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Universal Symmetries: Global Equivariant Homotopy Theory

Stefan Schwede

Abstract. Global equivariant homotopy theory is, informally speaking, the universal home for
deformations of geometric structures with symmetry groups that vary coherently. It studies geo-
metric and topological objects on which all compact Lie groups act at once and in a compatible
and coherent way. In this survey article, we give a brief introduction to the subject with emphasis
on recent applications to equivariant bordism.

1. Introduction

One important aim of algebraic topology is the classification of nice spaces, such as
manifolds or cell complexes, up to deformation, or more precisely up to homotopy
equivalence:

1

A major tool to distinguish different homotopy types are algebraic invariants, such
as the fundamental group, higher homotopy groups, or cohomology theories. Some of
the historically first and particularly prominent (co)homology theories are
• singular cohomology 𝐻𝑛 (𝑋; Z), made from ‘singular simplices’ in the space 𝑋 ,

i.e., continuous maps Δ𝑛 −→ 𝑋 from the standard simplices;
• the bordism groups N𝑛 (𝑋), where elements are represented by continuous maps

𝑀𝑛 −→ 𝑋 from smooth closed manifolds of dimension 𝑛, taken up to bordism;
• topological 𝐾-theory 𝐾 (𝑋), where elements are formal differences of vector bun-

dles over the space 𝑋 .
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A major milestone in algebraic topology was the insight in the late 1950s that
homology theories and cohomology theories are represented by spectra. For example,
the (co)homology theories just mentioned are represented:
• Singular (co)homology is represented by the Eilenberg–MacLane spectrum, often

denoted 𝐻Z.
• The bordism homology theory is represented by the Thom spectrum, usually denot-

ed 𝑀𝑂. Popular variations of this theme endow the manifolds and bordisms with
additional tangential or normal structure; these bordism homology theories are
represented by spectra such as 𝑀𝑆𝑂 (for oriented manifolds) or 𝑀𝑈 (for stably
almost complex manifolds).

• Bott periodicity allows one to extend the Grothendieck rings of vector bundles to
a multiplicative cohomology theory, represented by the 𝐾-theory spectrum 𝐾𝑈.

The main advantage of spectra over (co)homology theories is that they are more flexible
and easier to manipulate.

But: What are spectra? Well, the answer varies, depending on when the question
is asked, and who is being asked. A crude approximation to this concept is motivated
by the feature that cohomology theories come with suspension isomorphisms, i.e.,
suspending a space shifts the reduced (co)homology groups. So one should obtain
spectra from spaces by formally inverting the suspension operation. The crux lies in
how ‘inversion of suspension’ is implemented. First passing to the homotopy category
of based spaces and then formally inverting the suspension functor yields the Spanier–
Whitehead category [44]. This category has certainly been useful, and when restricted
to finite CW-complexes it correctly models the homotopy category of compact spectra
(sometimes also called ‘small’ or ‘finite’ spectra, the thick subcategory generated by
the sphere spectrum).

In the early days of the subject, the only raison d’être of spectra was to represent
(co)homology theories, and any definition that fit this purpose was fine. To represent
homology theories and cohomology theories is still an important purpose of spectra to
this day. Over time, the entirety of spectra was more and more studied for its own sake,
and the collection of all spectra was organized into increasingly more refined mathe-
matical structures. Until the 1990’s, most stable homotopy theorists would probably
have argued that spectra form a triangulated category. A spectrum would be some
kind of sequence of based spaces connected by continuous maps from the suspension
of one space to the next space; but getting the morphisms right is a bit tricky. The first
fully functional category of spectra was constructed by Boardman in his thesis [5], and
Adams’ exposition [1, Part III] was particularly popular for a long time.

Then until the mid 2000’s, model categories were the predominant concept for
organizing spectra, and some (including the author) made a living by constructing and
comparing model categories of spectra. I my opinion, the advent of higher category
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theory greatly clarified what spectra really are from a conceptual point of view: they
are the free presentable stable ∞-category on one object (the sphere spectrum), see
[33, Corollary 1.4.4.6]. In the realm of triangulated categories, there is no such uni-
versal property for the stable homotopy category. And while the universal property can
in principle be expressed in the language of model categories, it is much more clumsy
to implement. For example, [36, Theorem 5.1] amounts to saying that a certain moduli
space of left Quillen functors is nonempty and connected, but it falls short of showing
that this space is actually contractible. Since the ∞-category of spaces (or, as some
prefer, of ‘homotopy types’, ‘∞-groupoids’, or ‘animae’) is the free presentable ∞-
category on one object (the contractible anima), spectra indeed are the ∞-categorical
stabilization of spaces. And since ‘stable’ essentially means that suspension is invert-
ible, in this precise sense spectra are obtained from spaces by inverting suspension.

2. Equivariant spectra

Interesting mathematical objects that occur
‘in nature’ tend to have symmetries; and who
would not agree that embracing the natural
symmetries is beneficial? For my story, the
symmetry groups are either finite groups or,
more generally, compact Lie groups.

2

An important aim of equivariant algebraic topology is to classify certain kinds of
equivariant spaces or manifolds up to symmetry preserving deformation (equivariant
homotopy equivalence):

Again, algebraic invariants such as equivariant cohomology theories come in handy
to tell apart different equivariant homotopy types. In turns out that many classical
(co)homology theories have equivariant refinements:
• Bredon (co)cohomology [9] is a𝐺-equivariant extension of singular cohomology;

its coefficients are not merely abelian groups, but rather ‘coefficient systems’, i.e.,
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co- or contravariant functors from the 𝐺-orbit category to abelian groups. The
group 𝐺 can be very general here, such as an arbitrary topological group [25].

• The equivariant bordism group N𝐺
𝑛 (𝑋) consists of 𝐺-bordism classes of contin-

uous 𝐺-maps 𝑀𝑛 −→ 𝑋 , where the source is now a smooth closed 𝐺-manifold
of dimension 𝑛. To actually get a homology theory, restrictions on the group are
necessary. Compact Lie groups are fine; and general Lie groups (not necessar-
ily compact) work if one restricts to proper actions. I will return to equivariant
bordism in more detail in Section 4.

• Equivariant 𝐾-theory 𝐾𝐺 (𝑋) works nicely for compact Lie groups of equivari-
ance; for compact𝐺-spaces, elements are again formal differences of𝐺-equivariant
vector bundles over 𝑋 .

• Every non-equivariant cohomology theory 𝐹∗ can be turned into an equivariant
cohomology theory 𝐹∗

𝐺
by applying 𝐹∗ to the homotopy orbit construction. In

other words, for a 𝐺-space 𝑋 , one simply sets 𝐹∗
𝐺
(𝑋) = 𝐹∗(𝐸𝐺 ×𝐺 𝑋), where

𝐸𝐺 is a universal free 𝐺-space, of the 𝐺-homotopy type of a 𝐺-CW-complex.
The homotopy orbit construction is also known as the ‘Borel construction’, and
hence 𝐹∗

𝐺
also goes under the name of Borel cohomology.

Now you can probably guess what is coming next: 𝐺-equivariant cohomology
theories are represented by objects known as 𝐺-spectra, which can be obtained from
based 𝐺-spaces by ‘inverting suspension’. However, in the equivariant situation new
subtleties arise, and the term ‘inverting suspension’ has even more possible interpre-
tations. Depending on the flavor of suspensions to be inverted, the resulting objects
are known as either naive or genuine 𝐺-spectra.

For our purposes, the ‘good’ class of𝐺-spaces are the𝐺-CW-complexes, which we
study up to 𝐺-homotopy equivalence. For compact Lie groups, Illman’s triangulation
theorem [26] ensures that smooth 𝐺-manifolds belong to this class. One can get the
same homotopy theory by working with general 𝐺-spaces, but then the correct notion
of equivalence is that of an equivariant continuous map that induces a weak homo-
topy equivalence on all fixed points for all closed subgroups. Elmendorf’s theorem
[18] identifies this ‘fine’ homotopy theory of 𝐺-spaces with continuous functors from
the 𝐺-orbit category to spaces. It became somewhat popular recently to even define
𝐺-spaces as functors from the orbit category to the ∞-category of spaces. While this
is mathematically legitimate, degrading 𝐺-spaces to just another presheaf category
makes me melancholic... I would like a𝐺-space to be some kind of geometric or topo-
logical object with symmetries parameterized by𝐺. But I might just be old-fashioned.

But now back to 𝐺-spectra. For any topological group, there is always a good
notion of𝐺-spectra; and for some classes of groups such as compact Lie groups, there
is an even better notion of 𝐺-spectra. The good version of 𝐺-spectra – often called
‘naive’ – is anything that models the stabilization, in the sense of higher categories,
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of the fine homotopy theory of 𝐺-spaces. So naive 𝐺-spectra are obtained from based
𝐺-spaces by inverting suspension; they represent (co)homology theories with a sus-
pension isomorphism for ordinary suspensions. (There is also a ‘doubly naive’ version
of 𝐺-spectra, namely functors, in the ∞-categorical sense, from the classifying space
𝐵𝐺 to spectra. But let’s not go into that.)

The even better version of 𝐺-spectra, called genuine, is only available for special
classes of symmetry groups. For me, the class of compact Lie groups is the preferred
setting; special things happen for the subclass of finite groups, which might be why
some like to restrict to that context. I do believe that for phenomena that involve rep-
resentations, equivariant vector bundles, or equivariant bordism, it is a bad idea to
restrict attention to finite groups, because the universal instances of important classes,
such as Thom classes, Euler classes or Chern classes, tend to live at orthogonal or
unitary groups.

So what is the difference between naive and genuine 𝐺-spectra? Succinctly: to
get genuine spectra, we also invert all ‘twisted suspensions’, i.e., smashing with linear
representation spheres. For this purpose, a 𝐺-representation is a finite-dimensional
R-vector space 𝑉 on which 𝐺 acts by linear isometries; and
the representation sphere 𝑆𝑉 is the onepoint compactifica-
tion, based at infinity. On the right is a picture of the unit
sphere of the natural Σ3-representation on R3 by permuting
the coordinates. It is simultaneously a picture of the onepoint
compactification of the reduced natural Σ3-representation,
permuting the coordinates of {(𝑥, 𝑦, 𝑧) ∈ R3 : 𝑥 + 𝑦 + 𝑧 = 0}.

Inverting all linear representations spheres has some benefits over inverting only
spheres with trivial 𝐺-action. For example, cohomology theories represented by gen-
uine𝐺-spectra can be extended from integer-graded objects to 𝑅𝑂 (𝐺)-graded objects
[30]. I must issue the warning, however, that properly setting up an 𝑅𝑂 (𝐺)-grading is
a slippery slope, in particular with respect to multiplicative structures. Readers unfa-
miliar with the subtleties and pitfalls of 𝑅𝑂 (𝐺)-gradings are encouraged to peruse
Adams’ sardonic and timelessly entertaining introduction to [2, §6]. Incidentally, this
is the only paper I know of that is referenced in MathSciNet, and which references
the bible, specifically the book Genesis. Two other advantages of genuine 𝐺-spectra
over naive 𝐺-spectra are better duality and transfer properties. In genuine 𝐺-spectra,
finite𝐺-CW-complexes become dualizable, and Atiyah duality holds for smooth com-
pact 𝐺-manifolds. Transfers, also known as ‘pushforward’, ‘wrong way’ or ‘Umkehr’
maps, exists for equivariant fibrations whose fibers are finite CW-complexes. Special
instances of the transfers provide the equivariant homotopy groups with the structure
of a Mackey functor. For finite groups 𝐺, every genuine 𝐺-spectrum has a natural fil-
tration whose subquotients ‘are’ 𝐺-Mackey functors. More formally, the heart of the
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most obvious t-structure on the genuine 𝐺-stable category is equivalent to the abelian
category of 𝐺-Mackey functors.

Genuine𝐺-spectra have been generalized beyond the class of compact Lie groups,
most notably to profinite groups and to non-compact Lie groups [16, 19]; in these
cases, the ‘genuineness’ is inherited from the finite quotients or the compact sub-
groups, respectively. One could contemplate inverting even more kinds of ‘equivariant
spheres’, arising for example from homotopy-representations. But this has no addi-
tional effect: every based finite 𝐺-CW complex all of whose fixed point spaces, for
all closed subgroups of 𝐺, are homology spheres, is already invertible in the genuine
𝐺-stable homotopy category. But there are variations that interpolate between ‘doubly
naive’, ‘naive’ and ‘genuine’ by varying some of the available parameters: we could
decide to test equivalences on fixed points for some, but not all, subgroups; and we
could invert some, but not all, linear representation spheres. In my opinion, out of the
zoo of different brands of 𝐺-spectra available, the genuine 𝐺-spectra are the richest
and most interesting.

The cohomology theories mentioned above are representable by genuine𝐺-spectra:
• For finite groups 𝐺, Bredon (co)homology with coefficients in a 𝐺-Mackey func-

tor is represented by an associated Eilenberg–MacLane𝐺-spectrum. Mind the fact
that while Bredon homology and cohomology only need, respectively, a covariant
or contravariant coefficient system, we need a 𝐺-Mackey functor to be repre-
sentable by a genuine 𝐺-spectrum. This should not be surprising given that the
equivariant homotopy groups of a genuine 𝐺-spectrum always come with this
enhanced algebraic structure.

• The homology theory of𝐺-equivariant bordism is represented by a𝐺-Thom spec-
trum mO𝐺 . Well, not quite, but at least for a large class of groups. More precisely,
for every compact Lie group 𝐺, the equivariant Thom–Pontryagin construction
is a natural transformation from geometric bordism N𝐺

∗ (𝑋) to the equivariant
homology theory mO𝐺

∗ (𝑋). And whenever𝐺 is isomorphic to a product of a finite
group and a torus, then this map is an isomorphism. This result is usually cred-
ited to Wasserman because it can be derived from his equivariant transversality
theorem [47, Theorem 3.11]; a homotopy theoretic proof is given in [38, Theo-
rem 6.2.33]. The Thom–Pontryagin map is provably not bĳective for more general
compact Lie groups. For example, for 𝐺 = 𝑆𝑈 (2), a homotopy theoretic trans-
fer in mO𝑆𝑈 (2)

0 from the maximal torus normalizer to 𝑆𝑈 (2) is not in the image,
compare [38, Remark 6.2.34]. If we add additional tangential or normal structure
to the picture, such as orientations or stably almost complex structures, it is not
clear to me for which groups an appropriately adjusted Thom–Pontryagin map is
bĳective.
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• Stable equivariant bordism 𝔑𝐺:𝑆
∗ (𝑋) is a certain localization of equivariant bor-

dism, obtained by formally inverting bordism classes associated to orthogonal
𝐺-representations. By a theorem of Bröcker and Hook [10], the homology the-
ory 𝔑𝐺:𝑆

∗ (𝑋) is represented, without any restriction on the compact Lie group, by
another equivariant refinement MO𝐺 of the classical bordism spectrum, a genuine
𝐺-spectrum known as homotopical equivariant bordism.

• Equivariant 𝐾-theory is represented by a genuine 𝐺-spectrum 𝐾𝑈𝐺 . This theory
enjoys Bott periodicity for equivariant Spin𝑐-representations, and more generally
Thom isomorphisms for equivariant Spin𝑐-vector bundles, the so-called Atiyah–
Bott–Shapiro orientation.

• Every non-equivariant theory cohomology theory 𝐹∗ is represented by a spectrum
𝐹. The associated Borel cohomology theory 𝐹∗

𝐺
is then represented by a genuine

𝐺-spectrum whose underlying spectrum is 𝐹, and on which 𝐺 acts, in a certain
precise sense, ‘cofreely’.
There are always many different equivariant forms of any given non-equivariant

spectrum. And as the two equivariant versions mO𝐺 and MO𝐺 of the classical Thom
spectrum indicate, often several of the many available refinements are useful. Finding
the ‘best’ equivariant form of a non-equivariant theory can be more of an art than a
science.

Now that we discussed what genuine 𝐺-spectra do for us, what are they? Again,
there are several legitimate answers that have evolved over time in much the same
way as in the non-equivariant context, with 1-categorical models [31,34] as the setup
of choice for several decades, and with higher categorical constructions becoming
increasingly more popular in recent years. The idea of genuine𝐺-spectra as the ‘equiv-
ariant stabilization’ of the fine homotopy theory of𝐺-spaces has been implemented in
different ways. One model independent description works for all compact Lie groups:
genuine 𝐺-spectra are the initial example of a presentably symmetric monoidal ∞-
category equipped with a symmetric monoidal left adjoint from based 𝐺-spaces that
inverts all linear representation spheres, see [21, Appendix C]; the universal functor
is the equivariant suspension spectrum functor.

For finite groups, several other descriptions or characterizations of genuine 𝐺-
spectra are available. If we work parameterized over the∞-topos of genuine𝐺-spaces,
than there is an enhanced notion of ‘stability’ that includes the usual stability (i.e.,
suspension is invertible), and also a condition making precise that ‘indexed sums are
equivalent to indexed products’. Genuine 𝐺-spectra are then the free 𝐺-presentable
𝐺-stable 𝐺-∞-category on one object, compare [13, Theorem 9.13]. Moreover, the
preferred t-structure on the genuine 𝐺-stable category with 𝐺-Mackey functors as its
heart is a shadow of a much finer relationship: genuine 𝐺-spectra are equivalent to
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‘spectral Mackey functors’ [4], i.e., additive functors to spectra from the ∞-category
of spans of finite 𝐺-sets; see [11, Appendix A] for a streamlined proof.

3. Global spectra

All the examples of𝐺-equivariant cohomology theories and𝐺-equivariant spectra that
I mentioned in the previous section occur ‘uniformly for all groups’. This is always a
clear sign that these theories are underlying a globally-equivariant cohomology theory,
or a global spectrum. Of course there are also many useful 𝐺-equivariant spectra that
are specific to one group 𝐺, but since those do not support my narrative, I did not
mention any examples.

What are global spectra? Well, this question again has more than one useful answer.
The orthogonal spectrum model. If the question ‘What are global spectra?’ refers

to a mathematically rigorous definition, my answer is: global spectra are the localiza-
tion of the category of orthogonal spectra at the class of global equivalences defined
in [38, Definition 4.1.3]. Here the reader may interpret ‘localization’ in terms of ∞-
categories, or in the more classical sense of 1-categories. This definition of global
spectra was proposed in January 2013, when I uploaded the first preprint version of
the book [38] to my homepage. With the package came a model structure complement-
ing the global equivalences, and the proof that the global stable homotopy category is
tensor-triangulated and compactly generated by the suspension spectra of the global
classifying spaces of all compact Lie groups. A somewhat differently looking defini-
tion of global spectra had been independently proposed by Anna Marie Bohmann in
her thesis from 2011 [6, Chapter 4]. This part of Bohmann’s thesis was later published
as [7]; in Theorem 6.2 of that paper, Bohmann also shows that her 1-category of I-
spaces is equivalent to the category of orthogonal spectra. Bohmann does not discuss
global equivalences.

The orthogonal spectrum model for global spectra is not only historically the first
approach, there are still some features that to my knowledge, and at the time of this
writing, can only be implemented in this setup. One example is the full theory of mul-
tiplicative ultra-commutativity, both stably and unstably, when taking all compact Lie
groups into account. Another example is that without Joachim’s orthogonal spectrum
model for global equivariant 𝐾-theory [27], I would not know how to establish its rich
structure as an ultra-commutative global ring spectrum.

But possibly the question ‘What are global spectra?’ really meant: How should one
think of global spectra in conceptual and model-independent terms? Then, too, there
are several possible answers. Before we explain what global spectra are conceptually, I
hasten to clarify what they are not: global spectra are not the∞-categorical stabilization
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of global spaces. In contemporary higher categorical notation,

𝑆𝑝gl ≁ 𝑆𝑝 ⊗ 𝑠𝑝𝑐gl ,

i.e., global spectra are not Lurie’s tensor product, in presentable ∞-categories, of the
∞-category 𝑆𝑝 of spectra and the ∞-topos 𝑠𝑝𝑐gl of global spaces.

Global spectra are compatible families of equivariant spectra. I suspect that
the idea of global spectra as ‘coherently compatible families of equivariant spectra’
predates all formal definitions by quite a bit, and might have already been around in
the early days of equivariant stable homotopy theory. Practitioners of the subject were
certainly well aware that several important families of equivariant cohomology the-
ories, such as equivariant 𝐾-theory, Bredon homology, Borel homology, equivariant
stable cohomology, and equivariant bordism, naturally come in ‘coherent families’.

The earliest published reference of a formal definition that I know of is by Lewis
and May in [31, Chapter II, Definition 8.5]. Their version of global spectra are fam-
ilies {𝐸𝐺}𝐺 of genuine 𝐺-spectra, in the sense of [31], for all compact Lie groups,
equipped with transition morphisms 𝜉𝛼 : 𝛼∗(𝐸𝐺) −→ 𝐸𝐻 in the homotopy category
of 𝐻-spectra. These data must satisfy some conditions, including that 𝜉𝛼 is an isomor-
phism whenever 𝛼 is the inclusion of a closed subgroup. While these objects certainly
qualify as ‘coherent families of equivariant spectra’, the coherence is rather crude in
that the transition morphism 𝜉𝛼 only lives in the homotopy category. This definition
captures the natural examples, but today’s higher categorical perspective immediately
craves for a refined definition where the transition maps 𝜉𝛼 are actual morphisms (and
not just homotopy classes) and the equalities in the Lewis–May definition are wit-
nessed by coherence homotopies.

It took some time before a satisfactory and fully higher-categorical definition of
global spectra as coherent families of equivariant spectra was provided by Linskens,
Nardin and Pol [32]. In more technical terms, they identify the ∞-category of global
spectra with a partially lax limit of a specific diagram of stable ∞-categories. That
diagram, very roughly speaking, sends every compact Lie group 𝐺 to the ∞-category
𝑆𝑝𝐺 of genuine 𝐺-spectra, and every continuous homomorphism 𝛼 : 𝐾 −→ 𝐺 to the
restriction functor 𝛼∗ : 𝑆𝑝𝐺 −→ 𝑆𝑝𝐾 . The marked morphisms are the injective homo-
morphisms 𝛼, and the partial laxness implements the design feature that the transition
morphisms 𝜉𝛼 : 𝛼∗(𝐸𝐺) −→ 𝐸𝐻 of a global spectrum are equivalences whenever 𝛼
is injective.

Global spectra are genuine cohomology theories on orbifolds and stacks. Var-
ious parts of pure mathematics have come up with notions of geometric objects that
locally look like the quotient of a smooth object by a group action, in a way that
remembers information about the isotropy groups of the action; examples are orbi-
folds in differential topology, and stacks in algebraic geometry. Such ‘stacky’ objects
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can behave like smooth objects even if the underlying spaces have singularities. As
for spaces, manifolds and schemes, cohomology theories are important invariants also
for stacks and orbifolds, and examples such as ordinary cohomology or 𝐾-theory lend
themselves to generalization. Orbispaces and global spaces are slightly different imple-
mentations of the same idea with spaces (or rather, homotopy types, or animae) instead
of ‘smooth’ objects. By now, there is a plethora of different approaches to defining
global spaces. Historically, the first model is that of Gepner–Henriques [20]; it is given
by contravariant continuous functors on a specific model for the global indexing cate-
gory Glo, using homotopy orbits by the conjugation action on group homomorphisms.
The author’s orthogonal space model [38, Chapter 1] is a different setup that is easy
to connect to orthogonal spectra. The closest thing to realizing the slogan that global
objects have ‘compatible actions of all groups’ is the model as spaces with an action of
the universal compact Lie group [40]; while the universal compact Lie group is neither
compact nor a group, it contains all compact Lie groups as subgroups, in a specific
way. For finite groups, even small 1-categories can be used to model global spaces,
see [39]. Linskens, Nardin and Pol show in [32, Theorem 6.17] that global spaces are
‘coherent families of equivariant spaces’ in much the same way as global spectra are
coherent families of equivariant spectra. Clough, Cnossen and Linskens [12] make
precise in which way global spaces ‘are’ the homotopy theory of smooth stacks: they
identify the ∞-category of global spaces with homotopy invariant sheaves of animae
on the site of separated differentiable stacks.

Special cases of orbifolds are ‘global quotients’, sometimes denoted 𝐺\\𝑀 , for
example for a smooth action of a finite group 𝐺 on a smooth manifold 𝑀 . If 𝐸 =

{𝐸𝐺} is a global spectrum, the orbifold cohomology of 𝐺\\𝑀 is supposed to be the
𝐺-equivariant 𝐸𝐺-cohomology of 𝑀 . The partial-laxness condition in the coherent
families picture of global spectra arises very naturally from the orbispace perspective:
if 𝐻 is a subgroup of 𝐺, and 𝑁 is an 𝐻-manifold, then 𝐻\\𝑁 and 𝐺\\(𝐺 ×𝐻 𝑁) are
different presentations of the same orbifold; so the 𝐸𝐻 -cohomology of 𝑁 better agree
with the 𝐸𝐺-cohomology of𝐺 ×𝐻 𝑁 , which forces the underlying 𝐻-spectrum of 𝐸𝐺
to be equivalent to 𝐸𝐻 . In other words: the collection of equivariant spectra {𝐸𝐺}
needs to be consistent under restriction to subgroups.

Global spectra are spectral global Mackey functors. The equivariant homotopy
groups of global spectra come with a rich algebraic structure, namely that of a global
Mackey functor. Restricted to finite groups, the notion of global Mackey functors has
previously featured in various places in algebra and representation theory, sometimes
under alternative names such as ‘inflation functors’ [48] or ‘biset functors’ [8].

Since I want to illustrate the computational power of global Mackey functors, I take
the time to spell out a definition. My preferred definition is actually as additive functors
from the global Burnside category of [38, Construction 4.2.1] to abelian groups. But
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there is an equivalent and more down-to-earth reformulation in terms of generating
operations and relations that is more in tune with the narrative of this expository article.

Definition 3.1. A global Mackey functor 𝑀 consists of:
(a) an abelian group 𝑀 (𝐺) for every compact Lie group 𝐺,
(b) a restriction homomorphism𝛼∗ :𝑀 (𝐺) −→𝑀 (𝐾) for every continuous group

homomorphism 𝛼 : 𝐾 −→ 𝐺,
(c) a transfer homomorphism tr𝐺

𝐻
: 𝑀 (𝐻) −→ 𝑀 (𝐺) for every closed subgroup

𝐻 of 𝐺.
These data must satisfy the following relations:

(i) restriction is contravariantly functorial: (𝛼 ◦ 𝛽)∗ = 𝛽∗ ◦ 𝛼∗

(ii) transfers are covariantly functorial: tr𝐺
𝐻
◦ tr𝐻

𝐾
= tr𝐺

𝐾

(iii) inner automorphisms act as the identity
(iv) transfers commute with restriction along epimorphism
(v) tr𝐺

𝐻
= 0 whenever dim(𝑁𝐺𝐻) > dim(𝐻),

(vi) the double coset formula:

res𝐺𝐾 ◦ tr𝐺𝐻 =
∑︁

[𝑀 ]∈𝐾\𝐺/𝐻
𝜒♯ (𝑀) · tr𝐾𝐾∩𝑔𝐻 ◦𝑐∗𝑔 ◦ res𝐻𝐾𝑔∩𝐻 (3.1)

Readers familiar with 𝐺-Mackey functors for finite groups will immediately real-
ize that every global Mackey functor has underlying 𝐺-Mackey functors, by simply
forgetting a lot of structure. Conversely, a generic𝐺-Mackey functor does not extend to
a global one. The simplest obstruction is that in a global functor, the presence of ‘infla-
tions’ (i.e., restriction along surjective group homomorphisms) forces the restriction
map res𝐺{1} : 𝑀 (𝐺) −→ 𝑀 ({1}) to be a split epimorphism. For a general 𝐺-Mackey
functor, this restriction map need not even be surjective.

Considering Mackey functors defined on compact Lie groups (as opposed to just
finite groups) makes for a much richer story. While most of the structure behaves as for
finite groups, the generalization exhibits some new features, most notably properties
(v) and (vi) above. The double coset formula (vi) is the most complicated item in the
definition, and for full details I refer to [38, Section 3.4]. When𝐻 is a subgroup of𝐺 of
the same dimension (and hence of finite index), the double coset formula (vi) simplifies
a lot. In this case the double coset space 𝐾\𝐺/𝐻 is a discrete finite set, all the manifold
components 𝑀 are just points, all the internal Euler characteristics 𝜒♯ (𝑀) equal 1,
and the double coset formula has the same form as in the realm of finite groups. But
the double coset formula is particularly powerful when 𝐻 and 𝐾 have strictly smaller
dimensions than 𝐺. Then the double coset space 𝐾\𝐺/𝐻 is typically not discrete, but
rather stratified by conjugacy classes of subgroups of 𝐾 , and one needs to understand
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the stratification in concrete terms. I have gotten a lot of mileage out of special cases
of the double coset formula where 𝐺 is an orthogonal or unitary group, and 𝐾 and 𝐻
are smaller orthogonal or unitary groups, or block subgroups.

In the ‘coherent family’ picture for global spectra, half of the algebraic structure
of the associated global Mackey functors – namely the restriction homomorphisms
– are the effect on homotopy groups of the transition maps 𝜉𝛼 : 𝛼∗(𝐸𝐺) −→ 𝐸𝐻 .
The other half – the transfer maps – arise from the ‘genuineness’ of the equivariant
constituent spectra in the coherent global family. But not only does a global spectrum
𝐸 give rise to a global Mackey functor 𝜋0(𝐸) = {𝜋𝐺0 (𝐸), 𝛼∗, tr𝐺

𝐻
}, this gadget is the

full natural algebraic structure on the 0th equivariant homotopy groups. Moreover, the
global stable homotopy category comes with a preferred t-structure whose heart is the
abelian category of global Mackey functors, see [38, Theorem 4.4.9].

ForF 𝑖𝑛-global spectra, i.e., global spectra indexed only on finite groups (as opposed
to general compact Lie groups), there is an even tighter connection to Mackey func-
tors: F 𝑖𝑛-global spectra are equivalent to spectral global Mackey functors. The precise
implementation of this slogan goes as follows. In [4], Barwick introduces a very gen-
eral higher-categorical framework of spectral Mackey functors. Given an ∞-category
with pullbacks and specified subcategories to parameterize ‘forward’ and ‘backwards’
morphism (subject, of course, to axioms), he defines spectral Mackey functors as addi-
tive functors from an ∞-category of spans to the ∞-category of spectra. When applied
to finite 𝐺-sets for a finite group 𝐺, and allowing forward and backward functoriality
for all morphisms, this yields a model for genuine 𝐺-spectra. Replacing finite 𝐺-sets
by finite groupoids yields a model for F 𝑖𝑛-global stable homotopy theory as spec-
tral Mackey functors; here arbitrary functors between finite groupoids are allowed for
backward functoriality, but only faithful functors give forward functoriality. Lenz [29,
Theorem A] constructed an equivalence between this ∞-category of spectral Mackey
functors on spans of finite groupoids, and the∞-category underlying Hausmann’s sym-
metric spectrum model [22] for F 𝑖𝑛-global spectra. Truncating this higher categorical
equivalence down to the level of 1-categories recovers the structure of global Mackey
functors on the equivariant homotopy groups of global spectra.

After this discussion of the general nature of global spectra, I would like to mention
some important global (co)homology theories, their representing global spectra, and
the associated global Mackey functors.
• Bredon equivariant (co)homology with integral coefficients is represented by the

global Eilenberg–MacLane spectrum𝐻Z. The associated global Mackey functor is
‘constant’, i.e., its value at every compact Lie group is Z, and all restriction homo-
morphisms 𝛼∗ are the identity. To satisfy the double coset formula, the transfers
cannot generally be the identity; instead, tr𝐺

𝐻
is multiplication by the Euler charac-
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teristic of the homogeneous space𝐺/𝐻. In particular, if𝐻 has the same dimension
as 𝐺, then the transfer is multiplication by the index [𝐺 : 𝐻].
More generally, every global Mackey functor has an associated global Eilenberg–
MacLane spectrum. This construction implements an equivalence between the
abelian category of global Mackey functors and the heart of the preferred t-structure
on the global stable category, see [38, Theorem 4.4.9].

• Equivariant 𝐾-theory is represented by a global spectrum KU. This spectrum
comes with a highly structured commutative multiplication (‘ultra-commutative’)
that not only yields products, but also power operations and multiplicative norms
on the equivariant cohomology theories. The Atiyah–Bott–Shapiro orientation is
realized by a morphism of ultra-commutative ring spectra [27, Section 6]. The
associated global Mackey functor sends a compact Lie group 𝐺 to its represen-
tation ring 𝑅(𝐺), the Grothendieck group of finite-dimensional complex 𝐺-re-
presentations, with product induced by tensor product of representations. The
restriction maps 𝛼∗ : 𝑅(𝐺) −→ 𝑅(𝐾) are induced by restriction of representa-
tions along a continuous homomorphism 𝛼 : 𝐾 −→ 𝐺. The transfer map tr𝐺

𝐻
:

𝑅(𝐻) −→ 𝑅(𝐺) along a closed subgroup inclusion𝐻 ≤𝐺 is Segal’s smooth induc-
tion [43, §2]. Whenever 𝐻 has finite index in 𝐺, this sends an 𝐻-representation
to the induced 𝐺-representation; in general, induction may send actual represen-
tations to virtual representations.

• The global sphere spectrum S is the coherent family of 𝐺-equivariant sphere
spectra, with S𝐺 representing𝐺-equivariant cohomotopy. The associated Mackey
functor sends𝐺 to the𝐺-equivariant 0-stem 𝜋𝐺0 (S), defined as the colimit over all
𝐺-representations𝑉 of homotopy classes of 𝐺-equivariant selfmaps of 𝑆𝑉 . When
𝐺 is finite, then 𝜋𝐺0 (S) is naturally isomorphic to the Burnside ring 𝐴(𝐺), the
Grothendieck group of finite 𝐺-sets. The unit morphism S −→ KU of the global
𝐾-theory spectrum refines the morphism of global Mackey functors whose value
𝐴(𝐺) −→ 𝑅(𝐺) sends a finite𝐺-set to the associated permutation representation.
In general, 𝜋𝐺0 (S) is a free abelian group with basis the transfers tr𝐺

𝐻
(1) as 𝐻 runs

over all conjugacy classes of closed subgroups with finite Weyl group in 𝐺.
• The family of Borel equivariant spectra associated to a non-equivariant spectrum

is global. The construction is implemented by the lax symmetric monoidal functor
𝑏 : 𝑆𝑝 −→ 𝑆𝑝gl from non-equivariant spectra to global spectra that is right adjoint
to the forgetful functor, compare [38, Construction 4.5.21].
The two equivariant versions mO𝐺 and MO𝐺 of the classical Thom spectrum are

both underlying global spectra, denoted mO and MO, respectively. I return to these
and their complex cousins mU and MU in more detail in Section 4.
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The extra global structure can be, and has been, put to good use. The following
results are examples where globally-equivariant structure was used in an essential way
to resolve a problem in equivariant algebraic topology.
• In [37], I use the global structure to calculate the equivariant 0-stems of the 𝐺-

equivariant spectra made from symmetric products of representations spheres.
• In [23], Hausmann proves a conjecture of Greenlees: for abelian compact Lie

groups 𝐴, the homotopical equivariant bordism ring MU∗
𝐴

carries the universal
𝐴-equivariant formal group.

• In [41], I prove a splitting theorem for the values of global Mackey functors at
orthogonal, unitary and symplectic groups; an immediate consequence is the reg-
ularity of certain 𝑈 (𝑛)-equivariant Euler classes in homotopical equivariant bor-
dism. This triggered the construction of MU𝐺-Chern classes with enough regu-
larity properties [42]. I will elaborate on these applications in the final Section 4.

• In [28], La Vecchia proves the Greenlees–May conjecture regarding a completion
theorem for equivariant MU𝐺-module spectra for general compact Lie groups,
making essential use of the splitting from [41].

• In [24], Hausmann and the author establish a universal characterization of geomet-
ric bordism for manifolds with commuting involutions, also known as equivariant
bordism for elementary abelian 2-groups.

4. Case study: equivariant bordism

In this final section I want to illustrate by two examples how the global structure, specif-
ically the restriction, inflation and transfer operations, and the double coset formula,
work in practice. Both examples involve homotopical equivariant bordism originally
introduced by tom Dieck [46]. Before diving into the new results, I will provide some
more context.

The non-equivariant bordism ring is well understood. In his celebrated paper on
the subject, Thom [45] showed that the bordism ring N∗ of smooth closed manifolds is
a polynomial F2-algebra on infinitely many generators 𝑥𝑖 of dimension 𝑖 ≥ 2, for 𝑖 + 1
not a power of 2. Thom also showed that for even 𝑖, the bordism classes of the real
projective spaces R𝑃𝑖 can be taken as polynomial generators. Only slightly later, Dold
[17] exhibited specific manifolds (now called the ‘Dold manifolds’) that can serve as
the odd dimensional polynomial generators. There is also a convenient necessary and
sufficient criterion to decide when two smooth closed manifolds are bordant: all of
their Stiefel–Whitney characteristic numbers need to coincide.

The serious study of equivariant bordism was initiated by the work [14] of Con-
ner and Floyd. For a compact Lie group 𝐺, let N𝐺

𝑛 denote the group, under disjoint
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union, of 𝑛-dimensional smooth closed𝐺-manifolds, taken up to equivariant bordism.
Then for varying 𝑛, the graded abelian groups N𝐺

∗ have a ring structure by product
of equivariant manifolds. Endowing non-equivariant manifolds with trivial 𝐺-actions
makes N𝐺

∗ into an algebra over the non-equivariant bordism ring N∗. Conner and
Floyd carefully studied the bordism ring of manifolds with involution N𝐶2

∗ , i.e., the
equivariant bordism ring for the group 𝐺 = 𝐶2 = {±1} with two elements. Among
other things, Conner–Floyd showed that N𝐶2

∗ is a free module of infinite rank (but
of finite type) over the non-equivariant bordism ring N∗. Alexander [3] described
an explicit geometric basis constructed inductively from the R𝑃𝑛’s with involution
[𝑥0 : 𝑥1 : . . . : 𝑥𝑛] ↦→ [−𝑥0 : 𝑥1 : . . . : 𝑥𝑛], along with some partial information about
the ring structure.

Not only do the bordism rings N𝐺
∗ exist ‘uniformly’ for all compact Lie groups,

they also admit global functoriality. Indeed, a continuous homomorphism 𝛼 : 𝐾 −→𝐺

between compact Lie groups is automatically smooth, and hence restriction of actions
along 𝛼 yields a restriction homomorphism 𝛼∗ : N𝐺

𝑛 −→ N𝐾
𝑛 . If 𝐻 is a closed sub-

group of 𝐺, and 𝑀 a smooth closed 𝐻-manifold, then the induced 𝐺-space 𝐺 ×𝐻 𝑀
has a unique smooth structure for which the projection 𝐺 × 𝑀 −→ 𝐺 ×𝐻 𝑀 is a sub-
mersion. Moreover, this operation passes to a transfer homomorphism (or ‘induction
homomorphism’)

tr𝐺𝐻 : N𝐻
𝑛 −→ N𝐺

𝑛+dim(𝐺/𝐻 )

between the bordism groups. If 𝐻 has a smaller dimension than𝐺, there is an increase
in dimension by dim(𝐺/𝐻) = dim(𝐺) − dim(𝐻). This essentially (but not quite) makes
the geometric bordism rings into a global Mackey functor.

As I already emphasized earlier, classical cohomology theories and spectra have
many equivariant and global refinements. And sometimes more than one such global
form is interesting; equivariant bordism is a prime example of this phenomenon. The
complex (or unitary) bordism spectrum 𝑀𝑈 plays several important roles in stable
homotopy theory:

(a) 𝑀𝑈 represents the bordism homology theory of smooth manifolds with stably
almost complex structures;

(b) 𝑀𝑈 is the universal complex oriented cohomology theory, i.e., a multiplica-
tive cohomology theory endowed with natural Thom isomorphisms; and

(c) by Quillen’s celebrated theorem [35], the coefficient ring 𝑀𝑈∗ together with
the formal group law arising from the tautological complex orientation, is an
initial formal group law.

One might then desire, for every compact Lie group 𝐺, an equivariant theory that
enjoys analogous properties. However, when 𝐺 is nontrivial, properties (a) and (b)
cannot simultaneously be satisfied. Indeed, manifolds have non-negative dimensions,
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so geometrically defined bordism theories are necessarily concentrated in non-negative
degrees. However, equivariant complex orientations in particular provide Thom classes
for 𝐺-representations; and for representations with trivial fixed points, the associated
Euler classes are nontrivial homotopy classes in negative degrees.

In my opinion, the fact that equivariant theories cannot simultaneously be connec-
tive and complex oriented is a global feature, and not a bug. For example, there are
two very interesting global ring spectra mU and MU that refine the non-equivariant
theory, with mU being equivariantly connective, and MU being equivariantly com-
plex oriented. The fact that the geometric-to-homotopical morphism of global spectra
mU −→ MU is not an equivalence at nontrivial groups can also be seen as an incar-
nation of the failure of equivariant transversality.

Tom Dieck’s theory MU∗
𝐺

is manufactured from equivariant Thom spaces of uni-
versal bundles over equivariant Grassmannians; it is the universal 𝐺-equivariantly
complex oriented cohomology theory. The coefficient rings MU∗

𝐺
are reasonably well-

understood for abelian𝐺; but, except possibly for𝐺 = {±1}, not in the sense of a useful
presentation by generators and relations. For abelian 𝐺, the graded ring MU∗

𝐺
is con-

centrated in even degrees and free as a module over the non-equivariant cobordism
ring 𝑀𝑈∗; the bundling homomorphism MU∗

𝐺
−→ 𝑀𝑈∗(𝐵𝐺) is completion at the

augmentation ideal; and the 𝐺-equivariant formal group law over MU∗
𝐺

arising from
the tautological complex orientation is initial [23]. For nonabelian compact Lie groups,
however, the equivariant bordism rings MU∗

𝐺
are still largely mysterious.

As already mentioned, the theories {MU∗
𝐺
}𝐺 assemble into a global ring spectrum

MU, and I now want to illustrate how the global structure has been used to elucidate
the structure of the rings MU∗

𝐺
for unitary groups. A key player in this game is the

Euler class
𝑒𝑛 ∈ MU2𝑛

𝑈 (𝑛)

of the tautological𝑈 (𝑛)-representation onC𝑛, already defined by tom Dieck [46, page
347] when he introduced the theory. This Euler class participates in a classical long
exact sequence (Gysin sequence):

. . . −→ MU∗−2𝑛
𝑈 (𝑛)

𝑒𝑛 ·−−−→ MU∗
𝑈 (𝑛)

res𝑈 (𝑛)
𝑈 (𝑛−1)−−−−−−−→ MU∗

𝑈 (𝑛−1) −→ . . .

The main result of [41] says that the restriction map res𝑈 (𝑛)
𝑈 (𝑛−1) is surjective; thus the

long exact sequence decomposes into short exact sequences. Hence the Euler class 𝑒𝑛
is regular, i.e., multiplication by 𝑒𝑛 is injective.

The surjectivity of the restriction map res𝑈 (𝑛)
𝑈 (𝑛−1) is not specific to MU, and it works

in the same way for every global spectrum, and even for every global Mackey functor.
In fact, in [41] I use the global structure to exhibit a natural additive splitting. On the
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kernel of res𝑈 (𝑛−1)
𝑈 (𝑛−2) , the splitting is given by the composite

MU∗
𝑈 (𝑛−1)

𝑝∗

−−−→ MU∗
𝑈 (𝑛−1)×𝑈 (1)

tr𝑈 (𝑛)
𝑈 (𝑛−1)×𝑈 (1)−−−−−−−−−−→ MU∗

𝑈 (𝑛) .

The first map is an inflation, i.e., restriction along the projection 𝑝 :𝑈 (𝑛− 1) ×𝑈 (1) −→
𝑈 (𝑛 − 1) to the first factor; the second map is the transfer from the block matrix sub-
group 𝑈 (𝑛 − 1) × 𝑈 (1) to 𝑈 (𝑛). So this splitting has a similar flavor as parabolic
induction in the representation theory of reductive algebraic groups. In verifying that
the construction really provides a splitting, one needs to confront expressions like

res𝑈 (𝑛)
𝑈 (𝑛−1) ◦ tr𝑈 (𝑛)

𝑈 (𝑛−1)×𝑈 (1) ,

a specific composite of a transfer and a restriction, and thus work out an instance
of the double coset formula (3.1) where the double coset space is not discrete. In
this particular situation, the double coset space is a closed interval, with the minimal
stratification by its two end points and the interior.

The final illustration of the global structure is the construction of Chern classes in
homotopical equivariant bordism. Chern classes are important characteristic classes
for complex vector bundles that were originally introduced in singular cohomology.
Conner and Floyd [15, Corollary 8.3] constructed Chern classes for complex vector
bundles in complex cobordism, nowadays referred to as Conner–Floyd–Chern classes.

Popular constructions of Chern classes manufacture them from the Euler classes of
a complex orientation via either the projective bundle theorem, or the ‘splitting princi-
ple’. However, these tools are not available in the equivariant context. For example, the
splitting theorem says that for complex oriented𝐸 , the homomorphism𝐸∗(𝐵𝑈 (𝑛)) −→
𝐸∗(𝑇) induced by the inclusion of the maximal torus𝑇 =𝑈 (1)𝑛 into𝑈 (𝑛) is injective.
In homotopical equivariant bordism, the restriction homomorphism

res𝑈 (𝑛)
𝑇

: MU∗
𝑈 (𝑛) −→ MU∗

𝑇

is however not injective for 𝑛 ≥ 2. So the traditional methods fail to produce Chern-like
classes in homotopical equivariant bordism.

At this point, the global structure of MU comes to rescue. We start from the Euler
class 𝑒𝑘 ∈ MU2𝑘

𝑈 (𝑘 ) of the tautological 𝑈 (𝑘)-representation on C𝑘 , inflate along the
projection 𝑝 : 𝑈 (𝑘) ×𝑈 (𝑛 − 𝑘) −→ 𝑈 (𝑘), and then transfer up to𝑈 (𝑛): the 𝑘-Chern
class is

𝑐𝑘 = tr𝑈 (𝑛)
𝑈 (𝑘 )×𝑈 (𝑛−𝑘 ) (𝑝

∗(𝑒𝑘)) in MU2𝑘
𝑈 (𝑛) .

These Chern classes satisfy the analogous formal properties as their classical counter-
parts, including the equivariant refinement of the Whitney sum formula. Since 𝑐𝑘 is
defined as a transfer, verifying these properties again involves a double coset formula
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(3.1), this time with double coset space a simplex stratified by its faces. Despite the
many formal similarities, there are crucial qualitative differences compared to Chern
classes in complex oriented cohomology theories: The MU-Chern classes are not char-
acterized by their restriction to the maximal torus, and some of them are zero-divisors.

With the Whitney sum formula and the regularity of [41] at hand, it is only a short
way to the main result of [42]:

Theorem 4.1.
(i) The Chern classes 𝑐𝑛, 𝑐𝑛−1, . . . , 𝑐1 form a regular sequence in MU∗

𝑈 (𝑛) that
generates the augmentation ideal.

(ii) The completion of MU∗
𝑈 (𝑛) at the augmentation ideal is a power series alge-

bra over MU∗ in the Chern classes, and tom Dieck’s bundling map extends
to an isomorphism

(MU∗
𝑈 (𝑛) )

∧
𝐼 � MU∗(𝐵𝑈 (𝑛)).

I believe that the global techniques have further potential to illuminate the remain-
ing mysteries surrounding homotopical equivariant bordism, such as the evenness
conjecture, or the quest for a notion of equivariant formal group law for nonabelian
compact Lie groups.

This ends my tour of global homotopy theory. To wrap up, some of the main points
I was trying to convey are:
• global homotopy theory is the home of equivariant phenomena with ‘universal

symmetry’;
• many interesting equivariant cohomology theories are global;
• recognizing cohomology theories as global provides rich algebraic structure;
• homotopical equivariant bordism witnesses the calculational impact of global equiv-

ariant structures.
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