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1. INTRODUCTION

The stable homotopy category has been extensively studied by algebraic
topologists for a long time. For many applications it is convenient or even
necessary to work with point set level models of spectra as opposed to
working up-to-homotopy, and the outcome of a calculation might depend
on the choice of model. In recent years many new models for the stable
homotopy category have been constructed. It is especially useful to have
the structure of a closed model category in the sense of Quillen [16] and
many examples of spectra categories fit into this context [3, 7, 10, 13, 14,
17]. Moreover all known examples capture the ‘‘same homotopy theory’’
—in technical terms one speaks of Quillen equivalent model categories [9,
Definition 1.3.12]. Hence not only the homotopy categories, but also
higher order information such as Toda brackets, homotopy colimits, and
homotopy types of function spaces coincide. In two Quillen equivalent
model categories the answer to every homotopy theoretic question comes
out the same.
In a model category one can pass to the associated homotopy category by

formally inverting the class of weak equivalences. However, passage to the
homotopy category loses information and in general the ‘‘homotopy
theory’’ cannot be recovered from the homotopy category; see Sections 2.1
and 2.2 for two examples. In this paper we show that in contrast to the
general case, the stable homotopy category completely determines the



stable homotopy theory 2-locally. We prove a uniqueness theorem which
says that there is essentially only one model category structure underlying
the stable homotopy category of 2-local spectra—the stable homotopy
category has no ‘‘exotic’’ models at the prime 2.
We call a pointed model category stable if it is cocomplete and the loop

and suspension functors defined on its homotopy category are inverse
equivalences. The homotopy category of a stable model category is
naturally triangulated with suspension and cofibration sequences defining
the shift operator and the distinguished triangles [9, Proposition 7.1.6].

Main Theorem. Let C be a stable model category. If the homotopy
category of C and the 2-local homotopy category of spectra are equivalent as
triangulated categories, then there exists a Quillen equivalence between C and
the 2-local model category of spectra.

In the main theorem, and throughout the paper, our reference model is
the category of spectra in the sense of Bousfield and Friedlander [3,
Sect. 2]. This is probably the simplest model category of spectra and its
objects are sequences {Xn}n \ 0 of pointed simplicial sets together with maps
SXn QXn+1. Morphisms are given on every level and commute strictly
with the structure maps. As weak equivalences we either use the stable
equivalences, i.e., the morphisms which induce isomorphisms of stable
homotopy groups, or the p-local stable equivalences, for p a prime, i.e.,
those morphisms which induce an isomorphism of stable homotopy groups
tensored with Z(p). For the details of these model structures see [3,
Theorem 2.3] (in the ‘‘integral’’ case) and [19, 4.1] (in the p-local case).
With this particular 2-local model the main theorem provides a single
Quillen equivalence (as opposed to a chain) whose left adjoint has C as its
target. Since any other of the standard 2-local model categories of spectra
is Quillen equivalent to this specific one, it can be linked by a chain of
Quillen equivalences to any stable model category C which satisfies the
assumptions of the main theorem.
We prove a stronger form of the main theorem as Theorem 3.5 below.

The stronger version says that already the subcategory of finite 2-local
spectra determines the model category structure up to Quillen equivalence
of model categories. In particular there is only one way to ‘‘complete’’ the
homotopy category of finite 2-local spectra to a triangulated category with
infinite coproducts—as long as some underlying model structure exists.
This gives a partial answer to Margolis’ Uniqueness Conjecture [15,
Chap. 2, Sect. 1] for the stable homotopy category, see Corollary 3.7.
The proof of the main theorem relies on the following characterization of

self-equivalences of the 2-local stable homotopy category:

THE STABLE HOMOTOPY CATEGORY AT 2 25



Theorem. Let F be an exact endofunctor of the homotopy category of
finite 2-local spectra. If F takes the 2-local sphere spectrum to itself (up to
isomorphism), then F is a self-equivalence.

This result is a combination of Propositions 3.1 and 3.2 below. To obtain
the same conclusion at an odd prime, one has to assume in addition that
the functor F does not annihilate the first p-torsion element in the stable
homotopy groups of spheres, see Proposition 3.1 for the precise statement.
The reason that the prime 2 behaves differently from the odd primes goes
back to the ‘‘misbehavior’’ of the mod-2 Moore spectrum that its identity
map has order 4. In other parts of stable homotopy theory this is often a
nuisance; for us it is the key to why we can prove the uniqueness theorem
for 2-local spectra. Currently we have no replacement for this part of the
argument at odd primes; see also Remark 5.1.

2. BACKGROUND AND RELATED RESULTS

2.1. A Triangulated Category with Several Models

In general, the triangulated homotopy category does not determine the
Quillen equivalence type of a stable model category. As an example we
consider the nth Morava K-theory spectrum K(n) for a fixed prime p and
some number n > 0. By a theorem of Robinson [18] this spectrum admits
the structure of an A.-ring spectrum and so its module spectra form a
stable model category. The ring of homotopy groups of K(n) is the graded
field Fp[vn, v

−1
n ] with vn of dimension 2p

n−2. Hence the homotopy group
functor establishes an equivalence between the homotopy category of
K(n)-module spectra and the category of graded Fp[vn, v

−1
n ]-modules.

Similarly the homology functor establishes an equivalence between the
derived category of the graded field Fp[vn, v

−1
n ] and the category of graded

Fp[vn, v
−1
n ]-modules. This derived category arises from a model category

structure on differential graded Fp[vn, v
−1
n ]-modules with weak equiva-

lences the quasi-isomorphisms. So the two stable model categories of K(n)-
module spectra and dg-modules over Fp[vn, v

−1
n ] have equivalent trian-

gulated homotopy categories. On the other hand they are not Quillen
equivalent: if they were, then the homotopy types of the function spaces
would agree [6, Proposition 5.4]. But for dg-modules all function spaces
are products of Eilenberg–MacLane spaces, which is not the case for
K(n)-modules.
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2.2. Franke’s Algebraic Model for the E(n)-Local Stable
Homotopy Category

In [8], Franke constructs an exotic model for the homotopy category of
E(n)-local spectra at a ‘‘large’’ prime. Earlier Bousfield [2] had given an
algebraic description of the isomorphism classes of K-local spectra at an
odd prime. However, Bousfield could not determine whether his algebraic
model describes the morphisms between the spectra correctly. As one
application of a general uniqueness theorem [8, Sect. 2.2, Theorem 5],
Franke provides an algebraic derived category which is equivalent, as a
triangulated category, to the homotopy category of K-local spectra; see [8,
Sect. 3.1, Theorem 6]. Franke’s uniqueness theorem applies more generally
to the homotopy categories of E(n)-local spectra at a prime p whenever
n2+n < 2p−2. Then he obtains an equivalence of triangulated categories
between the homotopy category of an abelian model category and the
homotopy category of E(n)-local spectra; see [8, Sect. 3.5, Theorem 10].
By the same reasoning as in Section 2.1, these two kinds of model
categories are not Quillen equivalent; see also [8, Sect. 3.1, Remark 1].
We currently do not know whether there exist exotic models for the

stable homotopy category at an odd prime. Via Proposition 3.1 this
problem reduces to a question about the a1-map. Franke’s exotic equiva-
lences are relevant for these considerations since the a1-map survives
K-localization.

2.3. Reduction to ‘‘Exotic Sphere Spectra’’

Suppose that C is a stable model category and let F: Ho(Spectra)Q
Ho(C) be an equivalence of triangulated categories. Then the image of the
sphere spectrum S0 is a small weak generator (see [19, Definition 3.1]) of
the homotopy category of C. In [20], Shipley and the author associate to
an object P of a stable model category a ring spectrum EndC(P) called the
endomorphism ring spectrum. The ring of homotopy groups of EndC(P) is
isomorphic to the graded ring of self-maps of P in the homotopy category
of C. If P is a small weak generator then we also show that the model
category C is Quillen equivalent to the category of modules over the
endomorphism ring spectrum EndC(P).
The equivalence F: Ho(Spectra)QHo(C) establishes an isomorphism

between the ring p sg of stable homotopy groups of spheres and the graded
ring of self-maps of P=F(S0) in Ho(C); this in turn is isomorphic to the
homotopy groups of the ring spectrum EndC(P). Since F is an exact
functor, the isomorphism between p sg and pg EndC(P) also preserves Toda
brackets. Hence the endomorphism ring spectrum EndC(P) looks very
much like the sphere spectrum. If moreover the unit map S0Q EndC(P) of
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the endomorphism ring spectrum is a stable equivalence, then the original
model category C is Quillen equivalent to the category of spectra. In other
words: the question whether there are exotic models for the stable homo-
topy category can be reduced to the question about the existence of ‘‘exotic
sphere spectra,’’ i.e., ring spectra which are not equivalent to the sphere
spectrum, but whose derived category is equivalent to the stable homotopy
category. While this reduction gives a better idea of what possible exotic
models look like, we will not use the results of [20] here and rather prove
our uniqueness theorem directly.

2.4. An Integral Uniqueness Result Assuming Additional Structure

The homotopy category of a stable model category admits additional
structure which one can take into account when proving a uniqueness
result. The homotopy category of every model category admits an action of
the homotopy category of simplicial sets [9, Theorem 4.3.4]. If the model
category is stable, then this action induces an action of the graded ring p sg
of stable homotopy groups of spheres; see [19, 2.4].
In [19] Shipley and the author show that with this extra structure the

stable homotopy category determines the model category structure up to
Quillen equivalence. More precisely we show that if C is a stable model
category and if the homotopy category of C admits a p sg-linear equivalence
to the homotopy category of spectra, then C is Quillen equivalent to the
Bousfield–Friedlander stable model category of spectra. Hence the result of
the present paper is a strengthening of the Uniqueness Theorem of [19], at
least 2-locally. While [19] mainly depends on model category arguments,
we have to use more information about the structure of the stable
homotopy category here.

3. PROOF OF THE 2-LOCAL UNIQUENESS THEOREM

In this section we deduce our main theorem from other results which
should be of independent interest. The first two results concern properties
of the stable homotopy category. Proposition 3.1 is an elaboration on the
idea that the stable homotopy groups of spheres are generated under
‘‘higher order Toda brackets’’ by the elements of Adams filtration one (see
[5] for a precise formulation of this fact). For a prime p the mod-p Adams
filtration of a map of spectra is the largest number n such that the map can
be factored as a composite of n maps all of which induce the trivial map on
mod-p cohomology. When the prime is understood we simply speak of the
filtration of a map. Adams showed [1] that the only positive dimensional
elements in pgS

0
(2) which have filtration one are multiples of the Hopf maps
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g, n and s in dimensions 1, 3, and 7, respectively. For odd primes the only
such elements are in the first non-trivial p-torsion homotopy group
p2p−3S

0
(p), see [12, Theorem 1.2.1].

An exact functor between triangulated categories is an additive functor F
which commutes with shift and preserves distinguished triangles. More
precisely: F is endowed with a natural isomorphism iX: F(X[1]) 5 F(X)[1]
such that for every distinguished triangle (homotopy cofibre sequence)

XŁ
f

YŁ
g

ZŁ
h

X[1]

the sequence

F(X)Ł
F(f)

F(Y)Ł
F(g)

F(Z)Ł
iX p F(h) F(X)[1]

is again a distinguished triangle. An equivalence of triangulated categories is
an equivalence of categories which is exact and whose inverse functor is
also exact. In what follows square brackets [− , −] denote morphisms in
the homotopy category of spectra, possibly graded when decorated with a
subscript.

Proposition 3.1. Let p be a prime number and let F be an exact endo-
functor of the homotopy category of finite p-local spectra which takes the
p-local sphere spectrum to itself (up to isomorphism). If every element of
Adams filtration one in the graded endomorphism ring [F(S0(p)), F(S

0
(p))]g is

in the image of F, then F is a self-equivalence.

The next result says that the prime 2 is special because the Hopf maps
are always taken care of. We do not know whether the analogue of the
following proposition is true for odd primes; see also Remark 5.1.

Proposition 3.2. Let F be an exact endofunctor of the homotopy
category of finite 2-local spectra which takes the 2-local sphere spectrum to
itself (up to isomorphism). Then all maps of Adams filtration one in the
graded endomorphism ring [F(S0(2)), F(S

0
(2))]g are in the image of F.

We prove Propositions 3.1 and 3.2 in Sections 4 and 5 respectively.
In order to state the next auxiliary result we recall the notion of a com-

pactly generated triangulated category. An object A of a triangulated
category T is called compact (also called small or finite) if the representable
functor T(A, −) preserves infinite coproducts. A full subcategory S of a
triangulated category T is closed under extensions if whenever two of the
objects X, Y and Z in a distinguished triangle

XQ YQ ZQX[1]
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belong to S, the third object also belongs to S (this implies that S con-
tains the zero objects and is closed under isomorphisms, finite sums and
shift in either direction). A triangulated category T is compactly generated
if T is the only subcategory which contains the compact objects and is
closed under extensions and infinite coproducts. The compact objects of
the stable homotopy category are precisely the finite spectra, and similarly
for the p-local stable homotopy category. The stable homotopy category
and its full subcategory of p-local spectra are compactly generated.
However, there are triangulated categories in which the zero objects are
the only small objects; see [11, Corollary B.13] for examples which are
Bousfield localizations of the stable homotopy category.
The following lemma is well known and we give the easy proof at the

end of Section 4.

Lemma 3.3. Let F be an exact functor between compactly generated
triangulated categories with infinite coproducts. If F preserves coproducts and
restricts to an equivalence between the full subcategories of compact objects,
then F is an equivalence.

Finally, we quote a result from [19] which is entirely model category
theoretic. It roughly says that the model category of spectra is the ‘‘free
stable model category on one object.’’ Here spectra are understood in the
sense of Bousfield and Friedlander, endowed with the stable model struc-
ture of [3, 2.3]. In particular the weak equivalences are those maps which
induce isomorphisms of stable homotopy groups. The p-local model struc-
ture is the localization of the stable model structure of spectra in which the
weak equivalences are the maps inducing an isomorphism of stable homo-
topy groups tensored with Z(p); see [19, 4.1] for details. A left Quillen
functor is a functor between model categories which has a right adjoint and
which preserves cofibrations and acyclic cofibrations.

Proposition 3.4 [19, Theorem 5.1]. Let C be a stable model category
and X a cofibrant and fibrant object of C. Then there exists a left Quillen
functor from the category of spectra to C which takes the sphere spectrum to
X. If the endomorphism ring of X in the homotopy category of C is a
Z(p)-algebra, then the functor is also a left Quillen functor with respect to the
p-local stable model structure for spectra.

The left Quillen functor provided by Proposition 3.4 is essentially
uniquely determined by the object X; see part (4) of [19, Theorem 5.1] for
the precise statement.
Now we can state and prove a uniqueness result which has the Main

Theorem of the introduction as a special case. This version is stronger since

30 STEFAN SCHWEDE



the hypothesis only refers to the full subcategory of compact, or finite,
objects in the triangulated homotopy category.

Theorem 3.5. Let C be a stable model category whose homotopy
category is compactly generated. Suppose that the full subcategory of
compact objects in the homotopy category of C and the homotopy category of
finite 2-local spectra are equivalent as triangulated categories. Then there
exists a Quillen equivalence between C and the 2-local model category of
spectra, such that the left adjoint has C as its target.

Proof. Let F be an equivalence of triangulated categories from the
homotopy category of finite 2-local spectra to the compact objects in the
homotopy category of C. We choose a cofibrant and fibrant object X of C
which is isomorphic to F(S0(2)) in the homotopy category of C. Proposition
3.4 yields a left Quillen functor, with respect to the 2-local stable model
structure, from the category of spectra to C which takes the sphere spec-
trum to X. We denote the functor by XN − . This left Quillen functor has
an exact total left derived functor XNL− on the level of homotopy
categories (see [9, Proposition 6.4.1] or [16, I.4 Proposition 2]).
The derived functor XNL− takes the localized sphere spectrum to the

compact object X, hence it takes compact objects to compact objects; we
denote by (XNL−)|small the restriction to finite 2-local spectra. The com-
posite functor F=F−1 p (XNL−)|small takes the 2-local sphere spectrum to
itself, up to isomorphism, so by Propositions 3.1 and 3.2 it is a self-equiva-
lence of the finite 2-local stable homotopy category. Since F and F−1 are
equivalences of categories, so is (XNL−)|small. By Lemma 3.3, the functor
XNL− is then an equivalence of categories, so the left Quillen functor
XN − and its right adjoint are in fact a Quillen equivalence [9, Proposition
1.3.13]. L

Warning: The equivalence F takes the 2-local sphere spectrum to the
object X, and the same is true for the left derived functor XNL− . If there
was a natural transformation between F and (XNL−)|small which induces
an isomorphism at S0(2), then the natural transformation would be a natural
isomorphism, so XNL− would also be an equivalence on compact objects.
However, there is no reason why such a natural transformation should
exist, and so there is no a priori reason why XNL− should be an
equivalence.
In particular we do not claim that the left Quillen equivalence XN − lifts

the triangulated equivalence F. Hence we leave open the question of
whether there are exotic self-equivalences of the 2-local stable homotopy
category, i.e., self-equivalences not induced from a Quillen equivalence (or
what is the same: self-equivalences other than iterated (de-)suspensions).
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Remark 3.6 [Margolis’ Uniqueness Conjecture]. In ‘‘Spectra and the
Steenrod algebra,’’ H. R. Margolis introduces a set of axioms for a stable
homotopy category [15, Chap. 2, Sect. 1]. The stable homotopy category of
spectra satisfies the axioms, and Margolis conjectures [15, Chap. 2, Sect. 1]
that this is the only model, i.e., that any category which satisfies the axioms
is equivalent to the stable homotopy category.
As part of the structure Margolis requires a triangulation, infinite

coproducts and that the whole category be generated by a single compact
object. Furthermore, Margolis’ Axiom 5 asks for an equivalence between
the full subcategory of compact objects and the Spanier–Whitehead
category of finite CW-complexes. So the Uniqueness Conjecture really
concerns possible ‘‘completions’’ of the category of finite spectra to a
triangulated category with infinite coproducts. Margolis also assumes the
existence of a compatible symmetric monoidal smash product, but the
smash product does not enter into our present considerations.
Margolis shows [15, Chap. 5, Theorem 19] that modulo phantom maps

each model of his axioms is equivalent to the standard model. Moreover,
Christensen and Strickland show in [4] that in any model the ideal of
phantom maps is equivalent to the phantoms in the standard model.
One can consider a 2-primary analog of Margolis’ Uniqueness Conjec-

ture by modifying his Axiom 5 and instead requiring the full subcategory
of compact objects in the stable homotopy category to be equivalent, as a
triangulated category, to the homotopy category of finite 2-local spectra.
Theorem 3.5 proves the following 2-primary analog of Margolis’ Unique-
ness Conjecture for stable homotopy categories with a model:

Corollary 3.7. Suppose that S is a 2-primary stable homotopy
category which is equivalent, as a triangulated category, to the homotopy
category of a stable model category. Then S is triangulated equivalent to the
homotopy category of 2-local spectra.

Note that we do not assume any internal smash product on the model
category, and the corollary does not give that the equivalence between S
and the stable homotopy category of 2-local spectra preserves the smash
products.

4. A CHARACTERIZATION OF SELF-EQUIVALENCES OF THE
STABLE HOMOTOPY CATEGORY

In this section we prove Proposition 3.1. Throughout, p denotes any
prime and F is an exact endofunctor of the homotopy category of finite
p-local spectra. We assume further that F takes the p-local sphere spectrum
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to itself (up to isomorphism) and that all filtration one maps of positive
dimension from F(S0(p)) to itself are in the image of F. We want to show
that F is then a self-equivalence.
We first recall how the stable homotopy elements of Adams filtration at

least two are characterized as those elements which are ‘‘decomposable’’ in
a specific way; this is a well-known argument—it is, e.g., used by Cohen
[5, Theorem 4.2] who attributes it to Adams.

Lemma 4.1. For a map a: Sm(p) Q S0(p) with m \ 1 the following two
conditions are equivalent.

(i) The mod-p Adams filtration of a is at least two.

(ii) The map a factors through some finite p-local spectrum whose mod-p
cohomology is concentrated in dimensions 1 through m−1.

Proof. Both maps in a factorization as in (ii) are trivial on mod-p
cohomology for dimensional reasons. So condition (ii) implies condition (i).
For the converse implication we denote by HZ(p) and HFp the fibers of

the Hurewicz maps

S0(p) QHZ(p) and S0(p) QHFp

to the p-local and mod-p Eilenberg–MacLane spectra, respectively. We
claim that the map a: Sm(p) Q S0(p) lifts to a map ā: Sm(p) QHZ(p) which
induces the trivial map on integral spectrum homology. This implies that a
factors through the (m−1)-skeleton of HZ(p), which is the desired finite
p-local spectrum with cohomology concentrated in dimensions 1 through
m−1.
To establish the claim we argue as follows. Since the filtration of a is at

least 2, there is a lift aŒ: Sm(p) QHFp of a which is trivial in mod-p cohomo-
logy. The map HZ(p) QHFp is an isomorphism on homotopy groups in
positive dimensions, so the map aŒ in turn lifts to a map ā: Sm(p) QHZ(p).
Since HZ(p) QHFp is surjective in mod-p cohomology, the lift ā is again
trivial in mod-p cohomology, hence also in mod-p homology. Since the
integral spectrum homology of HZ(p) is killed by multiplication by p, the
map

Hm(HZ(p), Z)QHm(HZ(p), Fp)

induced by reduction of coefficients, is injective. Hence ā is indeed trivial
on integral spectrum homology. L

If K is a finite p-local spectrum we denote by b(K) (resp. y(K)) the
smallest (resp. largest) dimension in which the mod-p cohomology of K is
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non-trivial. As before square brackets [− , −] denote morphisms in the
homotopy category of spectra, possibly graded when decorated with a
subscript.

Lemma 4.2. Suppose that the map of graded rings

[S0(p), S
0
(p)]g Q [F(S0(p)), F(S

0
(p))]g

induced by the functor F is an isomorphism below and including dimension n
for some n \ 0.

(1) Let K and L be two finite p-local spectra. Then the map
F: [K, L]Q [F(K), F(L)] is an isomorphism if y(K)−b(L) < n and an
epimorphism if y(K)−b(L)=n.

(2) Let K be a finite p-local spectrum satisfying y(K)−b(K) [ n+1.
Then there exists a finite p-local spectrum KŒ with b(KŒ) \ b(K) and
y(KŒ) [ y(K) and an isomorphism K 5 F(KŒ) in the homotopy category of
spectra.

(3) Every map from F(Sn+1(p) ) to F(S0(p)) of Adams filtration at least
two is in the image of F.

Proof. For the course of the proof we omit the subscripts ‘‘(p)’’ from
p-local sphere spectra, abbreviating Sn(p) to S

n.

(1) When K and L are localized sphere spectra, the claim holds by
assumption. The general case is obtained by cell inductions for K and L.
We first prove the claim when L is a wedge of localized sphere spectra of

a fixed dimension using induction on the total dimension of the mod-p
cohomology of K. If H*K is trivial, then K is contractible and the state-
ment is true. Otherwise we can pinch off the top cells of K; i.e., we can
choose a distinguished triangle

I
I
Sy(K)−1Ł

a
MQKQI

I
Sy(K) (f)

withM a finite p-local spectrum with y(M) < y(K) and with strictly smaller
cohomology. Applying [− , L] to the triangle (f) gives a long exact
sequence of abelian groups. The functor F preserves distinguished
triangles, so applying [− , F(L)] to the image sequence yields a similar
exact sequence and F gives a map between the sequences. Using that L is a
wedge of spheres and that the claim holds forM and SM by induction, the
five lemma proves the statement for K and this special L.
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Now we do a similar induction on the dimension of H*L. This time we
collapse the bottom cells of L; i.e., we embed L in a triangle

I
J
Sb(L)Q LQ LŒQI

J
Sb(L)+1,

where the dimension of H*LŒ is strictly smaller than that of L and
b(LŒ) > b(L). By induction the claim holds for the spectra K and LŒ, and
using the five lemma and the previous paragraph we deduce it for K and L.

(2) We argue by induction on the difference y(K)−b(K). If the
cohomology of K is concentrated in at most one dimension, then K is
equivalent to a (possibly empty) wedge of localized spheres and the state-
ment is true. Otherwise there exists a distinguished triangle (f) as in part
(1) with M a finite p-local spectrum which satisfies y(M) < y(K) and
b(M)=b(K). By induction there exists a finite spectrum MŒ with
b(MŒ) \ b(M), y(MŒ) [ y(M) and an isomorphism between F(MŒ) andM.
By part (1) the composite

F 1 I
I
Sy(K)−12Ł5

I
I
Sy(K)−1Ł

a
MŁ

5
F(MŒ)

is of the form F(aŒ) for some aŒ ¥ [JI Sy(K)−1, MŒ]. We let KŒ be some
mapping cone of the map aŒ, obtained by embedding aŒ in a distinguished
triangle. Then we have the inequalities b(KŒ) \ b(MŒ) \ b(M)=b(K) and
y(KŒ) [max{y(MŒ), y(K)}=y(K). We end up with a diagram

I
I
Sy(K)−1 ||Ł

a
M Ł K Ł I

I
Sy(K)

5‡ ‡ 5 ˆ ‡ 5

F(I
I
Sy(K)−1) Ł

F(aŒ)
F(MŒ) Q F(KŒ) Q F(I

I
Sy(K))

in which both rows are distinguished triangles and the left square com-
mutes. Hence we can choose a map KQ F(KŒ) which makes the entire
diagram commute, and this map is the isomorphism we are looking for.

(3) Let a: F(Sn+1)Q F(S0) be a map of filtration at least two. Since
F preserves p-local spheres (up to isomorphism), Lemma 4.1 provides a
finite p-local spectrum K with mod-p cohomology concentrated in dimen-
sions 1 through n, and such that a factors through K. By part (2) of this
lemma, K is isomorphic to F(KŒ) for some finite p-local spectrum KŒ with
cohomology concentrated in dimensions 1 through n. So a factors through
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F(KŒ) and by part (1), both maps in such a factorization are in the image
of F. Hence the original map a is also in the image. L

Now we can give the

Proof of Proposition 3.1. Suppose F is an exact endofunctor of the
homotopy category of finite p-local spectra which takes the p-local sphere
spectrum to itself, up to isomorphism. Furthermore all filtration one maps
of positive dimension from F(S0(p)) to itself are in the image of F. We claim
that the map of graded rings F: [S0(p), S

0
(p)]g Q [F(S0(p)), F(S

0
(p))]g is an

isomorphism. Since F(S0(p)) is isomorphic to S
0
(p) the map is necessarily an

isomorphism in non-positive dimensions, and in positive dimensions both
sides of the map are finite groups of the same order. Suppose the claim was
false and let m > 0 be the smallest dimension in which F is not bijective,
hence not surjective. By Lemma 4.2 (3), any element not in the image has
filtration one, which contradicts the assumptions. Hence the above map is
indeed bijective in all dimensions.
So the hypothesis of Lemma 4.2 is satisfied for arbitrarily large n;

conclusion (1) of that Lemma shows that F is full and faithful and conclu-
sion (2) shows that F is surjective on isomorphism classes. Thus F is an
equivalence of categories. L

It remains to prove Lemma 3.3 which allows us to detect an equivalence
of triangulated categories on compact objects.

Proof of Lemma 3.3. Let F:SQT be an exact functor between com-
pactly generated triangulated categories with infinite coproducts. Suppose
that F preserves coproducts and restricts to an equivalence between the full
subcategories of compact objects. We want to show that F itself is an
equivalence.
We fix a compact object A of S and consider the full subcategory of S

consisting of those Y for which the map

F:S(A, Y)QT(F(A), F(Y))

is bijective. By assumption this subcategory contains all compact objects.
Since F is exact, the subcategory is closed under extensions. Since A and
F(A) are compact and F preserves coproducts, this subcategory is also
closed under coproducts. Since S is compactly generated, the map
F:S(A, Y)QT(F(A), F(Y)) is thus bijective for all compact A and
arbitrary Y.
Similarly for arbitrary but fixed Y the full subcategory of S consisting of

those X for which the map F:S(X, Y)QT(F(X), F(Y)) is bijective is
closed under extensions, coproducts and contains the compact objects.
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Hence this subcategory coincides with S which means that F is full and
faithful.
Now we consider the full subcategory of T of objects which are iso-

morphic to an object in the image of F. By assumption this category con-
tains all compact objects, and it is closed under coproducts since these are
preserved by F. We claim that this subcategory is also closed under exten-
sions. Since T is compactly generated this shows that F is essentially
surjective and hence an equivalence.
To prove the last claim we consider a distinguished triangle

XŁ
f

YQ ZQX[1].

Since the subcategory under consideration is closed under isomorphism
and shift in either direction we can assume that X=F(XŒ) and Y=F(YŒ)
are objects in the image of F. Since F is full there exists a map fŒ: XŒQ YŒ
satisfying F(fŒ)=f. We can then choose a mapping cone for the map fŒ
and a compatible map from Z to F(Cone(fŒ)) which is necessarily an
isomorphism. L

5. TAKING CARE OF THE HOPF MAPS

In this final section we prove Proposition 3.2. Here F denotes an exact
endofunctor of the homotopy category of 2-local spectra which takes the
2-local sphere spectrum to itself (up to isomorphism). We want to show
that all maps of Adams filtration one in the graded endomorphism ring
[F(S0(2)), F(S

0
(2))]g are in the image of F. We introduce a slight abuse of

notation: after choosing an isomorphism between F(S0(2)) and the 2-local
sphere spectrum we identify the ring [F(S0(2)), F(S

0
(2))]g with the ring of

2-local stable homotopy groups of spheres (this identification does not
depend on the choice of isomorphism). With this convention we have to
show that the Hopf maps g, n, and s are in the image of F in dimensions
1, 3, and, 7 respectively.
We start by showing that the map F(g) is non-trivial. Since F is exact,

both rows in the diagram

F(S0(2)) Ł
×2

F(S0(2)) Q F(M(2)) Q F(S1(2))

5‡ ‡ 5 ˆ ‡ 5

S0(2) |Ł
×2

S0(2) Ł M(2) Ł S1(2)

are distinguished triangles (hereM(2) denotes the mod-2 Moore spectrum).
Since the left square commutes we can choose a map between F(M(2)) and
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M(2) making the entire diagram commute, and this map is necessarily an
isomorphism.
The identity map of the Moore spectrum M(2) has additive order 4.

Since F(M(2)) is isomorphic to M(2), its identity map also has order 4.
Since F is additive, it does not annihilate the degree 2 map of the Moore
spectrum. On the other hand this degree 2 map factors as the composite

M(2)Ł
pinch

S1Ł
g

S0Ł
incl.

M(2).

Hence F(g) has to be non-zero, which forces F(g)=g.
Because of the relation 4n=g3 (see, e.g., [21, Theorem 14.1(i)]) we know

that 4 ·F(n)=F(4n)=F(g3)=g3=4n. Since n generates the cyclic group
p3S

0
(2) 5 Z/8, we conclude that F(n)=u· n with u an odd integer. Hence n is

in the image of F.
For the last Hopf map s we exploit the Toda bracket relation

8s=On, 8i, nP

(see e.g. [21, Lemmas 5.13 and 5.14]) which holds without indeterminacy
since the fourth stable homotopy group of spheres is trivial. Since F pre-
serves triangles it takes threefold Toda brackets to threefold Toda brackets
and we obtain

8 ·F(s)=F(8s)=F(On, 8i, nP) ı OF(n), F(8i), F(n)P

=u2 ·On, 8i, nP=8u2 ·s.

Since the latter Toda-bracket has no indeterminacy we conclude that
8 ·F(s)=8u2 ·s. Again since s generates the cyclic group p7S

0
(2) 5 Z/16, we

conclude that F(s) coincides with s up to an odd integer, so s is in the
image of F. This finishes the proof of Proposition 3.2.

Remark 5.1. The fact that multiplication by 2 is non-trivial on the mod-2
Moore spectrum is equivalent to the fact that M(2) does not admit a
product; i.e, there is no map M(2)NM(2)QM(2) in the stable homotopy
category which splits the two inclusions jN id, idN j : M(2)QM(2)NM(2),
where j: S0QM(2) is the inclusion of the bottom cell.
For an odd prime p the Moore spectrum M(p) admits a unique and

commutative product, which is also associative for p \ 5. Hence M(p) is a
ring spectrum in the stable homotopy category. However, the product on
M(p) can not be made associative up to ‘‘coherent higher homotopy’’, i.e.,
M(p) does not admit the structure of an A.-ring spectrum. In fact the
element a1 ¥ p2p−3S

0
(p) is the obstruction to p-th order homotopy associa-

tivity. One could try to use this to detect a1 and to prove the odd primary
version of Proposition 3.2.
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