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1. Vector fields on spheres

The vector fields problem, solved by Adams in [Ada62], is quite easy to state. Given a positive
integer n, determine the maximal number k(n) of linearly independent (tangent) vector fields on
the unit sphere Sn−1 in Rn. Here a vector field is just a continuous function V : Sn−1 → Rn
such that x ⊥ V (x) for all x ∈ Sn−1 and linear independence is defined pointwise.

It had already been known for quite some time how many vector fields could be constructed
algebraically (i.e. as the restriction of linear transformations x 7→ Ax). By the Hurwitz-Radon-
Eckmann theorem ([Eck43]) there are ρ(n) − 1 linear vector fields (and no more), where the
Radon-Hurwitz numbers ρ(n) are defined as follows: Writing n = u · 24α+β with u odd and
0 ≤ β < 4, we set ρ(n) = 8α + 2β . This can also be phrased in terms of Clifford algebras
([ABS64], [LM89]). A set of k linear vector fields amounts to an n-dimensional representation
of the R-algebra Clk with generators e1, . . . , ek subject to the relations eiej + ejei = −2 · δi,j .
The representation theory of Clifford algebras is well understood and from this one reads off
the Radon-Hurwitz numbers combinatorially. The first goal of this project is to explain this
algebraic part of the story.

Now it is a much deeper fact that ρ(n)−1 is also an upper bound for the number of all vector
fields ([Ada62]) and this is where algebraic topology enters the picture. A set of k vector fields
on Sn−1 can equivalently be described as a section of the projection Vk+1,n → Sn−1 from the
Stiefel manifold of (k + 1)-frames in Rn to the sphere. For the purposes of this problem the
Stiefel manifold can be approximated by the stunted projective space RPn−1/RP k and it should
be discussed how the topology of these spaces yields some upper bounds, for example using
Steenrod operations ([MT68]). Adams solution was ultimately based on calculating the KO-
theory of stunted projective spaces, where KO is a cohomology theory defined in terms of real
vector bundles, called real (or orthogonal)K-theory (see [Ati67] for a textbook introduction to the
complex version). A more ambitious version of this bachelor thesis project would be to sketch
a streamlined approach to his result involving the so-called J-homomorphism KO(RPn) →
J(RPn) ([Jam76],[Bot69],[Bot62], [ABS64], also see [Ati67] for the complex case). This would
then be the main focus and one should only spend very little time on the classical algebraic story.

2. Computation of the unoriented cobordism ring

The (unoriented) cobordism ring Ω∗ is the graded ring of cobordism classes of smooth, closed
manifolds with addition and multiplication induced by disjoint union and cartesian product.
Two manifolds (of the same dimension) are said to be cobordant if their disjoint union is the
boundary of a manifold and the grading is given by dimension. As miraculous as it may seem,
this can actually be computed. The Pontryagin-Thom construction (e.g. see [BtD70] or [Mil65]
for the ’framed’ version) allows one to translate this into a problem in (stable) homotopy theory.
Given a submanifold Mn ⊂ Rn+k, one can embed its normal bundle ν ⊂ Rn+k as an open
neighbourhood. Sending the complement of ν to the point at infinity yields the Pontryagin-
Thom collapse map Sn+k → Th(ν) to the Thom space Th(ν) which is simply the one-point
compactification of ν. The (k-dimensional) normal bundle is classified by a map M → BO(k)
and this gives a map Th(ν)→ Th(γk) = MOk to the Thom space of the universal vector bundle
γk over BO(k). These Thom spaces come with suspension maps MOk ∧ S1 → MOk+1 turning
the entire collection into a spectrum MO and it turns out that the Pontryagin-Thom construction
determines a well-defined morphism Ωn → colimk πn+kMOk = πnMO to the stable homotopy
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groups of MO. In fact this is an isomorphism and Thom famously also computed the result
([Tho54])

Ω∗ ∼= π∗MO ∼= F2[xi | i 6= 2k − 1]

to be a polynomial ring over F2 on countably many generators xi of certain degrees i (there are
also explicit manifold representatives for these, see [Dol56]).

The main goal of this project is to work out this computation, for example following this very
rough outline: Using the Thom-isomorphism, it is relatively straightforward to compute the mod
2 (co)homology of these Thom spaces and hence of MO. One ends up with a polynomial ring
H∗MO ∼= F2[b1, b2, . . .] on generators of all degrees. The next step is to determine the structure
as a comodule over the dual Steenrod algebra ([Mil58], [MT68]) A∗ and it turns out that it is
coinduced: H∗MO ∼= A∗ ⊗ F2[x̃i | i 6= 2k − 1]. This is a truly stable phenomenon and cannot
happen for the homology of a single space. In any case, by dualizing we see that the cohomology
is free as a module over the Steenrod algebra. This together with the fact π0MO ∼= F2 allows
one to conclude that the stable mod 2 Hurewicz map π∗MO → H∗MO induces an isomorphism
with the suggestively denoted tensor factor. There are many references for the computation of
the cobordism ring (e.g. [Sto68], [BtD70], [Swi75] as well as various lecture notes). This topic
is also nicely extendable. For example it would also be nice to say something about manifold
generators. Moving into more optional territory, there is a fascinating description of these results
in terms of formal group laws (in particular expressing the comodule structure of the homology
in a more conceptual way).
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