated
by the operations trGH ◦α∗ where (H,α) runs through the (G×Σn)-conjugacy classes
of pairs consisting of a closed subgroup H ≤ G with finite Weyl group and a
continuous homomorphism α : H −→ Σn. So In(G) is generated, as an abelian
group, by the classes

trGH(β∗(resΣn

Γ (tn))) ∈ A(G) ,

where Γ is a subgroup of Σn and β : H −→ Γ a continuous epimorphism. The
double coset formula (in the finite index case) gives

resΣn

Γ (tn) = n · 1− resΣn

Γ (trΣn

Σn−1
(1))

= n · 1 −
∑

[σ]∈Γ\Σn/Σn−1

trΓΓ∩σΣn−1
(1) =

∑
[σ]∈Γ\Σn/Σn−1

tΓΓ∩σΣn−1

in A(Γ), where we used that∑
[σ]∈Γ\Σn/Σn−1

[Γ : Γ ∩ σΣn−1] = n .

Thus

β∗(resΣn

Γ (tn)) =
∑

[σ]∈Γ\Σn/Σn−1

β∗
(
tΓΓ∩σΣn−1

)
=

∑
[σ]∈Γ\Σn/Σn−1

tHβ−1(σΣn−1)

in A(H). Transferring from H to G gives

trGH(β∗(resΣn

Γ (tn))) =
∑

[σ]∈Γ\Σn/Σn−1

tHβ−1(σΣn−1)
in A(G).

Since σΣn−1 has index n in Σn, the group Γ∩ σΣn−1 has index at most n in Γ, and
hence the group β−1(σΣn−1) = β−1(Γ∩σΣn−1) has index at most n in H. So In(G)
is indeed contained in the group described in the statement of the proposition.

For the other inclusion we consider a pair of closed subgroups K ≤ H in the
ambient group G with m = [H : K] ≤ n. A choice of bijection between H/K and
{1, . . . ,m} turns the left translation action of H on H/K into a homomorphism
β : H −→ Σm such that H/K is isomorphic, as an H-set, to β∗({1, . . . ,m}).
Since tm ∈ Im(Σm) ⊂ In(Σm) and In is a global functor, we conclude that

tHK = trGH
(
[H : K] · 1− trHK(1)

)
= trGH(β∗(tm)) ∈ In(G) . �
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For every finite group G the augmentation ideal I(G) is generated by the classes
tGH where H runs through all subgroups of G. So Proposition 4.1 shows that the
filtration by the subfunctors In exhausts the augmentation ideal at the |G|th stage.

Corollary 4.2. Let G be a finite group. Then In(G) = I(G) for n ≥ |G|.

However, often the filtration stops earlier, for example for p-groups.

Example 4.3 (Finite p-groups). Let p be a prime and P a finite p-group. Propo-
sition 4.1 shows that In(P ) = {0} for n < p. On the other hand, every proper
subgroup H of P admits a sequence of intermediate subgroups

H = H0 ⊂ H1 ⊂ · · · ⊂ Hk = P

such that [Hi : Hi−1] = p for all i = 1, . . . , k. Then the class

tPH = pk · 1− trPH(1) =

k∑
i=1

pi−1 · tHi

Hi−1

belongs to Ip(P ) by Proposition 4.1. Since the classes tPH generate the augmentation
ideal, we conclude that Ip(P ) = I(P ). Hence the group πP

0 (Sp
n) is isomorphic to

the Burnside ring A(P ) for 1 ≤ n < p and free of rank 1 for n ≥ p.

We work out the symmetric product filtration on equivariant homotopy groups
for the symmetric groups Σk for k ≤ 4 and for the alternating group A5. The groups
G = Σ4 and G = A5 provide explicit examples of homotopy groups πG

0 (Sp
n) with

non-trivial torsion.

Example 4.4 (Symmetric group Σ2). For the group Σ2 we have I2(Σ2) = I(Σ2),
freely generated by the class t2, i.e., the filtration terminates at the second step.
Hence the group πΣ2

0 (S) is free of rank 2, while the groups πΣ2
0 (Spn) are free of

rank 1 for all n ≥ 2.

Example 4.5 (Symmetric group Σ3). The group Σ3 has four conjugacy classes of
subgroups with representatives e,Σ2, A3, and Σ3. So the augmentation ideal I(Σ3)
is free of rank 3, and a basis is given by the classes

t3 = tΣ3

Σ2
, p∗(t2) = tΣ3

A3
, and trΣ3

Σ2
(t2) = 2 · tΣ3

Σ2
− tΣ3

e ,

where p : Σ3 −→ Σ2 is the unique epimorphism. Hence I2(Σ3) is freely generated

by the classes p∗(t2) and trΣ3

Σ2
(t2), and I3(Σ3) = I(Σ3), i.e., the filtration stabilizes

at the third step. Theorem 3.12 lets us conclude that the homotopy group πΣ3
0 (Spn)

is free for every n ≥ 1 and has rank 4 for n = 1, rank 2 for n = 2, and rank 1 for
n ≥ 3.

Example 4.6 (Symmetric group Σ4). The group Σ4 has 11 conjugacy classes of
subgroups, displayed below; the left column lists the order of a subgroup, and lines
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denote subconjugacy,

24 Σ4

��
��
��
��
��

��
��

��
��

12 A4

��
��
��
��
��
��
�

8 Σ2 � Σ2

��
��

��
��

���
���

���6 Σ3

4 V4 ��

���
��
Σ2 × Σ2

����
����

����
���

C4

��
��
��
��

3 A3 ��

��
��

�2 Σ2

				
			 (12)(34)










1 e

The augmentation ideal I(Σ4) is free of rank 10, and the classes

tΣ2
e , tΣ2×Σ2

Σ2
, tV4

(12)(34) , tΣ3

A3
, tΣ2�Σ2

V4
, tΣ2�Σ2

Σ2×Σ2
, tΣ2�Σ2

C4
, tΣ4

A4
(4.7)

together with the two classes

tΣ4

Σ2�Σ2
and tΣ4

Σ3
= t4

form a basis of I(Σ4).
The group I2(Σ4) is generated by the classes tHK as (H,K) runs over all pairs of

nested subgroups with [H : K] = 2. All classes of this particular form are linear
combinations of the eight classes (4.7),

tΣ2×Σ2

(12)(34) = tV4

(12)(34) + 2 · tΣ2�Σ2

V4
− 2 · tΣ2�Σ2

Σ2×Σ2
,

tC4

(12)(34) = tV4

(12)(34) + 2 · tΣ2�Σ2

V4
− 2 · tΣ2�Σ2

C4
,

t(12)(34)e = tΣ2
e + 2 · tΣ2×Σ2

Σ2
− 2 · tΣ2×Σ2

(12)(34).

So the eight classes (4.7) form a basis of I2(Σ4).
The group I3(Σ4) is generated by the classes tHK for all nested subgroup pairs

with [H : K] ≤ 3. We observe that

(4.8) 3 · t4 = 3 · tΣ4

Σ3
= tΣ2×Σ2

Σ2
+ 2 · tΣ2�Σ2

Σ2×Σ2
+ 4 · tΣ4

Σ2�Σ2
− tΣ3

Σ2
∈ I3(Σ4) ;

Proposition 4.15 below explains in which way this relation is an exceptional feature
for n = 4. All classes tHK with [H : K] ≤ 3 are linear combinations of the classes (4.7)
and the two classes

(4.9) tΣ4

Σ2�Σ2
and 3 · tΣ4

Σ3
.

Indeed:

tA4

V4
= tΣ2�Σ2

V4
+ 2 · tΣ4

Σ2�Σ2
− 3 · tΣ4

A4
,

tΣ3

Σ2
= tΣ2×Σ2

Σ2
+ 2 · tΣ2�Σ2

Σ2×Σ2
+ 4 · tΣ4

Σ2�Σ2
− 3 · tΣ4

Σ3
,

tA3
e = tΣ2

e + 2 · tΣ3

Σ2
− 3 · tΣ3

A3
.

Since the eight elements (4.7) and the two elements (4.9) together are linearly
independent, they form a basis of I3(Σ4).
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Since [Σ4 : Σ3] = 4, the last basis element t4 = tΣ4

Σ3
belongs to I4(Σ4), and thus

I4(Σ4) = I(Σ4). The relation (4.8) shows that I3(Σ4) has index 3 in I4(Σ4) = I(Σ4).
Altogether, Theorem 3.12 lets us conclude the following:

• the group πΣ4
0 (S) = πΣ4

0 (Sp1) is free of rank 11,

• the group πΣ4
0 (Sp2) is free of rank 3,

• the group πΣ4
0 (Sp3) has rank 1 and its torsion subgroup has order 3, and

• for all n ≥ 4, the group πΣ4
0 (Spn) is free of rank 1.

Example 4.10 (Alternating group A5). The last example that we treat in detail
is the alternating group A5. The point is not just to have another explicit example,
but we also need the calculation of I5(A5) in Example 4.14 for identifying when the
filtration of Σ5 stabilizes. The group A5 has nine conjugacy classes of subgroups:

60 A5

���
���

���

��
��
��
��
��
�

12 A4

��
��
��
��
��
��

��
��
�

10 D5

��
��
��
��
��
��
��
��
��

6 Σ̃3


























5 C5

4 V4

3 A3

���
���

���
�

2 (12)(34)

1 e

The group Σ̃3 is generated by the elements (123) and (12)(45) and is isomorphic
to Σ3 (but not conjugate in Σ5 to the “standard” copy of Σ3 generated by (123) and
(12)). The dihedral group D5 is generated by the elements (12345) and (25)(34).

The augmentation ideal I(A5) is free of rank 8, and a convenient basis for our
purposes is given by the classes

t(12)(34)e , tV4

(12)(34) , tΣ̃3

A3
, tD5

C5
, tA4

V4
, tΣ̃3

(12)(34) + tA4

A3
, tA5

A4
and tA5

D5
.

(4.11)

Proposition 4.1 says that the group I2(A5) is generated by the classes tHK as (H,K)
runs over all pairs of nested subgroups with [H : K] = 2, i.e., by the first four
classes of the basis (4.11). So these four classes form a basis of I2(A5).

We observe that

3 · (tΣ̃3

(12)(34) + tA4

A3
) = 2 · tV4

(12)(34) + 4 · tA4

V4
+ 3 · tΣ̃3

A3
+ tΣ̃3

(12)(34) ∈ I3(A5) .

(4.12)

The group I3(A5) is generated by the classes tHK for all nested subgroup pairs with
[H : K] ≤ 3. Because

tΣ̃3

(12)(34) = 3 · (tΣ̃3

(12)(34) + tA4

A3
) − 2 · tV4

(12)(34) − 3 · tΣ̃3

A3
− 4 · tA4

V4
,

tA3
e = t(12)(34)e − 3 · tΣ̃3

A3
+ 2 · tΣ̃3

(12)(34),

all such classes are linear combinations of the six classes

t(12)(34)e , tV4

(12)(34) , tΣ̃3

A3
, tD5

C5
, tA4

V4
, and 3 · (tΣ̃3

(12)(34) + tA4

A3
) .
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Since these classes are linearly independent, they form a basis of the group I3(A5).
The group I4(A5) is generated by the classes tHK for all nested subgroups with

[H : K] ≤ 4. There is only one new generator, the class tA4

A3
; since tΣ̃3

(12)(34) ∈
I3(A5) ⊂ I4(A5), the group I4(A5) is freely generated by the first six elements of

the basis (4.11). Because 3 · tA4

A3
∈ I3(A5), the group I3(A5) has index 3 in I4(A5).

The group I5(A5) is generated by the classes tHK for all nested subgroup pairs

with [H : K] ≤ 5. In particular, I5(A5) contains the seventh element tA5

A4
of the

basis (4.11). We observe that

(4.13) 5 · tA5

D5
= tV4

(12)(34) + 2 · tA4

V4
+ 6 · tA5

A4
− tD5

(12)(34) ∈ I5(A5) .

All classes of the form tHK with [H : K] ≤ 5 are linear combinations of the first
seven classes of the basis (4.11) and the class (4.13),

tD5

(12)(34) = tV4

(12)(34) + 2 · tA4

V4
+ 6 · tA5

A4
− 5 · tA5

D5
,

tC5
e = t(12)(34)e + 2 · tV4

(12)(34) − 5 · tD5

C5
+ 4 · tA4

V4
+ 12 · tA5

A4
− 2 · (5 · tA5

D5
) .

The group I5(A5) is thus generated by the linearly independent classes

t(12)(34)e , tV4

(12)(34) , tΣ̃3

A3
, tD5

C5
, tA4

V4
, tΣ̃3

(12)(34) + tA4

A3
, tA5

A4
, and 5 · tA5

D5
.

So I5(A5) has full rank 8, but index 5 in the augmentation ideal I(A5). Since

[A5 : D5] = 6, the last basis element tA5

D5
belongs to I6(A5), and we conclude that

I6(A5) = I(A5) is the full augmentation ideal. Altogether, Theorem 3.12 lets us
conclude that

• the group πA5
0 (S) = πA5

0 (Sp1) is free of rank 9,

• the group πA5
0 (Sp2) is free of rank 5,

• the group πA5
0 (Sp3) has rank 3 and its torsion subgroup has order 3,

• the group πA5
0 (Sp4) is free of rank 3,

• the group πA5
0 (Sp5) has rank 1 and its torsion subgroup has order 5, and

• for all n ≥ 6, the group πA5
0 (Spn) is free of rank 1.

Example 4.14 (Symmetric group Σ5). We refrain from a complete calculation of

the groups πΣ5
0 (Spn), but we work out where the filtration for Σ5 stabilizes. The

previous examples could be mistaken as evidence that the group In(Σn) coincides
with the full augmentation ideal I(Σn) for every n; equivalently, one could get the

false impression that the group πΣn
0 (Spn) is always free of rank 1. While this is

true for n ≤ 4, we will now see that it fails for n = 5, i.e., that I5(Σ5) is strictly
smaller than I(Σ5).

We let B denote the subgroup of Σ5 generated by the elements (12345) and
(2354); this group has order 20 and is isomorphic to the semidirect product F5 �

(F5)
×, the affine linear group of the field F5. The intersection of B with the

alternating group A5 is the dihedral group D5. The double coset formula thus
gives

resΣ5

A5
(tΣ5

B ) = 6 − resΣ5

A5
(trΣ5

B (1)) = 6 − trA5

D5
(resBD5

(1)) = tA5

D5
.

We showed in the previous Example 4.10 that the class tA5

D5
does not belong to

I5(A5). Since I5 is closed under restriction maps, the class tΣ5

B does not belong to
I5(Σ5), and hence I5(Σ5) �= I(Σ5).
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Every subgroup H of Σ5 admits a nested sequence of subgroups

H = H0 ⊂ H1 ⊂ · · · ⊂ Hk

with [Hi : Hi−1] ≤ 6 for all i = 1, . . . , k and such that the last group Hk is either
the full group Σ5 or conjugate to the maximal subgroup Σ3 ×Σ2 of index 10. The
relation

tΣ5

Σ3×Σ2
= tΣ3×Σ2

Σ3
− tΣ3×Σ2

Σ2×Σ2
− tΣ4

Σ3
+ tΣ2�Σ2

Σ2×Σ2
+ 2 · tΣ4

Σ2�Σ2
+ 2 · tΣ5

Σ4

shows that the class tΣ5

Σ3×Σ2
lies in I5(Σ5). So tΣn

H belongs to I6(Σ5) for every
subgroup H of Σn, and hence I6(Σ5) = I(Σ5).

We pause to point out a curious phenomenon that happens only for n = 4. This
exceptional behavior can be traced back to the fact that the alternating group A4

has a subgroup of “unusually small index” (the Klein group V4 of index 3); compare
the proof of the next proposition. We have seen in (4.8) that 3 · t4 lies in I3(Σ4).
Since the class t4 generates the global functor I4, this implies that

3 · I4 ⊂ I3 ⊂ I4 .

So after inverting 3, the inclusion I3 −→ I4 and the epimorphism of global functors

π0(Sp
3) −→ π0(Sp

4)

induced by the inclusion Sp3 −→ Sp4 both become isomorphisms. However:

Proposition 4.15. For every n ≥ 2 with n �= 4, the inclusion In−1 −→ In is not
a rational isomorphism.

Proof. Example 4.4 shows that no non-zero multiple of the class t2 belongs to I1(Σ2).
Example 4.5 shows that no non-zero multiple of t3 belongs to I2(Σ3). So we assume
n ≥ 5 for the rest of the argument. We recall that the alternating group An has
no proper subgroup H of index less than n. Indeed, the left translation action on
An/H provides a homomorphism ρ : An −→ Σ(An/H) to the symmetric group of
the underlying set of An/H. For [An : H] < n, the order of Σ(An/H) is strictly
less than the order of An. So the homomorphism ρ has a non-trivial kernel. Since
the group An is simple, ρ must be trivial, which forces H = An.

Now we prove the proposition. The class tAn

An−1
= resΣn

An
(tn) belongs to In(An),

but for n > 4 no non-zero multiple of it belongs to In−1(An). Indeed, otherwise
Proposition 4.1 would allow us to write

k · tAn

An−1
= λ1 · tH1

K1
+ · · ·+ λm · tHm

Km

in A(An), for certain integers k, λ1, . . . , λm and nested subgroup pairs with 1 <
[Hi : Ki] < n. Since An has no proper subgroup of index less than n, the groups
H1, . . . , Hm must all be different from the full group An. We expand both sides in
terms of the basis of A(An) given by the classes trAn

H (1) (for H running through the
conjugacy classes of subgroups). On the right-hand side the coefficient of the basis

element trAn

An
(1) = 1 is zero, whereas the coefficient on the left-hand side is kn. So

we must have k = 0. �
We conclude by looking more closely at the limit case, the infinite symmetric

product spectrum. We remark without proof that, generalizing the non-equivariant
situation, the orthogonal spectrum Sp∞ is globally equivalent to the orthogonal
spectrum HZ defined by

(HZ)(V ) = Z[SV ] ,
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the reduced free abelian group generated by the n-sphere. Theorem 3.12 shows
that

A/I∞ ∼= π0(Sp
∞) ,

induced by the action of A on the class i∗(1). For every compact Lie group G, the
map

resGe : πG
0 (Sp

∞) −→ πe
0(Sp

∞) ∼= Z

is a split epimorphism, so the group πG
0 (Sp

∞) is free of rank 1 if and only if
I∞(G) = I(G).

We can split the group A(G)/I∞(G), and hence the group πG
0 (Sp

∞), into sum-
mands indexed by conjugacy classes of connected subgroups of G. If C is such a
connected subgroup, we denote by A(G;C) the subgroup of the Burnside ring A(G)
that is generated by the transfers trGH(1) for all subgroups H with C = H◦, the
path component of the identity of H (or equivalently, H contains C as a finite index
subgroup). Then

A(G) =
⊕
(C)

A(G;C),

where the sum runs over conjugacy classes of connected subgroups of G. Proposi-
tion 4.1 shows that I∞(G) is generated as an abelian group by the classes

tHK = [H : K] · trGH(1)− trGK(1) ∈ A(G)

as (H,K) runs through all pairs of nested closed subgroups such that K has a finite
index in H, and H has the finite Weyl group in G. Then K and H have the same
connected component of the identity, i.e., K◦ = H◦, so the relation tHK belongs to
the direct summand A(G;K◦). Hence

πG
0 (Sp

∞) ∼= A(G)/I∞(G) =
⊕
(C)

(A(G;C)/I∞(G;C)) ,

where I∞(G;C) is the subgroup of A(G;C) generated by the classes tHK with H◦ =
K◦ = C. The summands behave quite differently according to whether C has an
infinite or finite Weyl group:

• If C has an infinite Weyl group, then for every subgroup H ≤ G with
H◦ = C the class [H : C] · trGH(1) belongs to I∞(G;C). So the class trGH(1)
becomes torsion in the quotient group A(G;C)/I∞(G;C), which is thus a
torsion group.

• If C has the finite Weyl group, and H ≤ G satisfies H◦ = C, then the
relations

C = H◦ ≤ H ≤ NGH ≤ NGC

show that H has the finite Weyl group and finite index in NGC. So

tNGC
H = [NGC : H] · trGNGC(1) − trGH(1) ∈ I∞(G;C)

and in the quotient group A(G;C)/I∞(G;C), the class trGH(1) becomes a
multiple of the class trGNGC(1). Hence the group A(G;C)/I∞(G;C) is free

of rank 1, generated by trGNGC(1).
In the situation at hand, the subgroup C can be recovered as the identity

component of its normalizer. A compact Lie group has only finitely many
conjugacy classes of subgroups that are normalizers of connected subgroups,
see [5, VII Lemma 3.2]. So there are only finitely many conjugacy classes
of connected subgroups with finite Weyl group.
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So altogether we conclude that the group πG
0 (Sp

∞) is a direct sum of a torsion
group and a free abelian group of finite rank. In particular, the rationalization
Q⊗πG

0 (Sp
∞) is a finite dimensional Q-vector space with the basis consisting of the

classes trGC(1) as C runs through the conjugacy classes of connected subgroups of G
with the finite Weyl group. Unfortunately, the author does not know an example
when the torsion subgroup of πG

0 (Sp
∞) is non-trivial.

Example 4.16. If every subgroup H with the finite Weyl group also has a finite
index in G, then I∞(G) = I(G) and πG

0 (Sp
∞) is free of rank 1. This holds, for

example, when G is finite or a torus.
An example for which πG

0 (Sp
∞) has rank bigger than 1 is G = SU(2). Here

there are three conjugacy classes of connected subgroups: the trivial subgroup, the
conjugacy class of the maximal tori, and the full group SU(2). Among these, the

maximal tori and SU(2) have finite Weyl groups, so the classes 1 and tr
SU(2)
N (1) are

a Z-basis for π
SU(2)
0 (Sp∞) modulo torsion, where N is a maximal torus normalizer.

Acknowledgments

The author thanks Markus Hausmann for various helpful suggestions related to
this paper.

References

[1] G. Z. Arone and W. G. Dwyer, Partition complexes, Tits buildings and symmetric products,
Proc. London Math. Soc. (3) 82 (2001), no. 1, 229–256, DOI 10.1112/S0024611500012715.
MR1794263

[2] J.M.Boardman, On Stable Homotopy Theory and Some Applications. Ph.D. thesis, Univer-
sity of Cambridge (1964).

[3] J. M. Boardman and R. M. Vogt, Homotopy-everything H-spaces, Bull. Amer. Math. Soc.
74 (1968), 1117–1122, DOI 10.1090/S0002-9904-1968-12070-1. MR0236922

[4] Anna Marie Bohmann, Global orthogonal spectra, Homology, Homotopy Appl. 16 (2014),
no. 1, 313–332, DOI 10.4310/HHA.2014.v16.n1.a17. MR3217308

[5] Armand Borel, Seminar on transformation groups, With contributions by G. Bredon, E.
E. Floyd, D. Montgomery, R. Palais. Annals of Mathematics Studies, No. 46, Princeton
University Press, Princeton, N.J., 1960. MR0116341

[6] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und
ihrer Grenzgebiete, N. F., Band 33, Academic Press Inc., Publishers, New York; Springer-
Verlag, Berlin-Göttingen-Heidelberg, 1964. MR0176478
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